Incomplete Label Multi-task Deep Learning for Spatio-temporal Event Subtype
Forecasting(Supplemental Material)

Related Work

Spatio-temporal Event Forecasting. Most previous re-
search in this area has focused on temporal event, in vari-
ous studies on forecasting elections (O’Connor et al. 2010),
stock market movements (Argyriou, Evgeniou, and Pontil
2007), disease outbreaks (Achrekar et al. 2011), and box of-
fice ticket sales (Arias, Arratia, and Xuriguera 2013). There
are several existing approaches that provide true spatiotem-
poral resolution for predicted events. For example, Gerber
et al. (Gerber 2014) utilized a logistic regression model for
spatiotemporal event forecasting using topic-related tweet
volumes as features, Ramakrishnan et al. (Ramakrishnan et
al. 2014) built separate LASSO models for different loca-
tions to predict the occurrence of civil unrest events, and
Zhao et al. (Zhao et al. 2015a) designed a new predictive
model based on a topic model that jointly characterizes the
temporal evolution in terms of both the semantics and ge-
ographical burstiness. However, all these focus on the oc-
currence only, and are not able to handle specific subtypes
of future events. There are few existing reports of research
on event subtype forecasting. Ning et al. (Ning et al. 2016)
performs a primitive experiment in forecasting event popu-
lations, but the model proposed in this paper is designed for
the distant supervised learning setting (e.g., multi-instance
learning), which can not be applied directly to generic multi-
class classification.

Multi-task Learning. Multi-task learning (MTL) refers
to models that learn multiple related tasks simultaneously
to improve their generalization performance (Arias, Arra-
tia, and Xuriguera 2013; Thrun and OSullivan 1998). For
event forecasting, many MTL approaches have been pro-
posed (Tutz 2003). For example, Evgeniou et al. (Evgeniou
and Pontil 2004) proposed a regularized MTL framework
that constrains all task models to be close to each other.
The task relatedness can also be modeled by constraining
multiple tasks to share a common underlying structure, e.g.,
a common set of features (Argyriou, Evgeniou, and Pontil
2007), or a common subspace (Ando and Zhang 2005). Zhao
etal. (Zhao et al. 2015b) demonstrated the utility of applying
a Multi-Task Learning framework for spatiotemporal event
forecasting.

Recent years, multi-task learning has also been well stud-
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ied by the deep learning community. One of the most
widely used multi-task learning models was proposed by
Caruana (Caruana 1998; Caruna 1993). This model has a
shared-bottom structure, where the bottom hidden layers are
shared across tasks. Instead of having shared hidden layers
and same model parameters across tasks, more recent ap-
proaches for modeling task relationships add different types
of constraints to task specific parameters (Duong et al. 2015;
Misra et al. 2016; Yang and Hospedales 2016). For exam-
ple, when training two tasks, Duong et al. (Duong et al.
2015) adds L-2 constraints between the two sets of parame-
ters, while a cross stitch network (Misra et al. 2016) learns a
unique combination of task-specific hidden layer embedding
for each task and Yang et al. (Yang and Hospedales 2016)
uses a tensor factorization model to generate hidden layer
parameters for each task. However, none of these frame-
works can be adopted directly for the spatial event subtype
forecasting problem as the challenges mentioned in the in-
troduction neutralize the existing approaches.

Lemma 1°s Proof

For a time interval ¢, given two locations ¢ and j that are
close in geo-spatial distance, the probability of the event
subtype C, at location i denoted as P(Y; ; = Co|X; ¢), will
be similar to that at location j, leads to the following equa-
tion:

P(Y;,t = Ca|Xi,t) ~ P(Yj,t = Ca|Xj,t)

Likewise, the ratio of the probability of the event subtype
at location 7 being equal to event subtype C, compared to
event subtype Cyp, should also be similar to that at location j.
This can be expressed as:

P(Yiy =Ca|Xit) _ P(Yje = CalXjt) M
P(Yiie =ColXit) ~ P(Yiu = ColX;0)

The posterior probability P(Y; ; = Co|X; ) can be equiv-
alently represented by any multi-class based models. The
similarity pattern based on the ratio of the probability in
Equation (1) can thus be equivalently denoted by input X
and weight coefficient O, as shown in Lemma 1.

Lemma 1. Based on the model shown in Equation (2) ,
Equation (1) is theoretically equivalent to the following:
Xi(©ia —Oip)" = X;(0j0 —0jp)" (2)
where i and j are two tasks that are close in geo-spatial
distance and a and b are any two different event subtypes.



Proof. We can derive the lemma from the following equa-
tions:

e K . eT
P(Yiy = CalXig) = ™%/ 3 0 eF0@in o 3)
Equation (3) is the definition of the softmax regression.

From this, we can derive an equivalent expression in loga-
rithmic form as follows:

. T K . T
log P(Yis = Ca|Xip) =loge™ @t —logy |~ X0

We can now subtract any pair of classes C, and C; to omit
the common denominator, as shown below:
P(Yi: =Cal|Xit) T T
log —ot——2 20t — x, .07, — X, 0] 4
og P(Yi,t :Clei’t) 4095, t9ip 4
Thus, combining Equation (1) and Equation (4), the proof
is completed. O

Theorem 1’s Proof

Theorem 1. In the SIMDA framework, for any deep learn-
ing architectures that use the softmax function as their out-
put layer, equation (1) is theoretically equivalent to the fol-
lowing:

F(Xi) (10 = Oip)" & f(X;)(Oj.0 — ©5)" ©)
where ©; y, denotes the task specific output layer weight co-
efficient vector for task i and class C,.

Proof. We can derive the theorem from the following equa-
tions:
S Xiel,

oT
25:1 ef(Xz,t)Oiyk

P(Yi: =Col|Xiyt) = (6)

Equation (6) is the definition of the posterior probability
of the softmax output layer for a given input X and function
f(-). From this, we can derive an equivalent expression in
logarithmic form as follows:

K
log P(Yis = Ca| Xi0) = loge! ¥40%%e —log 3 e (X0000s

We can now subtract any pair of classes C, and Cp to omit
the common denominator in equation (6), as shown below:
P(Yi: = CalXis) T T
log P(Yi,t — Cb|X'L',t) - f(XZ»t)@i,a f(XZ»i)@'i,b (7)
Thus, combining Equation (1) and Equation (7), we can
safely conclude that given two tasks ¢ and j that are close
geo-spatially, the difference between the products of the hid-
den representation of corresponding input and weight co-
efficients of any pair of classes f(X;)(0;, — ©;4)7 and
F(X;)(©j,a —O;4)T should be similar, as shown in Equa-
tion (5). 0

Algorithm

Based on the ADMM formulation, the original objective
function of SIMDA can now be re- written as follows:

Lo(®,0)+ BZZ 1Zs(Vasi = Vay)"
1 .
- 2. CLd](S,C)Zc(WC,i - We i)' l3 ®)

sLO=V,0=W,Z=f(X)
Thus, by decoupling the output layer parameter set © that
appears both in deep model loss and regularization term, the

original problem is transformed into a simpler one with aux-
iliary variables V, W and Z. The augmented Lagrangian
that uses additional quadratic penalty terms with penalty pa-
rameter p is further computed as follows:

Jgmin Lo(®,0)-+(y" (2 = F00))+ 112 = )+

Sck

'BZZHZ Vs,i— ng Zad] s,¢)Z,
s i,

+tr<y<2><e—v>T>+§|\e—w|2+tr<y<3><e—wﬂ+§ue—wu%

where the ¢r(-) operator denotes the trace of the matrix
which will return the sum of the elements on the main di-
agonal.

The pseudo-code of the proposed algorithm is
summarized in Algorithm 1. The parameter set
{2,0,V,W, Z,yM 4@ ¢y is alternately solved
by the proposed algorithm until convergence is achieved.
Lines 3-13 show the alternating optimization for each of the
variables. The detailed optimization for all the variables are
described in more detail below.
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Algorithm 1: The Proposed Algorithm

Require: X,Y,p, 5, A
Ensure: solution ¢, 0

1: initialize ®°, @0 Vo we z0y y@0 430 =0
2: repeat

3: @' ©' < Equation (9)
4. for s < 1to K do

5: V) <= Equation (12)
6: end for

7: forc<=1to K do

8: W < Equation (14)
9: end for

10:  for s < 1to K do
11: Z . < Equation (16)
12: end for

13: y(l)i, y(2)i, y®* < Equation (17)
14: i<=i+4+1
15: until convergence

Update ¢, ©

The sub-problem of updating ® and © is jointly handled as
follows:

argmin Lp(®,0) +tx(y" (Z-f(0))")+ 512~ X)ll3+ )

P ©-V))+EllO-VIE+u® ©-w)")+

Since L (P, O©) is a non-convex function with respect to
® and O, we will use the conventional Stochastic Gradient
Descent and Backpropagation to get local optima.

Update V
The sub-problem of updating V" is as follows:

argmin g||@ — V|2 +tr(y®© - V)D)+ (10)
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The proposed regularization term introduces some diffi-
culties for updating V', since every pair of class parameters
for the same task is coupled in the same term. This makes
elemental-wise updating of V' impossible.

In order to address it, we treat the combination of every

pair of classes as the matrix representation M &€ RF*CZ and
reformulate the problem as matrix multiplication as follows:

arg‘mingH@*V||g+tr(y(2)(®fV)T)+ 1D
v

B s T 1 s . T 2

5 N ZVIM = 537 adj(s, ) 2 W M|

where matrix M represents all possible combinations of dif-
ferent classes. For instance, given 3 classes, the matrix M
will be as follows:

1 1 0
M=] -1 0 1
0o -1 -1
Now we can derive the analytical solution for V; as:

vee(Vs) = (B(ZSTZS) ® (MMT) + p[) o (12)

1 S T
(2) . T
vec ( + pO;s + BM (Ns E i adj(s,c)ZW, M) ZS>

where ® is the Kronecker product operator; and vec(-) is the
vector obtained from the matrix by stacking its columns.

Update W
Similarly, the sub-problem of updating W is as follows:
argmin gH@ WS +tr(y®(© - W)+ (13)
w
/3 S T 1 S . T 2
3 2, 12 VIM = =37 adj(s, ) Z. W M3
The analytical solution for W then becomes:

-1
vee(W.) = (ﬁzsadj 5,¢)° (277 )®(MMT)+pI) (14)
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Update Z

The sub-problem of updating Z is as follows:
argmin £17 — FOIE +tr(y " (2 = XN+ (9)

I5] S
523 |2V M — —Z adj(s,c)Z.W. M3

The analytical solution for Z is straightforward:
S
_ (1) 1 - T T
Zs = <_ys +pf(Xs)+B<NS E adj(s,c)ZW; M>M V5>

(ﬁVSTMMTVS + p[>71 (16)

Update y
Finally, update y(*), 4 43 as follows:
vV =y (2 - 1)),y =yP 1 p0-V) (7
y® =y® +p@ -W)
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Figure 1: Sensitivity analysis for hyper-parameter /3
Baselines and parameters setting

1) SVC1V1 (Support Vector Classifier with OneVsOne) is a
C-Support Vector Classifier with OneVsOne binary decom-
position. The kernel function is set to linear and the regular-
ization parameter C' is set based on 10 fold cross validation.

2) SVCIVA (Support Vector Classifier with OneVsAll) is
a C-Support Vector Classifier with OneVsAll binary decom-
position. These two methods represent the main approaches
generally used to apply SVM to multi-class problems. The
kernel function is set to linear and the regularization param-
eter C'is set based on 10 fold cross validation.

3) SR (Softmax Regression) is a classification method that
generalizes logistic regression to multi-class classification
problems . It has no tuning parameter.

4) MLP (MultiLayer Perceptron) is the plain vanilla neu-
ral network model. The network structure is tuned via the
validation set.

5) SBM (Shared-Bottom Model) is a multi-task deep
learning approach where all tasks share the same bottom hid-
den layers. The network structure is tuned via the validation
set. The detail introduction and hyper-parameter setting is
included in supplemental material.

Parameter Sensitivity Study

The hyper-parameter in the proposed SIMDA model is S,
where it controls the proposed regularization term on ©.
Figure 1 shows the macro average precision, recall and F1-
score of the model for various values of 3. Once again, only
the results for the Brazil dataset are shown here to repre-
sent the civil unrest datasets due to space limitations. The
China air dataset shown here is the next day (1-day) air pol-
lution event forecasting format. The bar chart at the top of
Figure 1 shows the macro average precision, recall and F1-
score of the model versus various values of 3 for the China
air dataset. By varying (3 across a range from 0.00001 to
100000, the performance, especially for the macro average
F1-score, exhibits a concave curvature, peaking at a 3 value
between 0.01 and 0.1. For the civil unrest dataset, a similar
concave curvature is found for the model performance by
varying (3 across the same range. In general, the performance
is good when £ is small, but deteriorates once /3 becomes too
large. This is because a large 8 will force the model to pay
too much attention to ensuring similarities between adjacent
tasks which lead to the loss of their own characteristics and
a consequent decrease in overall performance.



