Slideshow:
|
What is an estimate for size of R(X,Y1,Y2) ⋈ S(Y1,Y2,Z) ???
|
|
Previously, we have found that:
1
Probab[ r(Y1) = s(Y1) ] = -------------------------
max( V(R,Y1), V(S,Y1) )
1
Probab[ r(Y2) = s(Y2) ] = -------------------------
max( V(R,Y2), V(S,Y2) )
|
Probab[ r(Y1) = s(Y1) and r(Y2) = s(Y2) ]
1
= ---------------------------------------------------
max( V(R,Y1), V(S,Y1) ) × max( V(R,Y2), V(S,Y2) )
|
T( R(X,Y1,Y2) ⋈ S(Y1,Y2,Z) )
T(R) × T(S)
= ---------------------------------------------------
max( V(R,Y1), V(S,Y1) ) × max( V(R,Y2), V(S,Y2) )
|
R(a,b) S(b,c) U(c,d)
=======================================================
T(R) = 1000 T(S) = 2000 T(U) = 5000
V(R,b) = 20 V(S,b) = 50
V(S,c) = 100 V(U,c) = 500
|
Problem:
|
computed using this ordering:
R(a,b) ⋈ S(b,c) ⋈ U(c,d) = ( R(a,b) ⋈ U(c,d) ) ⋈ S(b,c) |
|
R(a,b) ⋈ S(b,c) ⋈ U(c,d) = ( R(a,b) ⋈ U(c,d) ) ⋈ S(b,c) |
Notice that:
|