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A Systematic Survey on Deep Generative
Models for Graph Generation

Xiaojie Guo, Liang Zhao

Abstract—Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of
real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and
generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history,
however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep
generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for
new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph
generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are
provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed
respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific
domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research
directions are highlighted.

Index Terms—graph generation, graph neural network, deep generative models for graphs.
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1 INTRODUCTION

G RAPHS are ubiquitous in the real world, representing
objects and their relationships such as social networks,

citation networks, biology networks, traffic networks, etc.
Graphs are also known to have complicated structures that
contain rich underlying values [1]. Tremendous efforts have
been made in this area, resulting in a rich literature of related
papers and methods to deal with various kinds of graph
problems. These works can be categorized into two types:
1) predicting and analyzing patterns on given graphs. 2)
learning the distributions of given graphs and generating
more novel graphs. The first type covers many research
areas including node classification, graph classification, and
link prediction. Over the past few decades, a significant
amount of work has been done in this domain. In contrast to
the first type, the second type is related to graph generation
problem, which is the focus of this paper.

Graph generation includes the process of modeling and
generating real-world graphs, and it has applications in sev-
eral domains, such as understanding interaction dynamics
in social networks [2], [3], [4], anomaly detection [5], protein
structure modeling [6], [7], source code generation and
translation [8], [9], and semantic parsing [10]. Owing to its
many applications, the development of generative models
for graphs has a rich history, resulting in famous models
such as random graphs, small-world models, stochastic
block models, and Bayesian network models, which gen-
erate graphs based on apriori structural assumptions [11].
These graph generation models [12], [13], [14] are engi-
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neered towards modeling a pre-selected family of graphs,
such as random graphs [15], small-world networks [16], and
scale-free graphs [12]. However, due to their simplicity and
hand-crafted nature, these random graph models generally
have limited capacity to model complex dependencies and
are only capable of modeling a few statistical properties of
graphs. Such methods usually fit well towards the prop-
erties that the predefined principles are tailored for, but
usually cannot do well for the others. For example, a contact
network models can fit flu epidemics but not dynamic
functional connectivity. However, in many domains, the
network properties and generation principles are largely
unknown, such as those for explaining the mechanisms
of mental diseases in brain network, cyber-attacks, and
malware propagations. For the other example, Erdos–Rényi
graphs do not have the heavy-tailed degree distribution that
is typical of many real-world networks. In addition, the
utilization of the apriori assumption limits these traditional
techniques from exploring more applications in larger scale
of domains, where the apriori knowledge of graphs are
always not available.

Considering the limitations of the traditional graph gen-
eration techniques, a key open challenge is developing
methods that can directly learn generative models from an
observed set of graphs, which is an important step towards
improving the fidelity of generated graphs. It paves the
way for new kinds of applications, such as novel drug
discovery [17], [18], and protein structure modeling [19],
[20], [21]. Recent advances in deep generative models, such
as variational autoencoders (VAE) [22] and generative ad-
versarial networks (GAN) [23], have supported a number
of deep learning models for generating graphs have been
proposed, which formalized the promising area of Deep
Generative Models for Graph Generation, which is the focus
of this survey.
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1.1 Formal Problem Definition

A graph is defined as G(V, E , F, E), where V is the set of
N nodes, and E ⊆ V × V is the set of M edges. ei,j ∈ E
is an edge connecting nodes vi, vj ∈ V . The graph can
be conveniently described in the form of matrix or tensor
using its (weighed) adjacency matrix A. If the graph is
node-attributed or edge-attributed, there are node attribute
matrix F ∈ RN×D assigning attributes to each node or edge
attribute tensor E ∈ RN×N×K assigning attributes to each
edge ei,j . K is the dimension of the edge attributes, and D
is the dimension of the node attributes.

Given a set of observed graphs G = {G1, ...Gs} sam-
pled from the data distribution p(G), where each graph Gi
may have different numbers of nodes and edges, the goal
of learning generative models for graphs is to learn the
distribution of the observed set of graphs. By sampling a
graph G ∼ pmodel(G), new graphs can hence be achieved,
which is known as deep graph generation, the short form of
deep generative models for graph generation. Sometimes,
the generation process can be conditioned on additional
information y, such that G ∼ pmodel(G|y), in order to
provide extra control over the graph generation results. The
generation process with such conditions is called condi-
tional deep graph generation.

1.2 Challenges

The development of deep generative models for graphs
poses unique challenges, which are mainly listed below.

Non-unique Representations. In the general setting, a
graph with n nodes can be represented by up to n! equiv-
alent adjacency matrices, each corresponding to a different,
arbitrary node ordering. Given that a graph can have multi-
ple representations, it is difficult for the models to calculate
the distance between the generated graphs and ground-
truth graphs white training. Thus it may require us to design
either a pre-defined node ordering or a node permutation
invariant reconstruction objective function.

Complex Dependencies. The nodes and edges of a
graph have complex dependencies and relationships. For
example, two nodes are more likely to be connected if they
share common neighbors. Therefore, the generation of each
node or edge cannot be modeled as an independent event.
One way to formalize the graph generation is to make auto-
regressive decisions, which naturally accommodate com-
plex dependencies inside the graphs through sequential
formalization of graphs. Towards this challenge, in this sur-
vey, existing works are described and compared regarding
to what kinds of dependencies (e.g., dependencies among
nodes, among edges or between node and edges) they can
capture.

Large Output Spaces. To generate a graph with n nodes
the generative model may have to output n2 values to
specify its structure, which makes it expensive, especially
for large-scale graph. However, it is common to find graphs
containing millions of graphs in real-world, such as cita-
tion and social networks. Consequently, it is important for
generative models to scale to large-scale graphs for realistic
graph generation and to accommodate such complexity in
the output space. The scalability of the existing works is
a critical issue in comparing and evaluating the different

categories of graph generative models in this survey, as
discussed in Section 2.1.5 and Section 2.2.3.

Discrete Objects by Nature. The standard machine
learning techniques, which were developed primarily for
continuous data, do not work off-the-shelf, but usually need
adjustments. A prominent example is the back-propagation
algorithm, which is not directly applicable to graphs, since
it works only for continuously differentiable objective func-
tions. To this end, it is usual to project graphs (or their
constituents) into a continuous space and represent them
as vectors/matrix. However, reconstructing the generated
graphs from the continuous representations is a challenge.
Reconstructing the desecrate graph objects (i.e., nodes and
edges) from continuous spaces results into different graph
decoder process, such as sequentially generating the nodes
of the graphs or generating the adjacent matrix of graphs in
one-shot. This challenge motivates the major criteria in the
taxonomy of the existing methods in this survey.

Evaluation for Implicit Properties Evaluating the gen-
erated graphs is a very critical but challenging issue, due
to the unique properties of graphs which with complex
and high-dimensional structure and implicit features. Exist-
ing methods use different evaluation metrics. For example,
some works [18], [24], [25] compute the distance of the
graph statistic distribution of the graphs in the test set
and graphs that are generated, while other works [21],
[26] indirectly use some classifier-based metrics to judge
whether the generated graphs are of the same distribution
as the training graphs. It is important to systematically
review all the existing metrics and choose the approximate
ones based on their strengths and limitations according to
the application requirements. Towards this challenge, we
summarized a unified evaluation framework for graph gen-
eration in Section 4, including popular evaluation metrics
for both unconditional and conditional graph generation.

Various Validity Requirements. Modeling and under-
standing graph generation via deep learning involve a
wide variety of important applications, including molecule
designing [17], [27], protein structure modeling [20], AMR
parsing [10], [28], et al. These inter-discipline problems have
their unique requirements for the validity of the generated
graphs. For example, the generated molecule graphs need
to have valency validity, while the semantic parsing in
NLP requires Part-of-Speech (POS)-related constraint. Thus,
addressing the validity requirements for different appli-
cations is crucial in enabling wider applications of deep
graph generation. In this paper, we elaborate the way how
the existing works improve the validity of the generated
graph when introducing the rule-based generation models
in Section 2.1.4. In addition, the real-world applications of
solving validity issues are elaborated in Section5.

Black-box with Low Reliability. Compared with the tra-
ditional graph generation area, deep learning based graph
modeling methods are like black-boxes which bear the
weaknesses of low interpretability and reliability. Improving
the interpretability of the deep graph generative models
could be a vital issue in unpacking the black-box of the gen-
eration process and paving the way for wider application
domains, which are of high sensitivity and require strong
reliability, such as smart health and automatic driving. In
addition, semantic explanation of the latent representations
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can further enhance the scientific exploration of the associ-
ated application domains. Interpretability and reliability are
important aspects when comparing and evaluating the dif-
ferent graph generation methods in this survey, as discussed
in Section 3.1.3, which compares the different conditional
graph generation categories.

1.3 Our Contributions
Various advanced works on deep graph generation have
been conducted, ranging from the one-shot graph genera-
tion to sequential graph generation process, accommodating
various deep generative learning strategies. These methods
aim to solve one or several of the above challenges by
works from different fields, including machine learning,
bio-informatics, artificial intelligence, human health and
social-network mining. However, the methods developed
by different research fields tend to use different vocabularies
and solve problems from different angles. Also, standard
and comprehensive evaluation procedures to validate the
developed deep generative models for graphs are lacking.

To this end, this paper provides a systematic review
of deep generative models for graph generation. The goal
is to help interdisciplinary researchers choose appropriate
techniques to solve problems in their applications domains,
and more importantly, to help graph generation researchers
understand the basic principles as well as identify open
research opportunities in deep graph generation domain.
As far as we know, this is the first comprehensive survey
on deep generative models for graph generation. Below, we
summarize the major contributions of this survey:
• We propose a taxonomy of deep generative models for

graph generation categorized by problem settings and
methodologies. The drawbacks, advantages, and relations
among different subcategories have been introduced.

• We provide a detailed description, analysis, and compar-
ison of deep generative models for graph generation as
well as the base deep generative models.

• We summarize and categorize the existing evaluation pro-
cedures and metrics, the benchmark datasets and the cor-
responding results of deep generative models for graph
generation tasks.

• We introduce existing application domains of deep gener-
ative models for graphs as well as the potential benefits
and opportunities they bring into these applications.

• We suggest several open problems and promising future
research directions in the field of deep generative models
for graph generation.

1.4 Relationship with Deep Generative Models
Deep generative models form the backbone of the base
learning methods of all the existing deep generative models
for graph generation. Specifically, deep generative models
offer a very efficient way to analyze and understand unla-
beled data. The idea behind generative models is to capture
the inner probabilistic distribution that generates a class
of data to generate similar data [29]. Emerging approaches
such as generative adversarial networks (GANs) [23], varia-
tional auto-encoders (VAEs) [22], generative recursive neu-
ral network (generative RNN) [30] (e.g., pixelRNNs, RNN
language models), flow-based learning [31], and many of

their variants have led to impressive results in myriads of
applications. We provide a review of five popular and classic
deep generative models in Appendix A.

1.5 Relationship with Existing Surveys

There are three types of existing surveys that are relevant
to our work. The first type mainly centers around the
traditional graph generation by classic graph theory and
network science [32], which does not focus on the most
recent advancement in deep generative neural networks in
AI. The second type is about representation learning on
graphs [33], [34], [35], which focuses on learning graph
embedding given existing graphs. Few works include a
handful of deep generative models that could be used for
representation learning tasks. The third type is specific to
particular applications such as molecule design by deep
learning, instead of for this generic technical domain.

As yet, there have been very few systematic surveys
on deep generative models for graph generation, with
just two recent contemporaneous papers [36], [37]. Both
of these categorize graph generation mainly in terms of
the general backbone learning models utilized (i.e., auto-
regressive, auto-encoder-based, RL-based, adversarial, and
flow-based), We have instead opted to review this research
field from more comprehensive and graph-specific perspec-
tives, including task formulation, graph generating tech-
niques, evaluations, applications and datasets. This yields
a number of advantages compared to the existing ones,
namely: (1) Two main problems are covered: This sur-
vey comprehensively summarizes the techniques used for
both unconditional and conditional generation problems;
(2) Categorization from graph-specific perspectives: This
survey categorizes the existing graph generation models
(e.g., sequential-generating and one-shot generation) utiliz-
ing graph-specific perspectives, instead of the all-in purpose
generative models developed and applied for all kinds of
data generation; (3) Reviews of evaluation methods: This
survey provides a comprehensive overview of the existing
evaluation procedures and metrics for graph generation
tasks; (4) More applications: This survey provides a com-
prehensive summary for a diverse range of the applications,
including domains like biology, NLP and program analysis;
and (5) Performance comparisons: This survey compares
the performance of existing state-of-the-arts methods on
both synthetic and real-world datasets, reaching several
insightful conclusions.

1.6 Outline of the Survey

The remaining part of the survey is organized as follows.
In Sections 2 and 3, we provide the taxonomy of deep
graph generation, and the taxonomy structure is illustrated
in Fig. 1. Section 2 compares related works of uncondi-
tional deep graph generation problem and summarizes the
challenges faced in each. In Section 3, we categorize the
conditional deep graph generation in terms of three sub-
problem settings. The challenges behind each problem are
summarized, and a detailed analysis of different techniques
is provided. Lastly, we summarize and categorize the evalu-
ation metrics in Section 4. Then we present the applications
that deep graph generation enables in Section 5. At last,
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Fig. 1. Classification of deep generative models for graph generation problems

we discuss five potential future research directions and con-
clude this survey in Sections 6 and 7. Due to the space limit,
We also summarize the benchmark dataset and performance
evaluation of existing works in Appendix B.

2 UNCONDITIONAL DEEP GENERATIVE MODELS
FOR GRAPH GENERATION

The goal of unconditional deep graph generation is to
learn the distribution pmodel(G) based on a set of observed
realistic graphs being sampled from the real distribution
p(G) by deep generative models. Based on the style of the
generation process, we can categorize the methods into two
main branches: (1) Sequential generating: this generates the
nodes and edges in a sequential way, one after another, (2)
One-shot generating: this refers to building a probabilistic
graph model based on the matrix representation that can
generate all nodes and edges in one shot. These two ways
of generating graphs have their limitations and merits.
Sequential generating performs the local decisions made in
the preceding one in an efficient way, but it has difficulty
in preserving the long-term dependency. Thus, some global
properties (e.g., scale-free property) of the graph are hard to
include. Moreover, existing works on sequential generating
are limited to a predefined ordering of the sequence, leaving
open the role of permutation. One-shot generating methods
have the capacity of modeling the global property of a graph
by generating and refining the whole graph (i.e. nodes and
edges) synchronously through several iterations, but most
of them are hard to scale to large graphs since the time
complexity is usually over O(N2) because of the needs of
collectively modeling global relationship among nodes.

2.1 Sequential generating
This type of methods treats graph generation as a sequential
decision making process, wherein nodes and edges are
generated one by one (or group by group), conditioning
on the sub-graph already generated. By modeling graph
generation as a sequential process, these approaches nat-
urally accommodate complex local dependencies between
generated edges and nodes. A graph G is represented by
a sequence of components S = {s1, ..., sN}, where each
si ∈ S can be regarded as a generation unit. The distribution
of graphs p(G) can then be formalized as the joint (condi-
tional) probability of all the components in general. While

generating graphs, different components will be generated
sequentially, by conditioning on the already generated parts.

One core issue is how to break down the graph gen-
eration to facilitate the sequential generation of its com-
ponents, namely determining the formalization unit si for
sequentialization. The most straightforward approach is to
formalize the graph as a sequence of nodes, which are
the basic components of a graph, to support the node-
sequence-based generation. These methods essentially gen-
erates the graph by generating each node and its O(N)
associated edges in turn, and hence usually result in a
total complexity of O(N · N) = O(N2). Another approach
is to consider a graph as set of edges, based on which
a number of edge-sequence-based generation methods have
been proposed. These methods represent the graph as a
sequence of edges and generate an edge, as well as its two
ending nodes, per step, which leads to a total complexity of
O(|E| · 2) = O(|E|). Edge-sequence-based methods are thus
usually better at sparser graphs than node-sequence-based
approaches. Although both these two types are successful at
retaining pairwise node-relationships, they often fall short
when it comes to capture higher-order relationships [65].
For example, gene regulatory networks, neuronal networks,
and social networks all contain a large number of triangles;
and molecular graphs contain functional groups. These all
indicate the need to generalize the units of the sequential
generation from nodes/edges to interesting sub-graph pat-
terns, known as motifs. To this end, a number of motif-
sequence-based methods have been proposed that represent
a graph utilizing a sequence of graph motifs so that a block
of nodes and edges in a graph motif are generated simulta-
neously in each step, which usually boosts better efficiency.
Although the above three types are all versatile in end-to-
end graph generation, they fall short in ensuring generating
“valid” graphs, namely graphs that enforce correct grammar
and constraints, which are very common in fields like pro-
gramming languages and molecules modeling. To solve this,
several rule-sequence-based methods have been proposed for
domain specific applications, where a graph is constructed
based on a predefined sequence of rules by incorporating
appropriate domain expertise. A more detailed description
of methods in each category is provided below.

2.1.1 Node-sequence-based
General Framework. Node-sequence-based methods essen-
tially generate the graph by generating one node and its
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TABLE 1
Deep Generative-based Methods for Unconditional Graph Generation

Generating Style Techniques Reference

Sequential Generating
Node-sequence-based Collective-associated-edge-generation [17], [18], [38], [39], [40], [41], [42]

Progressive-associated-edge-generation [43], [44], [45], [46]

Edge-sequence-based Independency-based [47]
Dependency-based [19], [48]

Motif-sequence-based Domain-agnostic-based [49]
Domain-specific-based [27], [50], [51]

Rule-sequence-based [9], [52]

One-shot Generating
Adjacency-matrix-based

MLP-based [20], [21], [53], [54], [55], [56]
Message-Passing-based [57], [58], [59], [60]
Invertible-transform-based [61], [62]
Transposed-convolution-based [25], [63]

Edge-list-based Random-walk-based [64], [65], [66], [67]
Node-similarity-based [2], [68], [69], [70], [71], [72]

     
 
 

 
 
 

 

Fig. 2. Four categories in graph sequential generating: the upper line
of each sub-figure refers to the immediate graph that are generated per
step; the bottom line of each sub-figure refers to the sequence consisting
of unit Si that is generated per step.

associated edges in each step, as shown in Fig. 2(a). The
graph is modeled by a sequence based on a predefined
ordering π on the nodes. Each unit si in the sequence of
components S is represented as a tuple si = (vπi , {ei,j}j<i)
(as shown at the bottom of Fig. 2(a)), indicating that at each
high-level step, the generator generates one node vπi and
all its associated edges set {ei,j}j<i1. Specifically, in node-
sequence-based generation, generating a unit si involves
two main steps. In the first step, a node is generated con-
ditioning on the current generated graph Gi, which can be
interpreted to learn p(vπi |Gi). The second step is to generate
the associated edges set {ei,j}j<i for node vπi .

There are two options when it comes to generating the

1. Here we omit the node and edge attribute symbol for clarity, but it
is important to bear in mind that the generated node and edges can all
have attributes (i.e. type, label).

associated edges of each node: 1) collective associated-edge
generation, where the predictions are conducted on all of
the node pairs between vπi and the other existing nodes
in Gi in a single shot to directly generate the associated
edges set {ei,j}j<i; and 2) progressive-associated-edge
generation, which generates the associated edges of node
vπi in sequence, with two actions per step: addEdge, which
determines the size of {ei,j}j<i, and selectNode, which
determines to which node the node vπi will be connected if
addEdge is needed.

Collective associated-edge generation. To conduct the pre-
dictions on node pairs between the newly generated node
vπi and all the other existing nodes, most of the works [17],
[18], [38], [39], [40], [41], [69] resort to predicting the adjacent
vector Aπi,·, which covers all the potential edges from the
newly added node vi to the other existing nodes. Thus,
we can further represent each unit as si = (vπi , A

π
i,·).

And the sequence can be represented as Seq(G, π) =
{(vπ1 , Aπ1,·), ..., (vπN , AπN,·)}. The aim is to learn the distribu-
tion as:

p(Vπ, Aπ) =
∏N

i=1
p(vπi |vπ<i, Aπ<i,·)p(Aπi,·|vπ≤i, Aπ<i,·), (1)

where vπ<i refers to the nodes generated before vπi and Aπ<i,·
refers to the adjacent vectors generated before Aπi,·. Such
joint probability can be implemented by sequential-based
architectures such as generative RNN models [17], [18], [26],
[40] and auto-regressive flow-based learning models [69].
Here we introduce the RNN-based models as an example.

In the generative RNN-based models, the node distribu-
tions p(vπi |vπ<i, Aπ<i,·) are typically assumed as a multivari-
ate Bernoulli distribution that is parameterized by φi ∈ RT ,
where T refers to the number of node categories. The edge
existence distribution p(Aπi,·|vπ≤i, Aπ<i,·) can be assumed as
the joint probability of several dependent Bernoulli distri-
butions:

p(Aπi,·|Aπ<i,·) =
∏i−1

j=1
p(Aπi,j |Aπi,<j , Aπ<i,·), (2)

where p(Aπi,·|Aπ<i,·) is parameterized by θi ∈ Ri−1 and the
distribution of p(Aπi,j |Aπi,<j , Aπ<i,·) is parameterized by each
entry θi,j in θi. The architecture for implementing Eq. (1)
and (2) can be regarded as a hierarchical-RNN, where the
outer RNN is used for generating the nodes and the inner
RNN is used for generating each node’s associated edges.
After either a node or edge is generated, a graph-level
hidden representation of the already generated sub- graph
is updated through a message passing neural network
(MPNN) [73]. Specifically, at each Step i, a parameter φi
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will be calculated through a multilayer perceptron (MLP)-
based function based on the current graph-level hidden
representation. The parameter φi is used to parameterize
the Bernoulli distribution of node existence, from which
node vπi is sampled. After that, the adjacent vector Aπi,· is
generated by sequentially generating each of its entry.

Progressive associated-edge generation. The above-
introduced collective associated-edge generation has a time
complexity of O(N2) that is time-consuming especially for
sparse graphs. A remedy is to progressively select the nodes
to be connected with the current node vπi from the existing
nodes vπ<i, until the desired number of nodes is selected,
which is small for sparse graph. Specifically, for the current
node vπi , we generate {ei,j}j<i by applying two functions:
1) an addEdge function to determine the size of the edge set
{ei,j}j<i of node vπi and 2) a selectNode function to select
the nodes to be connected from the existing graph [43],
[44], [45], [46]. The complexity of progressive associated-
edge generation method is O(MN) where M refers to the
number of edges.

Specifically, after generating a node vπi in the first step,
an addEdge function is used to output a parameter as
faddEdge(h

π
vi), following a Bernoulli distribution indicating

whether to add an edge to the node vπi . Here hπvi refers
to the node-level hidden states of vπi which is calculated
through a node embedding function, e.g., MPNN [73] based
on the already-generated parts of the graph. If an edge
is determined to be added, the next step is selecting the
neighboring node vπj from the existing nodes. To achieve
this, we can compute a scoremπ

j (as Eq. (3)) for each existing
node vπj based on selectNode function fselectNode, which is
then passed through a softmax function [74] to be properly
normalized into a distribution of nodes:

mπ
i,j = fselectNode(h

π
vi , h

π
vj ), wherej < i. (3)

p(ei,j |vπ<i, {e<i,j}j<i) = softmax(mπ
i,j). (4)

The MLP-based function fselectNode maps pairs of node-
level hidden states hπvi and hπvj to a scoremπ

i,j for connecting
node vπj to the new node vπi . This can be extended to handle
discrete edge attributes by making mπ

i,j a vector of scores
with the same size as the number of the edge attribute’s
categories, and taking the softmax over all categories of the
edge attribute. Based on the aforementioned procedure, the
two functions faddEdge and fselectNode are iteratively exe-
cuted to generate the edges within the edge set {e<i,j}j<i
of node vπi until the terminal signal from function faddEdge
indicates that no more edges for node vi are yet to be added.

2.1.2 Edge-sequence-based
General Framework. Edge-sequence-based methods [19],
[47], [48] consider a graph to be a sequence of edges and
generate an edge, along with its two end nodes, in each
step, as shown in Fig. 2(b). It defines an ordering of the
edges in the graph and also an ordering function α(·) for
indexing the nodes. The graph G can then be modeled by a
sequence of edges, with each unit in the sequence being a
tuple represented by si = (α(u), α(v), Fu, Fv, E

i
u,v), where

each element of the sequence consists of a pair of nodes’
indexes α(u) and α(v) for nodes u and v, node attribute

Fu, Fv , and the edge attribute E(i)
u,v for the edge at Step i.

In edge-sequence-based generation, there are two ways to
generate a unit si, with the first based on the assumption
that α(u) and α(v) are mutually independent while the
second assumes they are mutually dependent, with their
details as follows.

Independency-based. Goyal et al. [47] used depth first
search (DFS) algorithm [75] as the ordering index function
α(·) to construct graph canonical index of nodes. The condi-
tional distribution for generating each edge in graph G can
be formalized as

p(si|s<i) = p((α(u), α(v), Fu, Fv, E
i
u,v)|s<i)

= p(α(u)|s<i)p(α(v)|s<i)p(Fu|s<i)p(Fv|s<i)p(Eiu,v|s<i), (5)

where s<i refers to the already-generated edges and nodes.
A customized long short-term memory (LSTM) is designed
which consists of a transition state function ftrans for trans-
ferring the hidden state of the last step into that of the
current step (in Eq. (6)), an embedding function femb for
embedding the already generated graph into latent repre-
sentations (in Eq. (6)), and five separate output functions
for the above five distribution components (in Eq (6) to
Eq. (11)). It is assumed that the five elements in one tuple
are independent of each others, and thus the inference is as:

h
(i)
G = ftrans(h

(i−1)
G , femb(si−1)) (6)

α(u) ∼ Cat(θα(u)); θα(u) = fα(u)(h
(i)
G ); (7)

α(v) ∼ Cat(θα(v)); θα(v) = fα(v)(h
(i)
G ) (8)

Fu ∼ Cat(θFu); θFu = fFu(h
(i)
G ); (9)

Fv ∼ Cat(θFv ); θFv = fFv (h
(i)
G ) (10)

Eiu,v ∼ Cat(θEiu,v ); θEiu,v = fEiu,v (h
(i)
G ), (11)

where si−1 refers to the generated tuple at Step i − 1 and
is represented as the concatenation of all the component
representations in the tuple. h(i)G is a graph-level LSTM
hidden state vector that encodes the state of the graph
generated so far at Step i. Given the graph state h(i)G , the
output of five functions fα(u), fα(v), fFu , fFv , fEu,v model
the categorical distribution of the five components of the
newly formed edge tuple, which are paramerized by five
vectors θα(u), θα(v), θFu , θFv , θEu,v respectively. Finally, the
components of the newly formed edge tuple are sampled
from the five learnt categorical distributions.
Dependency-based. To further characterize the dependency
between α(u) and α(v), Bacciu et al. [19] assume the
existence of node dependence in a tuple. This method
deals with homogeneous graphs without considering the
node/edge categories, by representing each tuple in the se-
quence as si = (α(u), α(v)) and formalizing the distribution
as p(si|s<i) = p(α(u)|s<i)p(α(v)|α(u), s<i). Then, the first
node is sampled in the same way as in Eq. (8), while the
second node in the tuple is sampled as follows:

α(v) ∼ Cat(θα(v)); θα(v) = fα(v)(h
(i)
G , gemb(α(u))), (12)

where the function gemb is used for embedding the index of
the first generated node u in the pair.

2.1.3 Motif-sequence-based
General Framework. Motif-sequence-based methods [27],
[49], [50], [51] represent a graph G as a sequence of graph
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motifs, Seq(G) = {C1, ..., CM}, where the block of nodes
and edges that constitute each graph motif Ci are generated
at each step, as shown in Fig. 2(c). A new graph-motif Ci is
generated in each step by conditioning on the current graph
Gi at Step i and then it is connected to Gi.

A key problem in motif-based methods is how to
connect the newly generated graph motif Ci to Gi, given
that there are many potential ways to link two sub-graphs.
These linking strategies are highly dependent on the
definition of the graph motifs. For Domain-agnostic graphs,
given a predefined node ordering, the graph motifs are
usually defined as a combination of consecutive nodes. This
allows us to predict the associated edges of all the nodes
in Ci and connect it to Gi based on these predictions. For
Domain-specific graphs, the motifs are usually defined and
connected based on specific domain knowledge, such as
chemical motifs for a task involving molecular structure
generation.

Domain-agnostic-based. This line of works is designed
for generating general graphs without the need of do-
main expertise; it is similar to the collective-associated-
edge-generation category under the line of node-sequence
generation by generating the adjacent vectors for each edge,
such as GraphRNN [18], except for the generation of several
nodes instead of one per step. As described in Section 2.1.1,
a graph G is represented as a sequence of node-based tuples
as G = {s1, ..., sN}, where si = (vπi , A

π
i,·) is generated per

step. Based on this node sequence, Liao et al. [49](GRANs)
regard every tuples consisting of B recursive nodes as a
graph motif Ci and generates each block per step. In this
way, the generated nodes in the new graph motif follow the
ordering of the nodes in the whole graph and contain all the
connection information of the existing and newly generated
nodes. To formalize the dependency among the existing
and newly generated nodes, GRANs proposes an MPNN-
based model to generate the adjacent vectors. Specifically,
for the i-th generation step, a graph Gi is generated which
contains the already-generated graph with B · (i− 1) nodes
and the edges among them, as well as the B nodes in
the newly generated graph motif. For these new B nodes,
edges are initially completely added to connect all of them
with each other and the previous B · (i − 1) nodes. Then
an MPNN-based graph neural network (GNN) [76] on this
augmented graph is used to update the nodes’ hidden
states by encoding the graph structure. After several rounds
of message passing implementation, the node-level hidden
states of both the existing and newly added nodes are used
to infer the final distribution of the newly added edges as:

p(Ct|C<t) =
∏

B(t−1)<i≤B

∏
1≤j≤i

p(Aπi,j |C<t) (13)

where the Bernoulli distribution p(Aπi,j |C<t) is
parameterized for modeling the edge existence through an
MLP, which takes the node-level hidden states as input.

Domain-specific-based. The definition of graph motifs and
its connections can involve domain knowledge, such as
in the situation of molecules generation (i.e., graph of
atoms) [27], [50]. Jin et al. [27] propose the Junction-Tree-
VAE by first generating a tree-structured scaffold over
chemical substructures, and then combining them into a

molecule with an MPNN. Specifically, a Tree Decomposi-
tion of Molecules algorithm [77] tailored for molecules to
decompose the graph G into several graph motifs Ci is
followed, and each Ci is regarded as a node in the tree
structure. The other way of defining the graph motifs is
to leverage the breaking of retrosynthetically interesting
chemical substructures (BRICS) algorithm [78]. To generate
a graph G, a tree is first generated and then converted into
the final graph. The decoder for generating a T consists of
both topology prediction function and label prediction function.
The topology prediction function models the probability of
the current node to have a child, and the label prediction
function models a distribution of the labels of all types ofCi.
When reproducing a molecular graph G that underlies the
predicted junction tree T , since each motif contains several
atoms, the neighboring motifs Ci and Cj can be attached to
each other as sub-graphs in many potential ways. To solve
this, a scoring function (e.g., measuring the validness of the
potentially generated graph) over all the candidates graphs
is proposed, and the optimal one that maximizes the scoring
function is the final generated graph.

2.1.4 Rule-sequence-based
General Framework. Several methods that have been pro-
posed [9], [52] generate a sequence of production rules or
commands to guide the graph construction process sequen-
tially. This is usually the method of choice where the tar-
geted graph has strong constraints or grammar that must be
satisfied in order to construct a valid graph. For example, a
molecule can not violate fundamental properties like charge
conservation, which thus constrains the patterns available
for the node types and edges of molecule graph. To ensure
the validity of the generated graphs, graph generation is
transformed by generating parse trees, which describe a
discrete molecular structure utilizing context free grammar
(CFG), while the parse tree itself can be further expressed as
a sequence of rules based on a pre-defined order.

Kusner et al. [52] propose generating a parse tree that
describes a discrete object (e.g. arithmetic expressions and
molecule) by a grammar; they also proposed a graph gen-
eration method named GrammerVAE. An example of us-
ing the parse tree for molecule generation: to encode the
parse tree, they decompose it into a sequence of production
rules by performing a pre-ordered traversal on its branches
from left-to-right, and then convert these rules into one-hot
indicator vectors, where each dimension corresponds to a
rule in the SMILES grammar. The deep convolutional neural
network is then mapped into a continuous latent vector z.
While decoding, the continuous vector z is passed through
an RNN which produces a set of unnormalized log probabil-
ity vectors (i.e., “logits”). Each dimension of the logit vectors
corresponds to a production rule in the grammar. The model
generates the parse trees directly in a top-down direction,
by repeatedly expanding the tree with its production rules.
The molecules are also generated by following the rules
generated sequentially, as shown in Fig. 2(d). Although
the CFG provides a mechanism for generating syntactic-
valid objects, it is still incapable of guaranteeing the model
for generating semantic valid objects [52]. To deal with
this limitation, Dai et al. [9] propose the syntax-directed
variational autoencoder (SD-VAE), in which a semantic re-
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striction component is advanced to the stage of syntax-tree
generator. This allows for a the generator with both syntactic
and semantic validity.

2.1.5 Comparison of different sub-categories
In this subsection, we compare the four categories of
sequential-generating method from three aspects: (1) Scal-
ability: time complexity determines the scalability of the
graph generation methods. Node-sequence-based methods
commonly have the time complexity of O(N2) when N
denotes to the number of nodes, while edge-sequence-based
methods usually have the complexity of O(|E|). Thus, for
sparse graphs where N2 � |E|, edge-sequence-based meth-
ods are more scalable than node-sequence-based ones. The
complexities of motif-sequence-based methods vary from
O(N2) (e.g., for domain-agnostic type) toO(N ·|C|) (e.g., for
domain-specific type), where |C| refers to the number of mo-
tifs. The complexity of rule-sequence-based methods usu-
ally linearly related to the number of rules in generating a
graph; (2) Expressiveness: the expressiveness of generation
model relies on its power to model the complex dependency
among the objects in the graph. Node-sequence and edge-
sequence generation can capture the most sophisticated
dependence, including node-node dependence, edge-edge
dependence and node-edge dependence. While the motif-
sequence-based methods are able to model the dependence
between graph-motifs which capture the high-order rela-
tionships and global patterns. Rule-sequence-based meth-
ods can model the dependency between the operation rules
to capture the semantic patterns in building a realistic
graphs, which are usually difficult to directly learn from the
graph topology; (3) Application scenarios: the selection of
categories of sequential generating techniques for a specific
application scenario depends on its sensitivity to validness
and the accessibility of the generation rules. Node- and
edge-sequence-based methods are suitable in generating
realistic graphs without the domain expertise (e.g., the
known rules, constrains or candidate motifs), such as the
social and traffic networks. Motif-sequence-based methods
can partially guarantee the validness of the generated graph
by selecting graph-motifs from the predefined valid motif
candidates. Rule-sequence-based methods are more pow-
erful in generating valid realistic graphs by following the
correct grammar and constraints. Thus, the latter two types
of methods are preferred in validness-sensitive applications,
such as molecule generation and program modeling.

2.2 One-shot generating

One-shot generating methods learn to map each whole
graph into a unified latent representation which follows
some probabilistic distribution in latent space. Each whole
graph can then be generated by directly sampling from this
probabilistic distribution in one step. The core issue of these
methods is usually how to jointly generate graph topology
together with node/edge attributes. Considering that the
graph topology can usually be represented in terms of adja-
cency matrix and node attribute matrix, the typical solution
is to learn the distribution of these two and generate them
in one shot, which is categorized as Adjacent-matrix-based
generation. Learning the distribution of adjacency matrices

is potentially expressive yet comes with inefficiency issue
in both memory and time. To this end, Edge-list-based meth-
ods learn the local patterns and hence is usually good at
handling larger graphs with simpler global patterns.

2.2.1 Adjacency-matrix-based
General Framework. Adjacency-matrix-based methods
build models to directly map the latent embedding z to
the output graph in terms of an adjacency matrix, gen-
erally with the addition of node/edge attribute matri-
ces/tensors. Hence, how to best achieve an expressive and
efficient mapping is the core challenge and there is usually
a trade-off between them. Existing techniques are built
upon popular deep neural network scenarios that are MLP-
based, message-passing-based, invertible-transformation-
based or transposed-convolution-based. MLP-based mod-
els are highly end-to-end, while message-passing-based
approaches and transposed-convolution-based can explic-
itly model higher-order correlations in graphs. Invertible-
transformation-based techniques more rigorously model
invertible mappings but impose more limitations on the
expressiveness.

 

Fig. 3. Schema for adjacent-matrix-based one-shot generation

MLP-based methods. Most of the one-shot graph gener-
ation techniques involves simply constructing the graph
decoder g(z) using MLP [20], [21], [53], [54], [55], [56], where
the models’ parameters can be optimized under common
frameworks such as VAE and GAN. The MLP-based models
ingest a latent graph representation z ∼ p(z) and simultane-
ously output adjacent matrix Aπ and node attribute Fπ , as
shown in Fig. 3(a). Specifically, the generator g(z) takes D-
dimensional vectors z ∈ RD sampled from a statistical dis-
tribution such as standard normal distribution and outputs
graphs. For each z, g(z) outputs two continuous and dense
objects: Ãπ , which defines edge attributes and F̃π , which
denotes node attributes through two simple MLPs. Both
Ãπ and F̃π have a probabilistic interpretation since each
node and edge attribute is represented with probabilities
of categorical distributions of types. To generate the final
graph, it is required to obtain the discrete-valued objects Aπ

and Fπ from Ãπ and F̃π , respectively. The existing works
have two ways to realize this step detailed as follows.

In the first way, the existing works [20], [53], [54] use
sigmoid activation function to compute Aπ and Fπ during
the training time. At test time, the discrete-valued estimate
Aπ and Fπ can be obtained by taking edge- and node-wise
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argmax in Ãπ and F̃π . Alternatively, existing works [21],
[55], [56] leverage categorical reparameterization with
the Gumbel-Softmax [79], [80], which is to sample from
a categorical distribution during the forward pass (i.e.,
Fπi ∼ Cat(F̃πi ) and Aπij = Cat(Ãπij)) and the original
continuous-valued Ãπ and F̃π in the backward pass. In
this way, these methods can perform continuous-valued
operations during the training procedure and do the
categorical sampling procedure to finally generate F and A.

Message-passing-based methods. Message-passing-based
methods generate graphs by iteratively refining the graph
topology and node representations of the initialized graph
through the MPNN. Specifically, based on the latent rep-
resentation z sampled from a simple distribution (e.g.,
Gaussian), we usually first generate an initialized adjacent
matrix A0 and the initialized node latent representations
H0 ∈ RN×L, where L refers to the length of each node
representation (here we omit the node ordering symbol π for
clarity). Then A0 and H0 are updated though MPNN into
A1 and H1, which are the adjacent matrix and hidden states
in the first intermediate layer, then another MPNN layer
is applied to generate for the 2nd layer, etc. We can stack
multiple such layers to explicitly characterize the higher-
order correlation among nodes and edges. Each MPNN
layer can be expressed as follows:

Al+1
i,j = Ali,j +ReLu(ν1A

l
i,j + ν2h

l
i + ν3h

l
j);

hl+1
i = hli +ReLu(w1h

l
i +

∑N

j
ηi,jw2h

l
j), (14)

where v1, v2, v3, w1 and w2 are trainable parameters. We
can stack multiple such layers to explicitly characterize the
higher-order correlation among nodes and edges, which is
also illustrated in Fig. 3(c). Finally, after T layers’ updating,
the outputs ATi,j and FTi are used to parameterize the
categorical distributions of each edge and node, based on
which each edge Ai,j and node Fi are generated through
categorical sampling introduced above. To learn the above
generator, Existing methods leverage various learning
frameworks such as VAE and GANs [57], [58], [59], or have
a plain framework based on the score-based generation [60].

Invertible-transform-based methods. Flow-based genera-
tive methods can also do one-shot generation, by a unique
invertible function between graph G and the latent prior
z sampling from a simple distribution (e.g., Gaussian), as
shown in Fig. 3(b). Concretely, based on vanilla flow-based
learning techniques introduced in Section A.4, special for-
ward transformation G −→ z and backward transformation
z −→ G needs to be designed.

Madhawa et al. [62] propose the first flow-based one-
shot graph generation model called GraphNVP. To get
z = (zF , zA) from G = (A,F ) in the forward transfor-
mation, they first convert the discrete variable A and F
into continuous variable A′ and F ′ by adding real-valued
noise), which is known as dequantization. Then two types of
reversible affine coupling layers: adjacency coupling layers
and node attribute coupling layers are utilized to transform
the adjacency matrix A′ and the node attribute matrix F ′

into latent representations zA and zF , respectively. The lth
reversible coupling layers are designed as follows:

zlF [i] = zl−1
F [i]� exp(sF (zl−1

F [i], A)) + tF (zl−1
F [i], A) (15)

zlA[i, j] = zl−1
A [i, j]� exp(sA(zl−1

A [i, j])) + tA(zl−1
A [i, j]) (16)

where z0F = X ′ and z0A = A′. zlF [i] refers to the ith entry
of zlF ; � denotes element-wise multiplication. Functions
sA(·) and tA(·) stand for scale and translation operations
which can be implemented based on MPNN, and sF (·),
tF (·) can be implemented based on MLP networks. To get
G = (F,A) from z = (zF , zA) in the backward transformation,
the reversed operation is conducted based on the above
forward transformation operation in Eq. (15) and (16). Next
a probabilistic feature matrix F̃ is generated given the
sampled zF and the generated adjacency matrix A through
a sequence of inverted node attribute coupling layers.
Likewise, the node-wise argmax of F̃ is used to get discrete
feature matrix F .

Transposed-convolution-based methods. One typical type
of graph decoder in the one-shot-generation techniques is
constructed based on the transposed convolution neural
networks [25]. The process is about generating the adjacent
matrix of graph by taking the node latent representation
vectors as input. The transposed-convolution-based decoder
consists of a node transposed convolution layer and several
edge transposed convolution layers.

The node transposed convolution layer is used to decode
the edge representations of the graph based on the node em-
bedding. For example, after a node transposed convolution
layer, the edge representations Ei,j between node vi and
node vj can be computed as:

Ei,j =
∑L

m=1
(σ(Hm

i µ̄j) + σ(Hm
j ν̄i)), (17)

where σ(Hm
i µ̄j) means the transposed convolution con-

tribution of node vi to its potential edge Ei,j , which is
made by the m-th entry of its node representations, and
µ̄j represents one entry of the transposed convolution filter
vector µ̄ ∈ RN×1 that is related to node vj . L refers to the
length of the node representation.

Several edge transposed convolution layers are recur-
sively applied to decode the latent edge representations
from the upper layer back to those of the lower layer. Thus,
Eli,j between node vi and node vj in the (l + 1)th layer is
computed as:

El+1
i,j = σ(φ̄lj

∑N

k1=1
Eli,k1Sk1) + σ(ψ̄li

∑N

k2=1
Elk2,jSk1), (18)

where φ̄lj
∑N
k1=1E

l
i,k1

Sk1 can be interpreted as the decoded
contribution of node vi to its related edge representations
El+1
i,j , and φ̄lj refers to the element of transposed convolution

filter vector that is related to node vj . σ refers to the
activation functions.

2.2.2 Edge-list-based
General Framework. This category typically requires a
generative model that learns edge probabilities, where all
the edges are generated independently. These methods are
usually applied when learning from one large-scale graph
to generate a new one using the existing nodes. The general
pipeline is composed of two main steps. A score is calcu-
lated for each edge (i.e., pair of nodes) to estimate the edge
probability, after which the edges can be sampled.
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In terms of how the edge probabilities are generated,
existing works are further categorized as either random-walk-
based [64], [65], [66], [67] or node-similarity-based [2], [68],
[70], [71], [72]. Node-similarity-based models calculate the
edge probability based on the similarity of each pair of node
representations learnt from graphs, while random-walk-based
methods estimate each edge probability by calculating the
edge frequency for a large set of random walks generated
by sampling from their distributions learnt from graphs.

Random-walk-based. This type of methods generate the
edge probability based on a score matrix, which is calcu-
lated by the frequency of each edge that appears in a set
of generated random walks. NetGAN [64] is proposed to
mimic the large-scale real-world networks. Specifically, at
the first step, a GAN-based generative model is used to
learn the distribution of random walks over the observed
graph, and then it generates a set of random walks. At the
second step, a score matrix S ∈ RN×N is constructed, where
each entry denotes the counts of an edge that appears in
the set of generated random walks. At last, based on the
score matrix, the edge probability matrix Ã is calculated
as Ãi,j = Si,j/

∑N
u,v Su,v , which will be used to generate

individual edge Ai,j , based on efficient sampling processes.
Following this, some works propose improving the

NetGAN, by changing the way to choose the first node in
starting a random walk [67] or learning spatial-temporal
random walks for spatial-temporal graph generation [66].
Gamage et al. [65] generalize the NetGAN by adding two
motif-biased random-walk GANs. The edge probability
is thus calculated based on the score matrices from three
sets of random walks (i.e. S(1), S(2), and S(3)) that are
generated from the three GANs. To sample each edge,
one view S(k) is randomly selected from the three scores
matrices. Based on S(k), edge probability Ãi,j is calculated
as Ãi,j = S

(k)
i,j /

∑N
u,v Su,v .

Node-similarity-based. These methods generate the edge
probability based on pairwise relationships between the
given or sampled nodes’ embedding (as in [68]). Specifically,
the probability adjacent matrix Ã is generated given the
node representations Z ∈ RN×L, where Zi ∈ RL refers
to the latent representation for node vi. Ã will be used to
generate individual edge Ai,j , based on efficient sampling
processes. Existing methods differ on how to calculate Ã.

Several works [2], [68], [70] compute Ãi,j based on
the inner-product operations of two node embedding Zi
and Zj . This reflects the idea that nodes that are close in
the embedding space should have a high probability of
being connected. These works require a setting where node
set is pre-defined and the node attribute F is known in
advance. Specifically, by first sampling node latent repre-
sentation Zi from the standard normal distribution, Kipf
et al. [2], [68] calculate the probability adjacent matrix as
Ã = Sigmoid(ZZT ). The adjacent matrix A is then sampled
from Ã which parameterizes the Bernoulli distribution of
the edge existence, as similar to work in [70].

Other works [71], [72] compute Ãi,j by measuring the
closeness of two node,representations with `2 norm. Liu et
al. [71] propose a decoder for calculating Ãi,j as:

Ãi,j = 1/(1 + exp(C(‖ Zi − Zj ‖22 −1))), (19)
where C is called a temperature hyperparameter. Salha et
al. [72] propose a gravity-inspired decoding schema as:

Ãi,j = Sigmoid(mj − log ‖ Zi − Zj ‖22), (20)

where mj is the gravity scale of node vj learned from the
input graph by its featured encoder.

2.2.3 Comparison of different sub-categories
In this subsection, we compare two aspects of the two dif-
ferent types of one-shot method: (1) Time complexity: Both
adjacent-matrix-based and node-similarity-based edge-list
generation have a complexity of O(N2) since they need
to consider every pairs of N nodes in the graph. Random-
walk-based edge-list generation is more scalable, as here the
edges are sampled based on the edge probability, which
is determined by the edge frequency in a set of gener-
ated random walks; and (2) Application scenarios: Since
adjacent-matrix-based methods can handle global patterns
with high expressiveness and minimum time consumption,
these types of methods are widely used for small graphs
(i.e., graphs with less than 1,000 nodes) whose global pat-
terns are important, such as molecules and proteins. Edge-
list-based methods, on the other hand, are efficient when it
comes to generating large graphs whose local patterns are
important, such as social networks and citation networks.

3 CONDITIONAL DEEP GENERATIVE MODELS FOR
GRAPH GENERATION

The goal of conditional deep graph generation is to learn
a conditional distribution pmodel(G|y) based on a set of
observed realistic graphs G along with their corresponding
auxiliary information, namely a condition y. The auxiliary
information could be category labels, semantic context,
graphs from other distribution spaces, etc.

Compared with unconditional deep graph generation,
in addition to the challenge in generating graphs, con-
ditional generation needs to consider how to extract the
features from the given condition and integrate them into
the generation of graphs. Thus, to systematically introduce
the existing conditional deep graph generative models, we
mainly focus on describing how these methods deal with
the conditions. Since the conditions could be any form of
auxiliary information, they are categorized into three types,
including graphs, sequence, and semantic context, shown
as the yellow parts of the taxonomy tree in Fig. 1.
3.1 Conditioning on graphs
The problem of deep graph generation conditioning on
another graph is also called as deep graph transformation
(also known as deep graph translation) [25]. It aims at
translating an input graph GS in the source domain to
the corresponding output graphs GT in the target domain.
Considering the entities that are being transformed during
the translation process, there are two categories of works
in the domain of deep graph generation conditioning on
graphs: edge transformation and node-edge-co-transformation2.

2. Purely node and edge attribute transformation have been handled
in node classification or link prediction task by typical GNNs [73], [96],
thus are not the focus of our survey.
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TABLE 2
Deep Generative-based Methods for Conditional Graph Generation

Conditioning objects Techniques of encoding conditions References

Graphs
Edge Transformation Adjacent-based edge convolution [25], [63], [81], [82]

Node-edge Co-transformation Embedding-based [24], [83], [84], [85]
Editing-based [86], [87], [88]

Sequence RNN-based encoding [89], [90], [91], [92]
Context Semantics Concatenation with latent representation [44], [93], [94], [95]

3.1.1 Edge transformation
Overall Problem Formulation. The problem of edge trans-
formation is to generate the graph topology and edge at-
tributes of the target graph conditioning on the input graph.
It requires the edge set E and edge attributes E to change
while the graph node set and node attributes are fixed
during the translation process as: T : GS(V, ES , F, ES) −→
GT (V, ET , F, ET ). The edge transformation problem has a
wide range of real-world applications, such as modeling
chemical reactions [86], protein folding [20] and malware
cyber-network synthesis [25]. Existing works adopt different
frameworks to model the translation process.

Some works utilize the encoder-decoder framework
by learning abstract latent representation of the input
graph through the encoder and then generating the tar-
get graph based on these hidden information through the
decoder [25], [63]. For exampl, Guo et al. [25] propose
a GAN-based model for graph topology transformation.
The proposed GT-GAN consists of a graph translator and
a conditional graph discriminator. The graph translator
includes two parts: graph encoder and graph decoder. A
graph convolution neural net [97] is extended to serve as the
graph encoder in order to embed the input graph into node-
level representations while a new graph deconvolution net
is used as the decoder to generate the target graph.

Zhou et al. [82] propose modeling the underlying dis-
tribution of graph structures of the input graph at different
levels of granularity, and then “transferring” such hierar-
chical distribution from the graphs in the source domain
to a unique graph in the target domain. The input graph
is characterized as several coarse-grained graphs by aggre-
gating the strongly coupled nodes with a small algebraic
distance to form coarser nodes. Overall, the framework can
be separated into three stages. At the first step, the coarse-
grained graphs at K levels of granularity are constructed
from the input graph adjacent matrix AS . The adjacent
matrix of the coarse-grained graph A(l)

S ∈ RN
(l)×N(l)

at the
kth layer is defined as:

A
(k)
S = P (k−1)T ...P (1)TASP

(1)...P (k−1), (21)

where P (k) ∈ RN
(l)×N(l)

is a coarse-grained operator for
the kth level and N (l) refers to the number of nodes of
the coarse-grained graph at level l. In the next stage, each
coarse-grained graph at each level k will be reconstructed
back into a fine graph adjacent matrix A(k)

T ∈ RN
(l)×N(l)

as:

A
(k)
T = R(1)T ...R(k−1)TA

(k)
S R(k−1)...R(1), (22)

where R(k) ∈ RN
(l)×N(l)

is the reconstruction operator for the
kth level. Thus all the reconstructed fine graphs at each layer
are in the same scale. Finally, these graphs are aggregated into a
unique one by a linear function to get the final adjacent matrix
as follows: AT =

∑K
k=1 w

kA
(k)
T + bk, where wk ∈ R and bk ∈ R

are weights and bias.

3.1.2 Node-edge co-transformation
Overall Problem Formulation. The problem of node-edge
co-transformation (NECT) is generating the node and edge
attributes of the target graph conditioning on those of the
input graph. It requires that both the nodes and edges can
vary during the transformation process between the source
graph and the generated target graph as follows: T :
GS(VS , ES , FS , ES) −→ GT (VT , ET , FT , ET ). In terms of the
techniques on how the input graph is assimilated to generate
the target graph, there are two categories: one is embedding-
based and the other is editing-based.

 

Fig. 4. Embedding-based NECT vs Editing-based NECT
Embedding-based NECT. The embedding-based NECT nor-
mally encodes the source graph into latent representations
containing higher-level rich information of the input graph
by an encoder, which is then decoded into the target graph
by a decoder, as shown in Fig. 4(a) [24], [83], [84], [85], [88].
These methods are usually based on conditional VAEs [98] and
conditional GANs [99].

Kaluze et al. [83] propose exploring the latent spaces
of directed acyclic graphs (DAGs) and develops a neural
network-based DAG-to-DAG translation model, where both
the domain and the range of the target function are DAG
spaces. The encoder Mencode is borrowed from the deep-gated
DAG recursive neural network (DG-DAGRNN) [100], which
generalizes stacked RNNs on sequences to DAG structures.
Each layer of the DG-DAGRNN consists of gated recurrent
units (GRUs), which are repeated for each node vi. The encoder
outputs an embedding h = Mencode(GS), which serves as the
input of the DAG decoder. The decoder follows the local-based
node-sequential generation style as described in Section 2.1.1.
Specifically, first, the number of nodes N of the target graph
is predicted by an MLP with the input of h. Also, the hidden
state of the target graph is initialized with h. Then at each step,
a node vi as well as its corresponding edge set {ei,j}j<i are
generated based on the hidden state at each step until an end
node is added to the graph or the number of nodes exceeds a
predefined threshold. Following this, a general graph-to-graph
model [24] is proposed by first formalizing the graph into a
DAG without loss of information and utilize recurrent based
model to translate this DAG. They embeds the topology of
the input graph into the node representations by exerting
a topology constraint, which results in a topology-flow
encoder. Their decoder follows the same node sequential-
based generation as proposed by You et al. [18]. There are
also some embedding-based graph translation methods
that represent the graph as a set of graph motifs, which are
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usually targeted for the task of molecule optimization [84], [85].

Editing-based NECT. Different from the encoder-decoder
framework, Editing-based NECT directly modifies the input
graph iteratively to generate the target graphs [86], [87], [101],
as shown in Fig. 4(b). There are two ways to realize the process
of editing the source graph. One is utilizing an RL agent to
sequentially modify the source graph based on a formulated
Markov decision process [86], [87] as described in Section A.5.
The modification at each step will be selected from the defined
action set, including “add node”, “add edge”, “remove bonds”
et al. The other is to update nodes and edges from the source
graph synchronously in a one-shot manner through the MPNN
using several iterations [101].

You et al. [86] propose the graph convolutional policy
network (GCPN), a general graph convolutional network based
model for goal-directed graph generation through reinforce-
ment learning. The model is trained to optimize the domain-
specific property of the source molecule through policy gra-
dient, and acts in an environment that incorporates domain-
specific rules. They define a distinct, fixed-dimension and ho-
mogeneous action space amenable to reinforcement learning,
where an action is analogous to link prediction. Specifically,
they first define a set of scaffold sub-graphs {C1, ..., Cs} based
on the source graph. This set acts as a sub-graph vocabulary
that contains the sub-graphs to be added into the target graph
during graph generation. Given the modified graphGt at step t,
they define the corresponding extended graph as Gt∪Ci. Based
on this definition, an action can either correspond to connecting
a new sub-graph Ci to a node in Gt or connecting existing
nodes within graph Gt.

Guo et al. [101] propose another way which edits the source
graph iteratively, through the generation process extended from
MPNN-based adjacency-based one-shot method in Section 2.2.1 and
Fig. 4(c), which conducts the generation on both the node
and edge attributes. The transformation process is modeled by
several stages and each stage generates an immediate graph.
Specifically, at each stage t, there are two paths, namely node
translation and edge translation paths. In node translation
path, an MLP-based influence-function is used for calculating
the influence I(t)i on each node vi from its neighboring nodes,
and another MLP-based updating-function is used for updating
the node attribute as F

(t)
i with the input of influence I

(t)
i .

The edge translation path is constructed in the same way as
the node translation path, where each edge is generated by
the influence from its adjacent edges. In addition, to capture
and maintain the consistent between nodes and edges in the
generated graph, a spectral-based regularization is enforced
into the final optimization objective.

3.1.3 Comparison of different sub-categories
In this sub-section, we compare the two categories of methods
in dealing with the node-edge-co-transformation (NECT). Since
the comparison between different generating techniques is pro-
vided in Section 2, here we focus on the discussion regarding
the relationship between the input and target graphs from three
aspects: (1) Patterns captured from input graphs: embedding-
based NECT can capture the influences from the global patterns
(e.g., density or molecule energy) of the input graphs onto the
target graph with a graph-level latent representation. While the
editing-based NECT has the advantage in modeling the influ-
ences from the local patterns (e.g., “hub” node or ring structure)
of the input graphs onto the target graphs; (2) Interpretability:
editing-based NECT provides a more interpretable way by
explicitly showing the transformation in a step-by-step fashion
from the input to target graphs, which is more suitable to appli-
cations which rely on high-level confidence; While embedding-
based NECT roughly connect the input and target graphs with
a latent embedding which can not be semantically explained.

(3) Application scenarios: embedding-based NECT is capable
of modeling the transformation with major and sophisticated
changes from the input to target graphs, while editing-based
NECT is more suitable to deal with the transformation with
only small change, considering the efficiency.

3.2 Conditioning on sequence
The problem of deep graph generation conditioning on a
sequence can be formalized as the deep sequence-to-graph
transformation problem. It aims to generate the target graph
GT conditioning on an input sequence X . The deep sequence-
to-graph problem is usually observed in domains such as
NLP [89], [90] and time series mining [91], [92].

The existing methods handle semantic parsing task [89],
[90] by transforming a sequence-to-graph problem into a
sequence-to-sequence problem and utilizing the classical RNN-
based encoder-decoder model to learn this mapping. Chen et
al. [89], [90] propose a neural semantic parsing approach named
Sequence-to-Action, which models semantic parsing as an end-
to-end semantic graph generation process. Given a sentence
X = {x1, ..., xm}, the Sequence-to-Action model generates a
sequence of actions Y = {y1, .., ym} for constructing the correct
semantic graph. A semantic graph consists of nodes (including
variables, entities, types) and edges (semantic relations), with
some universal operations (e.g., argmax, argmin, count, sum,
and not). To generate a semantic graph, they define six types
of actions: Add Variable Node, Add Entity Node, Add Type Node,
Add Edge, Operation Function and Argument Action. In this way,
the generated parse tree is represented as a sequence, and the
sequence-to-graph problem is transformed into a sequence-
to-sequence problem. Then the attention-based sequence-to-
sequence RNN model [102] with an encoder and decoder is
utilized, where the encoder converts the input sequence X
to a sequence of context sensitive vectors {b1, ..., bm} using
a bidirectional RNN and a classical attention-based decoder
generates action sequence Y .

Other methods handle the problem of Time Series Con-
ditioned Graph Generation [91], [92]: given an input multi-
variate time series, the aim is to infer a target relation graph
to model the underlying interrelationship between the time
series and each node. Yang et al. [91] explore GANs in the
conditional setting and propose the novel model of time series
conditioned graph generation-generative adversarial networks
(TSGG-GAN) for time series conditioned graph generation.
Specifically, the generator in a TSGG-GAN adopts a vari-
ant of recurrent neural network called simple recurrent units
(SRU) [103] to extract essential information from the time series,
and uses an MLP to generate the directed weighted graph.

3.3 Conditioning on semantic context
The problem of deep graph generation conditioning on seman-
tic context aims to generate the target graph GT conditioning
on an input semantic context, which can be usually represented
as additional meta-features. The semantic context can refer
to the category, label, modality or any additional information
that can be intuitively represented as a vector C. The main
issue is deciding where to concatenate or embed the condition
representation into the generation process. As a summary, the
conditioning information can be added in terms of one or
multiple of the following modules: (1) the node state initializa-
tion module, (2) the message passing process for MPNN-based
decoding, and (3) the conditional distribution parameterization
for sequential generating.

Yang et al. [93] propose a novel unified model of graph
variational generative adversarial nets, where the conditioning
semantic context is inputted into the node state initializa-
tion module. Specifically, in the generation process, they first
model the embedding Zi of each node with separate latent
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distributions. Then, a conditional graph VAE (CGVAE) can
be directly constructed by concatenating the condition vector
C to each node latent representation Zi to get the updated
node latent representation Ẑi. Thus, the distribution of the
individual edge Ai,j is assumed as a Bernoulli distribution,
which is parameterized by the value Âi,j and is calculated as
Âi,j = Sigmoid(f(Ẑi)

T f(Ẑj)), where f(·) is constructed by a
few fully connected layers. Li et al. [44] propose a conditional
deep graph generative model that adds the semantic context
information into the initialized latent representations Zi at the
beginning of the decoding process.

Li et al. [95] add the context information C into the message
passing module in its MPNN-based decoding process. Specif-
ically, they parameterize the decoding process as a Markov
process and generate the graph by iteratively refining and
updating from the initialized graph. At each step t, an ac-
tion is conducted based on the current node hidden states
Ht = {ht1, ..., htN}. To calculate hti ∈ RL (L denotes the length
of the representation) for node vi in the intermediate graph Gt
after each updating of the graph, they utilize message passing
network with node message propagation. Thus the context
information C ∈ RK is added to the operation of the MPNN
layer as follows:

hti = Wht−1
i + Φ

∑
vj∈N(vj)

ht−1
j + ΘC, (23)

where W ∈ RL×L, Θ ∈ RL×L and Φ ∈ RK×L are all
learnable weights vectors and K denotes the length of the
semantic context vector.

4 EVALUATION METRICS FOR DEEP GRAPH GEN-
ERATION

Evaluating the generated graphs as well as the learnt dis-
tribution of graphs are challenging and critical tasks for
deep generative models in graph generation problem due to
two major reasons: 1) Different from conventional prediction
problems where merely deterministic predictions need to
be evaluated, deep graph generation requires the evalua-
tion of the learnt distributions. 2) Graph structured data is
much more difficult to evaluate than simple data with ma-
trix/vector structures or semantic data such as images and
texts. Thus, we summarize the typical evaluation metrics
in evaluating deep generative models for graph generation
as shown in Figure 3. We first provide the metrics that can
be used both for unconditional and conditional deep graph
generation, and then introduce the metrics that are specially
designed for conditional deep graph generation.

TABLE 3
Evaluation metrics for deep generative-based methods

Type Evaluation feature

General

Statistics-based Average KLD
MMD

Classifier-based Accuracy-based
FID-based

Intrinsic-quality-based
Validity
Uniqueness
Novelty

Condition-specialized Graph property-based
Mapping-relationship-based

4.1 General evaluation for deep graph generation

To evaluate the quality of the generated graphs, existing lit-
erature covers three categories of evaluation metrics, namely
statistics-based, classifier-based, and intrinsic-quality-based

evaluations. The first two evaluation categories require com-
parison between the generated graph set and real graph set,
while the intrinsic-quality evaluation directly measure the
properties of the generated graph.

4.1.1 Statistics-based
In statistics-based evaluation, the quality of the generated
graphs is accessed by computing the distance between the
graph statistic distribution of real graphs and generated
graphs. We first introduce seven typical graph statistics
that measure different properties of graphs and, thereafter
introduce the metrics that measure the distance between
two distributions regarding different graph statistics.

There are seven typical graph statistics that are used in
existing literature, which are summarized as follows: (1)
Node degree distribution: the empirical node degree distribu-
tion of a graph, which could encode its local connectivity
patterns. (2) Clustering coefficient distribution: the empirical
clustering coefficient distribution of a graph. Intuitively, the
clustering coefficient of a node is calculated as the ratio of
the potential number of triangles the node could be part
of to the actual number of triangles the node is part of.
(3) Orbit count distribution; the distribution of the counts
of node 4-orbits of a graph. Intuitively, an orbit count
specifies how many of these 4-orbits substructures the node
is part of. This measure is useful in understanding if the
model is capable of matching higher-order graph statistics,
as opposed to node degree and clustering coefficient, which
represent measures of local (or close to local) proximity. (4)
Largest connected component: the size of the largest connected
component of the graphs. (5) Triangle count: the number of
triangles counted in the graph. (6) Characteristic path length:
the average number of steps along the shortest paths for
all node pairs in the graph. (7) Assortativity: the Pearson
correlation of degrees of connected nodes in the graph.

The first three graph statistics are about distributions of
each graph and are always represented as a vector, while the
last four graph statistics are represented as scalar values of
each graph. Therefore, to evaluate the distance between two
sets of graphs in terms of the above distribution statistics,
two major metrics are usually utilized in existing literature,
which are introduced as follows.

Average Kullback-Leibler Divergence. Considering that each
graph set has a set of distributions in terms of a graph
property x, we first calculate the average distribution of the
whole set. To get the average distribution of a graph set, the
vectors of counts of the property x of all the graphs are first
concatenated. Then the probability densities of the graph
property x is calculated based on this concatenated vector as
the average node degree distribution. Fianlly, the Kullback-
Leibler divergence (KL-D [104]) between the average node
degree distribution of the generated graph set Pave(x) and
that of the real graph set Qave(x) is calculated as:
KL−D(Pave, Qave) = −

∑
x∼Pave

Pave(x)log(Qave(x)/Pave(x)).

Maximum Mean Discrepancy (MMD) [105]. First, the
squared MMD between the graph statistics distribution of
the generated graph set P and that of the real graph set Q
can be derived as:

MMD(P,Q) =Ex,y∼P [k(x, y)] + Ex,y∼Q[k(x, y)]

− 2Ex∼P,y∼Q[k(x, y)], (24)
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where x, y refer to the graph statistics that are sampled from
the two distributions. The kernel k(∗) is designed as follows:

k(x, y) = exp(W (x, y)/2σ2), (25)
where σ refers to the standard deviation of P or Q. Consid-
ering the sampled graph statistics are also two distributions,
thus, W (x, y) is defined as the Wasserstein distances (WD):

W (x, y) = infγ∈
∏

(x,y) E(i,j)∼γ [‖ i− j ‖], (26)

where
∏

(x, y) is the set of all measures whose marginals
are x and y respectively.

Distance metrics for scalar-valued statistics. The calcula-
tion of distance between two sets of graphs in terms of the
scalar-valued statistic is much easier than that of distribu-
tion statistics. There are two major ways: (1) calculating the
difference between the averaged value of the scalar-valued
statistic of the generated graph set and that of the real graph
set; (2) calculating the distance between the distribution of
the scalar-valued statistic of the generated graph set and
that of the real graph set. Many distance metrics can be
used, such as KL-D, Jensen-Shannon distances (JS), and the
Hellinger distance (HD).

4.1.2 Classifier-based
Classifier-based evaluation typically utilizes a graph
classifier to evaluate whether the generated graphs follows
the same distribution as the real graphs without explicitly
defining the graph statistics. Typically, a classifier is
trained on the set of real graphs and is tested on the
set of generated graphs. It only could be utilized when
multiple graph generative models are trained for generating
multiple types of graphs, respectively. Here we introduce
two existing classifier-based evaluations [26] that are based
on graph isomorphism network (GIN) [106] as follows.

Accuracy-based. First, a GIN is pre-trained on the training
set consisting of multiple types of graphs previously used
for training the generative model. Then for each type of
generated graph, the classification accuracy of classifying
this type of generated graphs based on the trained GIN is
the final evaluation metric.

Fréchet Inception Distance (FID)-based. FID computes the
distance in the embedding space between two multivariate
Gaussian distributions fitted to a generated set and a test
set. A lower FID value indicates better generation quality
and diversity. For each type of graph, first, the generated
and real graphs in the testing set are inputted into the pre-
trained GIN to get the graph embeddings. Then the means
µG and covariance matrices

∑
G of the embeddings of the

generated graph set, and the means µR and covariance
matrices

∑
R of real graphs are estimated. Finally, the FID

metric for this type of graphs is computed as follows:

FID =‖ µG − µR ‖22 +Tr(
∑

G
+
∑

R
−2(

∑
G

∑
R

)
1
2 ),

where Tr(·) refers to the trance of a matrix.

4.1.3 Intrinsic-quality-based
Besides the evaluation by measuring the similarity between
the real and generated graphs, there are three additional

metrics that directly evaluate the quality of the generated
graphs: their validity, uniqueness and novelty.

Validity. Since sometimes the generated graphs are required
to preserve some properties, it is straightforward to evaluate
them by judging whether they satisfy such requirements,
such as the following: (1) Cycles graphs/Tree graphs:
Cycles and trees are graphs that have obvious structural
properties and the validity is calculated as what percentage
of generated graphs are actually cycles or trees [44]. (2)
Molecule graphs: Validity for molecule generation is the
percentage of chemically valid molecules based on some
domain specific rules [17].

Uniqueness. Ideally, high-quality generated graphs should
be diverse and similar, but not identical. Thus, uniqueness
is utilized to capture the diversity of generated graphs [17],
[44], [47], [48], [62]. To calculate the uniqueness of a
generated graph, the generated graphs that are sub-graph
isomorphic to some other generated graphs are first
removed. The percentage of graphs remaining after this
operation is defined as Uniqueness. For example, if the
model generates 100 graphs, all of which are identical, the
uniqueness is 1/100 = 1%.

Novelty. Novelty measures the percentage of generated
graphs that are not sub-graphs of the training graphs and
vice versa [47], [48], [62]. Note that identical graphs are
defined as graphs that are sub-graph isomorphic to each
other. In other words, novelty checks if the model has
learned to generalize unseen graphs.

4.2 Evaluation for conditional deep graph generation
In addition to the above general evaluation metrics for
graph generation, for conditional deep generative mod-
els for graph generation, some additional evaluation met-
rics can be involved, including: graph-property-based and
mapping-relationship-based evaluations.

4.2.1 Graph-property-based
Considering that each of generated graph can have its asso-
ciated real graph as label in the conditional graph generation
task, we can directly compare each generated graph to its
label graph by measuring their similarity or distance based
on some graph properties or kernels, such as the following:
(1) random-walk kernel similarity by using the random-
walk based graph kernel [107]; (2) combination of Hamming
and Ipsen-Mikhailov distances(HIM) [108]; (3) spectral en-
tropies of the density matrices; (4) eigenvector centrality
distance [109]; (5) closeness centrality distance [110]; (6)
Weisfeiler Lehman kernel similarity [111]; (7) Neighborhood
Sub-graph Pairwise Distance Kernel [47] by matching pairs
of sub-graphs with different radii and distances.

4.2.2 Mapping-relationship-based
Mapping-relationship-based evaluation measures whether
the learned relationship between the conditions and the
generated graphs is consistent with the true relationship
between the conditions and the real graphs.
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Explicit mapping relationship. In the situation where the
true relationship between the input conditions and the
generated graphs is known in advance, the evaluation
can be conducted as follows: (1) When the condition is
a category label, we can examine whether the generated
graph falls into the conditional category by utilizing a
graph classifier [21], [24]. Specifically, the real graphs are
used to train a classifier and the classifier is used to classify
the generated graphs. Then the accuracy is calculated as
the percentage of the predicted categories that are the same
as the input condition. (2) When the condition is a graph,
where the task is to change some properties of the input
graph, we can quantitatively compare the property scores of
the generated and input graphs to see if the change indeed
meets the requirement. For example, one can compute the
improvement of logP scores of the optimized molecule in
molecule optimization task [86].

Implicit mapping relationship. Regarding the deep graph
translation problem, which is introduced in Section 3.1,
sometimes, the underlying patterns of the mapping from
the input graphs to the real target graphs are implicit and
complex to define and measure. Thus, a classifier-based
evaluation metric can be utilized [25]. By regarding the
input and target graphs as two classes, it assumes that
a classifier that is capable of distinguishing the generated
target graphs would also succeed in distinguishing the real
target graphs from the input graphs. Specifically, a graph
classifier is first trained based on the input and generated
target graphs. Then this trained graph classifier is tested
to classify the input graph and real target graphs, and the
results will be used as the evaluation metrics.

5 APPLICATIONS

Deep generative models for graph generation is a very
active research domain with a continuously increasing
number of applications being proposed, including impor-
tant topics such as molecule optimization and generation,
semantic parsing in NLP, code modeling, and pseudo-
industrial SAT instance generation.

5.1 Molecule generation
Molecule generation is a challenging mathematical and
computational problem in drug discovery and material sci-
ence; its aim is to design novel molecules under a range of
chemical properties. Any small perturbation in the chemical
structure may result in a large variation in the desired
molecular property. Besides, the space of valid molecules
quickly becomes prohibitively huge and complex as the
number of combinatorial permutations of atoms and bonds
grows. Currently, most drugs are hand-crafted by human
experts in chemistry and pharmacology. The recent ad-
vances of deep generative models for graph generation has
opened a new research direction by treating the molecule as
a graph with atoms as nodes and bonds as edges, with the
potential to learn these molecular’ generative representation
for novel molecule generation to ensure chemical validity
and efficiency [17], [27], [40], [43], [56], [112].
Representative Work. Junction Tree VAE (JT-VAE) [27]
formalizes the molecular structures generation task into

an unconditional graph generation problem, where each
atom in a molecule is a node in the graph and the bonds
between atoms are represented as edges. JT-VAE adopts a
motif-sequence-based generation approach, one of a num-
ber of sequential-based generating techniques, to generates
a molecular graph by sequentially expanding a generated
molecule by adding a valid chemical substructure in each
step. Figure 5 shows a backbone VAE-based generative
model consisting of two encoders and decoders. Here, the
molecular graph G is first decomposed into its junction
tree TG, where each colored node in the tree represents a
substructure in the molecule. Then both the tree and graph
are encoded into their latent embeddings zT and zG. To
decode the molecule, first step is to reconstruct the junction
tree from zT , and then assemble nodes in the tree to return
to the original molecule.

Fig. 5. Framework overview of JT-VAE [27]: A molecular graph G is first
decomposed into its junction tree TG, where each colored node in the
tree represents a substructure in the molecule. Then both the tree and
graph are encoded into their latent embeddings zT and zG. To decode,
the junction tree is first reconstructed from zT .

5.2 Protein structure modeling
Proteins are massive molecules that can be characterized as
one of the multiple long chains of amino acids. Analyzing
the structure and function of proteins is a key part of
understanding biological properties at the molecular and
cellular level. Current computational modeling methods for
protein design are slow and often require human oversight
and intervention, which are often biased and incomplete.
Inspired by recent momentum in deep graph generative
models, some works [6], [7], [20], [113], [114] demonstrate
the potential of deep graph generative modeling for fast
generation of new, viable protein structures.

Representative Work. Guo et al [6] proposed a contact
VAE (CO-VAE) to generate functionally relevant three-
dimensional protein structures. Here, the protein structure is
formalized as a graph where each amino acid is a node and
the physical distance between two amino acids determines
the existence of an edge based on a pre-defined threshold.
A graph generative model VAE is utilized to model and
generate the graph by following the adjacent-matrix-based
one-shot generating technique, where the node attributes
and adjacent matrix of graph are generated in a single shot.
As shown in Figure 6, a protein structure is first represented
by a graph that consists of a node attribute matrix and edge
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attribute tensor. These two components are then input into
the encoder of VAE to learn the distribution of the latent
embedding of the graph. In the decoder, the node and
edge attributes are generated based on the sampled latent
embedding and can then be recovered to yield the protein
based on a 3D reconstruction technique.

Fig. 6. CO-VAE for protein structure modeling [6]: a protein graph
represents the mutual distance between each pair of amino acids. Node
and edge attributes are input into the encoder to learn the distribution of
the latent embedding.

5.3 Semantic parsing

Semantic parsing problem is about mapping the natural
language information to its logical forms, namely abstract
meaning representation (AMR). Traditional semantic
parsers are usually based on compositionally and manually
designed grammar to create the structure of AMR, and
used lexicons for semantic grounding, which is time-
consuming and heuristic. Recent works develops neural
semantic parser with sequence-to-sequence models [115],
[116], which, however, only consider the word sequence
information and ignore other rich syntactic information.
Because AMR are naturally structured objects (e.g. tree
structures), semantic AMR parsing methods based on deep
graph generative models are deemed as promising [10],
[28], [89], [90], [117]. These methods represent the semantics
of a sentence as a semantic graph (i.e., a sub-graph of a
knowledge base) and treat semantic parsing as a semantic
graph matching/generation process.

Representative Work. Zhang et al [10] formalized the AMR
parsing as a graph generation problem conditioned on
sequence, where the input is the sequence of tokens from
a target sentence and the output its AMR graph. In the
AMR graph, a node denotes to a word in the sentence
and a predicted edge represents the semantic relationship
between two words. This work is an edge-list-based one
shot generation method, where the edges are generated
based on pairs of node representations. As shown in Fig-
ure 7, the whole process consists of two stages: node and
edge prediction. The node prediction utilizes an RNN-based
generative models to generate the nodes selected from the
tokens in the sentence. For the second stage (i.e., the edge
prediction), a score matrix that measures the probability
of the edge existence is learnt based on the representation
vectors of each pair of nodes, after which the edge is gen-
erated by sampling from the score matrix. This end-to-end
deep graph generation techniques for semantic parsing has

demonstrated a powerful ability for automatically capturing
semantic information.

Fig. 7. A two-stage AMR parsing process for a sequence-to-graph prob-
lem [10]: node prediction is to generate nodes based on the input se-
quence of tokens and edge generation generates the edges by sampling
from the score matrix calculated based on the node representations.

5.4 Code modeling
Code modelling considers both hard syntactic and semantic
constraints in generating natural programming code, which
can make the development of source code easier, faster,
and less error-prone. Early works in this area have shown
that approaches from natural language processing can be
applied successfully to the source code. However, though
these methods are successful at generating programs that
satisfy some formal specifications, they cannot generate
realistic-looking and valid programs. Since program graphs
have been shown to have the ability to encode semantically
meaningful representations of programs, deep graph
generative models have shown promising capability in
modeling small but semantic programs generation [8], [9],
[118], [119].

Representative Work. Brockschmidt et al. [8] formalized
the code modeling as a graph structure generation problem,
where the source code is represented by an abstract syntax
tree, as shown in Figure 8. In this abstract syntax tree, each
node refers to a construct occurring in the codes and the
edges denote to the semantic relationships. The generation
process is a rule-based sequentially generating techniques,
where the code is represented as an abstract syntax tree
(AST), which incorporates rich structural information. An
AST is then generated by expanding one node at a time
using production rules from the underlying programming
language grammar. This simplifies the code generation task
to a sequence of sampling problems, in which an appropri-
ate production rule must be sampled based on the partial
AST generated so far.

5.5 Pseudo-industrial SAT instance generation
The problem of pseudo-industrial Boolean Satisfiability
(SAT) instance generation is about generating artificial
SAT problems that display the same characteristics as
their real-world counterparts. Generating large amounts of
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Fig. 8. Representing a program as an abstract syntax tree [8], [120]:
each node refers to a construct occurring in the codes and the edges
denote to the semantic relationships.

SAT instances is important in developing and evaluating
practical SAT solvers, which historically relies on extensive
empirical testing on a large amount of SAT instances. Prior
works addressing this problem relied on hand-crafted
algorithms, but have difficult in simultaneously capturing a
wide range of characteristics exhibited by real-world SAT
instances [121], [122]. Thus, it is promising to represent SAT
formulas as graphs, thus recasting the original problem as a
deep graph generation task [123], [124].

Representative Work. G2SAT [123] formalizes the SAT gen-
eration task as a graph generation problem by representing
the SAT as a bipartite graph, where each node represents
either a literal or a clause, with an edge denoting the
occurrence of a literal in a clause representing a disjunction
operation. In general, the generation process is a motif-
sequence-based generating style where a new motif is added
to the partially generated graph in each step. The motifs
refer to the trees that are split from the existing training
bipartite graphs. As shown in Figure 9, while generating,
G2SAT generates a bipartite graph by starting with a set of
motifs. In each step, a new motif is added by merging one
of its clause nodes with an existing node in the partially
generated graph. At last, all the conjunction clauses are
combined with conjunction operations to recover the SAT
formula.

Fig. 9. An overview of the G2SAT model [123]: In each step, two clause
nodes are merged into a single clause node. A GCN-based classifier
that captures the bipartite graph structure is used to sequentially decide
which nodes to merge.

6 FUTURE OPPORTUNITIES

As a fast-developing, promising domain, there are still
many open challenges in the domain of deep generative
models for graph generation. In this section, we highlight a
number of open challenges for further research.

Scalability. Existing deep generative models typically have
super-linear time complexity to the number of nodes and
cannot scale well to large networks. Only few methods
have linear time complexity of O(N) [18], [19], [26], [47],
[69] and O(M) [112], where N is the number of nodes
and M is the number of edges. Consequentially, most
existing works merely focus on small graphs, typically with
dozens to thousands of nodes [2], [21], [44], [53], [56], [72],
[86]. However, many real-world networks are large, with
millions to billions of nodes [47], such as the Internet,
biological neuronal networks, and social networks. It is
important for any generative model to scale to large graph.

Validity constraint. Many real-world networks are
constrained by specific validity requirements [54]. For
example, in molecular graphs, the number of bonding-
electron pairs cannot exceed the valency of an atom.
In protein interaction networks, two proteins may be
connected only when they belong to the same or correlated
gene ontology terms. Graph-topological constraints are
challenging to enforce during the model training process.
Intuitive ways include designing heuristic and customized
algorithms to ensure the validity of generated graphs. For
example, Dai et al. [9] further apply attribute grammar
as a constraint in the parse-tree generation, a step toward
semantic validity. Some recent works started to construct
a more generic framework under constrained optimization
scenario, which minimizes training loss under graph
validity constraints [54]. However, as such constraints are
typically discrete and non-differentiable, they need to be
approximated with a smooth relaxation which introduces
errors and cannot preclude all the invalid topologies.

Interpretability. When we learn the underlying distribution
of complex structured data, i.e. graphs, learning
interpretable representations of data that expose semantic
meaning is very important [125]. For example, it is highly
beneficial if we could identify which latent variable(s)
control(s) which specific properties (e.g., molecule mass) of
the generated graphs (e.g., molecules). It is also useful to
disentangle local generative dependencies among different
sub-graphs. However, existing works on this topic only
focus on graph embedding but not generation [126], [127].
For example, Stoehr et al [128] demonstrates the potential
of latent variable disentanglement in graph deep learning
for unsupervised discovery of generative parameters of
random and real-world graphs. Investigations on graph
decoding and generation are still open problems without
existing works except very recently published ones [129],
[130], [131].

Beyond training data. Deep generative models are data-
driven models based on training data. The novelty of the
generated graphs are highly desired yet usually restricted
by training data and model properties (e.g., mode collapse
of generative adversarial nets). To address such issues,
attempts in the domain of images modified the attribute
of a generated image by adding a learned vector on its
latent code [132] or by combining the latent code of two
images [133]. Additional works have been developed for
inserting extra control in the image generation [132] with
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additional labels corresponding to key factors such as
object size and facial expression. However, works on graph
generation that could require very different technique sets
than image generation are lacking.

Dynamic graphs. Existing deep graph generative models
typically focus on static graphs but many graphs in the real-
world are dynamic, and their node attributes and topol-
ogy can evolve over time, such as social network, mobil-
ity network, and protein folding. Representation learning
for dynamic graphs is a hot domain, but it only focuses
on graph embedding instead of generation. Modeling and
understanding the generation of dynamic graphs have
not been explored. Therefore, additional problems such as
jointly modeling temporal and graph patterns and temporal
validity constraints need to be addressed.

7 CONCLUSION

In this survey paper, we provides a systematic review of
deep generative models for graph generation. We present a
taxonomy of deep graph generative models based on prob-
lem settings and techniques details, followed by a detailed
introduction, comparison, and discussion about them. We
also conduct a systematic review of the evaluation measures
of deep graph generative models, including the general
evaluation metrics for both unconditional and conditional
graph generation. After that, we summarized popular ap-
plications in this domain.
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[122] J. Giráldez-Cru and J. Levy, “A modularity-based random sat
instances generator,” in IJCAI’2015, 2015, pp. 1952–1958.

[123] J. You, H. Wu, and C. Barrett et al, “G2sat: Learning to generate
sat formulas,” in NeurIPS’2019, 2019, pp. 10 552–10 563.

[124] H. Wu and R. Ramanujan, “Learning to generate industrial sat
instances,” in SoCS’2019, 2019, pp. 206–207.

[125] B. M. Lake, T. D. Ullman, and J. B. Tenenbaum et al, “Building
machines that learn and think like people,” Behavioral and brain
sciences, vol. 40, p. e253, 2017.

[126] E. Noutahi, D. Beani, and J. Horwood et al, “Towards inter-
pretable sparse graph representation learning with laplacian
pooling,” arXiv preprint arXiv:1905.11577, 2019.

[127] D. Bouchacourt, R. Tomioka, and S. Nowozin, “Multi-level vari-
ational autoencoder: Learning disentangled representations from
grouped observations,” in AAAI’2018, 2018, pp. 2095–2102.

[128] N. Stoehr, M. Brockschmidt, and J. Stuehmer et al, “Disentangling
interpretable generative parameters of random and real-world
graphs,” NeurIPS’2019 Workshop, 2019.

[129] X. Guo, L. Zhao, and Z. Qin et al, “Interpretable deep graph
generation with node-edge co-disentanglement,” 2020.

[130] Y. Du, X. Guo, and et al, “Disentangled spatiotemporal graph
generative models,” arXiv preprint arXiv:2203.00411, 2022.

[131] X. Guo, Y. Du, and L. Zhao, “Deep generative models for spatial
networks,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 2021, pp. 505–515.

[132] A. Radford, L. Metz, and S. Chintala, “Unsupervised represen-
tation learning with deep convolutional generative adversarial
networks,” 2016.

[133] T. Karras, S. Laine, and T. Aila, “A style-based generator archi-
tecture for generative adversarial networks,” in CVPR’2019, 2019,
pp. 4401–4410.

[134] B. W. SUTER, “The multilayer perceptron as an approximation
to a bayes optimal discriminant function,” IEEE Transactions on
Neural Networks, vol. 1, no. 4, p. 291, 1990.

[135] E. L. Denton, S. Chintala, and R. Fergus et al, “Deep gener-
ative image models using a laplacian pyramid of adversarial
networks,” in NeurIPS’2015, 2015, pp. 1486–1494.

[136] L. Chen, S. Srivastava, and Z. Duan et al, “Deep cross-modal
audio-visual generation,” in Proceedings of the on Thematic Work-
shops of ACM Multimedia, 2017, pp. 349–357.

[137] S. Nam, Y. Kim, and S. J. Kim, “Text-adaptive generative adver-
sarial networks: manipulating images with natural language,” in
NeurIPS’2018, 2018, pp. 42–51.

[138] T. Mikolov, M. Karafiát, and et al, “Recurrent neural network
based language model,” in INTERSPEECH, 2010, pp. 1045–148.

[139] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation
using real nvp,” in ICLR’2017, 2017.

[140] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[141] D. Silver, R. S. Sutton, and M. Müller, “Reinforcement learning
of local shape in the game of go.” in IJCAI’2007, vol. 7, 2007, pp.
1053–1058.

[142] V. Mnih, K. Kavukcuoglu, and D. Silver et al, “Human-level
control through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[143] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[144] J. Li, W. Monroe, and A. Ritter et al, “Deep reinforcement learning
for dialogue generation,” in EMNLP’2016, 2016, pp. 1192–1202.

[145] P. Sen, G. Namata, and M. e. a. Bilgic, “Collective classification in
network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

[146] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilien-
feld, “Quantum chemistry structures and properties of 134 kilo
molecules,” Scientific data, vol. 1, no. 1, pp. 1–7, 2014.

[147] J. J. Irwin, T. Sterling, M. M. Mysinger, and et al, “Zinc: a free tool
to discover chemistry for biology,” Journal of chemical information
and modeling, vol. 52, no. 7, pp. 1757–1768, 2012.

[148] J. Hachmann, R. Olivares-Amaya, and et al, “The harvard clean
energy project: large-scale computational screening and design of
organic photovoltaics on the world community grid,” The Journal
of Physical Chemistry Letters, vol. 2, no. 17, pp. 2241–2251, 2011.

[149] P. D. Dobson and A. J. Doig, “Distinguishing enzyme structures
from non-enzymes without alignments,” Journal of molecular biol-
ogy, vol. 330, no. 4, pp. 771–783, 2003.

[150] I. Schomburg, A. Chang, C. Ebeling, and et al, “Brenda, the en-
zyme database: updates and major new developments,” Nucleic
acids research, vol. 32, no. suppl 1, pp. D431–D433, 2004.

Xiaojie Guo got her Ph.D. degree in the Informa-
tion Technology from George Mason University,
supervised by Dr. Liang Zhao. Her research in-
terests include data mining, artificial intelligence,
and machine learning, with special interests in
deep learning on graphs, deep graph transfor-
mation, deep graph generation as well as dis-
entangled representation learning. She received
the Best Paper Award from ICDM in 2019.

Liang Zhao is an Assistant Professor at the
Department of Computer Science at Emory Uni-
versity. His research interests include data min-
ing, artificial intelligence, and machine learn-
ing, with special interests in spatiotemporal and
network data mining, deep learning on graphs.
He has published over 80 papers in top-tier
conferences and journals such as KDD, ICDM,
TKDE, Proceedings of the IEEE, TKDD, IJCAI,
AAAI, WWW, SIGSPATIAL, and SDM. He has
won NSF CAREER Award, Amazon Research

Award, and Jeffress Trust Award in 2019.



21

APPENDIX A
PRELIMINARIES KNOWLEDGE OF DEEP GENERA-
TIVE MODELS

In recent years, there has been a resurgence of interest in
deep generative models, which have been at the forefront of
deep unsupervised learning for the last decade. The reason
for that is because they offer a very efficient way to analyze
and understand unlabeled data. The idea behind generative
models is to capture the inner probabilistic distribution
that generates a class of data to generate similar data [29].
Emerging approaches such as generative adversarial net-
works (GANs) [23], variational auto-encoders (VAEs) [22],
generative recursive neural network (generative RNN) [30]
(e.g., pixelRNNs, RNN language models), flow-based learn-
ing [31], and many of their variants and extensions have
led to impressive results in myriads of applications. In this
section, we provide a review of five popular and classic
deep generative models for learning the distributions by
observing large amounts of data in any format. They include
VAE, GANs, generative RNN, flow-based learning, and
Reinforcement Learning, which also form the backbone of
the base learning methods of all the existing deep generative
models for graph generation.

 

Fig. 10. Abstract architecture of deep generative models: (a) Variational
auto-encoders; (b) Deep Q-network; (c) Generative adversarial nets; (d)
generative RNN.

A.1 Variational Auto-encoders
VAE [22] is a latent variable-based model that pairs a
top-down generator with a bottom-up inference network.
Instead of directly performing maximum likelihood esti-
mation on the intractable marginal log-likelihood, training
is done by optimizing the tractable evidence lower bound
(ELBO). Suppose we have a dataset of samples x from
a distribution parameterized by ground truth generative
latent codes z ∈ Rc (c refers to the length of the latent
codes). VAE aims to learn a joint distribution between the
latent space z ∼ p(z) and the input space x ∼ p(x).

Specifically, in the probabilistic setting of a VAE, the
encoder is defined by a variational posterior qφ(z|x), while
the decoder is defined by a generative distribution pθ(x|z),
as represented by the two orange trapezoids in Fig. 10(a).
φ, θ are trainable parameters of the encoder and decoder.
The VAE aims to learn a marginal likelihood of the data
in a generative process as: max

φ,θ
Eqφ(z|x)[logpθ(x|z)]. Then

the marginal likelihoods of individual data points can be
rewritten as follows:

logpθ(x|z) = DKL(qφ(z|x)||p(z)) + L(φ, θ;x, z), (27)

where the first term stands for the non-negative Kull-
back–Leibler divergence between the true and the ap-
proximate posterior; the second term is called the (vari-
ational) lower bound on the marginal likelihood. Thus,
maximizing L(φ, θ;x, z) is to maximize the lower bound
of the true objective L(φ, θ;x, z) = Eqφ(z|x)[logpθ(x|z)] −
DKL(qφ(z|x)||p(z)). In order to make the optimization of
the above objective tractable in practice, we assume a simple
prior distribution p(z) as a standard Gaussian N (0, I) with
a diagonal co-variance matrix. Parameterizing the distribu-
tions in this way allows for the use of the “reparameteriza-
tion trick” to estimate gradients of the lower bound with
respect to the parameter φ, where each random variable
zi ∼ qφ(zi|x) is parameterized as Gaussian with a differ-
entiable transformation of a noise variable ε ∼ N (0, 1), that
is, z is computed as z = µ+σ�ε, where µ and σ are outputs
from the encoder.

A.2 Generative Adversarial Nets
GANs were introduced as an alternative way to train a
generative model [23]. GANs are based on a game theory
scenario called the min-max game, where a discriminator
and a generator compete against each other. The generator
generates data from stochastic noise, and the discriminator
tries to tell whether it is real (coming from a training set)
or fabricated (from the generator). The absolute difference
between carefully calculated rewards from both networks is
minimized so that both networks learn simultaneously as
they try to outperform each other.

Specifically, the architecture of GANs consists of two
‘adversarial’ models: a generative model Gθ which captures
the data distribution p(x), and a discriminative model Dφ
which estimates the probability that a sample comes from
the training set rather than Gθ , as shown in Fig.10(c). Both
Gθ and Dφ could be a non-linear mapping function, such as
a multi-layer perceptron [134] parameterized by parameters
θ and φ. To learn a generator distribution pmodel(x) of
observed data x, the generator builds a mapping function
from a prior noise distribution pz(z) to data space as Gθ(z).
And the discriminator, Dφ(x), outputs a single scalar repre-
senting the probability that the input data x came form the
training data rather than sampled from pmodel(x).

The generator and discriminator are both trained si-
multaneously by adjusting the parameters of pmodel(x) to
minimize log(1 − Dφ(Gθ(z)) and adjusting the parameters
of Dφ to minimize logDφ(x), as if they are following the
two-player min-max game with value function V (Gθ,Dφ):

min
Gθ

max
Dφ

V (Gθ,Dφ) = Ex∼pmodel(x)[logDφ(x)]

+ Ez∼pz(z)[log(1−Dφ(Gθ(z))], (28)

The training of the generator and discriminator is kept
alternating until the generator can hopefully generate real-
like data that is difficult to discriminate from real samples
by a strong discriminator.

In general, GANs show great power in generating data
such as image [23], [135], audio [136], and texts [137]. In
contrast to VAE, GANs learn to generate samples without
assuming an approximate distribution. By utilizing the dis-
criminator, GANs avoid optimizing the explicit likelihood
loss function, which may explain their ability to produce
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high-quality objects as demonstrated by [135]. However,
GANs still have drawbacks. One is that they can sometimes
be extremely hard to train in adversarial style. They may
fall into the divergence trap very easily by getting stuck in a
poor local minimum. Mode collapse is also an issue, where
the generator produces samples that belong to a limited
set of modes, which results in low diversity. Moreover,
alternatively training and large computation workloads for
two networks can result in long-term convergence process.

A.3 Generative Recursive Neural Network
RNN [138] is a straightforward adaptation of the standard
feed-forward neural network by using their internal state
(memory) to process variable length sequential data. At each
step, the RNN predicts the output depending on the previ-
ous computed hidden states and updates its current hidden
state, that it, they have a “memory” that captures informa-
tion about what has been calculated so far. The RNN’s high
dimensional hidden state and nonlinear evolution endow it
with great expressive power to integrate information over
many iterative steps for accurate predictions. Even if the
non-linearity used by each unit is quite simple, iterating it
over time leads to very rich dynamics [30].

A standard RNN is formalized as follows: given a se-
quence of input vectors (x1, ..., xT ), the RNN computes
a sequence of hidden states (h1, ..., hT ) and a sequence
of outputs (o1, ..., oT ) by iterating the following equations
from t = 1 to T :
ht = tanh(Uxt + V ht−1 + bh); ot = Wht + bo (29)

whereU , V , andW are learning weight matrices; the vectors
bh and bo are biases for calculating the hidden states and
output at each step, respectively. The expression V ht−1 at
step t = 1 is initialized by a vector, h0, and the tanh non-
linearity activation function is applied coordinate-wise.

The RNN model can be modified to a generative model
for generating the sequential data, as shown in Fig. 10(d).
The goal of modeling a sequence is to predict the next
element in the sequence given the previous generated ele-
ments. More formally, given a training sequence (x1, ..., xT ),
RNN uses the sequence of its output vectors (o1, ..., oT )
to parameterize a sequence of predictive distributions
p(xt+1|x≤t). The distribution type of p(xt+1|x≤t) need to
be assumed in advance. For example, to determine the
category of the discrete data xt+1, we can assume a softmax
distribution as p(xt+1 = j) = exp(o

(j)
t )/

∑
K o

(K)
t , where

j refers to one of the categories of the object, o(j)t refers to
the j-th variable in the output vector ot and K refers to the
total number of categories of the objects. The objective of
modeling sequential data is to maximize the total log likeli-
hood of the training sequence

∑T−1
t=0 logp(xt+1|x≤t), which

implies that the RNN learns a joint probability distribution
of sequences. Then we can generate a sequence by sampling
from p(xt+1|x≤t) stochastically, which is parameterized by
the output at each step.

A.4 Flow-based Learning
Normalizing flows (NFs) [139] are a class of generative
models that define a parameterized invertible deterministic
transformation between two spaces z and x. z ∼ pz(z) is a

latent space that follows distribution such as Gaussian, and
x ∼ px(x) is a real-world observational space of objects such
as images, graphs, and texts. Let fθ : z −→ x be an invertible
transformation parameterized by θ. Then the relationship
between the density function of real-world data x and that
of z can be expressed via the change-of-variables formula:

px(x) = pz(f
−1
θ (x))|det(∂f−1θ (x)/∂x)|. (30)

There are two key processes of normalizing flows as a
generative model: (1) Calculating data likelihood: given a
datapoint x, the exact density px(x) can be calculated by
inverting the transformation z = f−1θ (x); (2) Sampling: x
can be sampled from the distribution px(x) by first sam-
pling z ∼ pz(z) and then performing the transformation
x = fθ(z). To efficiently perform the above mentioned
operations, fθ is required to be invertible with an easily
computable Jacobian determinant.

Autoregressive flow (AF), originally proposed in [31],
is a variant of normalizing flow by providing an easily
computable triangular Jacobian determinant. It is specially
designed for modeling the conditional distributions in the
sequence. Formally, given x ∈ RD (D is the dimension of
observed sequential data), the autoregressive conditional
probabilities for the d-th element in the sequence can be
parameterized as Gaussian:

p(xd|x1:d−1) = N (µd, (σd)
2) (31)

where µd = gθ(x1:d−1) and σd = gφ(x1:d−1) (gθ and gφ
are unconstrained and positive scalar functions of x1:d−1
respectively for computing the mean and deviation). In
practice, these functions can be implemented as neural
networks. The affine transformation of AF can be written
as follows:
fθ(zd) = xd = µd + σd · zd; f−1θ (xd) = zd = (xd − µd)/σd,

where zd is the randomly sampled value from standard
Gaussian. The Jacobian matrix here is triangular, since
∂xi/∂zj is non-zero only for j 6 i. Therefore, the de-
terminant can be efficiently computed through

∏D
d=1 σd.

Specifically, to perform density estimation, we can apply all
individual scalar affine transformations in parallel to com-
pute the base density, each of which depends on previous
variables x1:d−1; to sample x, we can first sample z ∈ RD
and compute x1 through the affine transformation, and then
each subsequent xd can be computed sequentially based on
x1:d−1.

A.5 Reinforcement Learning and Deep Q-Network
Reinforcement learning (RL) is a commonly used frame-
work for learning controlling policies by a computer al-
gorithm, the so-called agent, through interacting with its
environment [140], [141]. Here, we give a brief introduction
of this learning strategy as well as its typical form deep Q-
learning networks (DQNs) [142] for data generation.

In RL process, an agent is faced with a sequential
decision making problem, where interaction with the en-
vironment takes place at discrete time steps. The agent
takes action at at state st at time t, by following certain
policies or rules, which will result in a new state st+1

as well as a reward rt. If we consider infinite horizon
problems with a discounted cumulative reward objective
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Rt =
∑∞
t′=t γ

t′−trt′ (γ ∈ [0, 1] is the discount factor), the
aim of the agent is to find an optimal policy π : s −→ a
by maximizing its expected discounted cumulative rewards.
Q-Learning [143] is a value-based method for solving RL
problems by encoding policies through the use of action-
value functions:

Qπ(s, a) = Eπ[
∑∞

t=0
γtrt|s0 = s, a0 = a]. (32)

The optimal value function is denoted as Q∗(s, a) =
max
π
Qπ(s, a), and an optimal policy π∗ can be easily

derived by π∗(s) ∈ argmaxaQ
∗(s, a). Typically, Q-value

function relies on all possible state-action pairs, which are
often impractical to obtain. One solution for addressing this
challenge is to approximate Q(s, a) using a parameterized
function [140].

Based on recent advances in deep learning techniques,
Mnih et al. [142] introduced the DQN. The DQN approxi-
mates the Q-value function with a non-linear deep convo-
lutional network, which also automatically creates useful
features to represent the internal states of the RL, as shown
in Fig. 10(b). In DQN, the agent interacts with the environ-
ment in i discrete iterations, aiming to maximize its long
term reward. DQN has shown great power in generating
sequential objects by taking a series of actions [144]. A
sequential object is generated based on a sequence of actions
that are taken.

During the generation, DQN selects the action at each
step using an ε-greedy implementation. With probability
ε, a random action is selected from the range of possible
actions, otherwise the action which results in high Q-value
score is selected. To perform experience replay, the agent’s
experiences et = (st, at, rt, st+1) at each time-step t are
stored in a data set Dt = {e1, . . . , et}. At each iteration i in
the learning process, the updates of the learning weights are
applied on samples of experience (st, at, rt, st+1) ∼ U(D),
drawn randomly from the pool of stored samples, with the
following loss function:

L(θi) =E(st,at,rt,st+1)∼U(D)[(rt + γmax
at+1

Q(st+1, at+1; θ−i )

−Q(s, a; θi))
2], (33)

where θi refers to the parameters of the Q-network at
iteration i and θ−i refers to the network parameters used to
compute the target at iteration i. The target network param-
eters θ−i are only updated with the Q-network parameters
θi every several steps and are held fixed between individual
updates. The process of generating the data after training is
similar to that of the training process.

APPENDIX B
BENCHMARK RESULTS AND DATASETS

As deep graph generation is a relatively new research area,
it is important to quantitatively compare the performance of
the existing algorithms, and provide the unified benchmark
dataset for the future new algorithms and research. In this
section, we first summarize the existing benchmark datasets
that are used to evaluate the existing models. Next, we
compared the published results of the existing deep gen-

erative models by using the evaluation metrics introduced
in Section 5 3.

B.1 Datasets
The existing benchmark datasets that are typically used
in this domain can be categorized into synthetic datasets
and real-world datasets. We have collected and published
all the datasets via this link: https://github.com/xguo7/
Dataset-for-Deep-Graph-Generation.

B.1.1 Synthetic Datasets
Followings show the synthetic graph datasets that are typi-
cally used in the existing methods.

Community. It contains 500 two-community graphs
with 60 ≤ |V| ≤ 160. V denotes the node set of a graph.
Each community is generated by the Erdős–Rényi model
(E-R) [15] with n = |V |/2 nodes and the link probability of
p = 0.3.

Grid. It contains 100 standard 2D grid graphs with
100 ≤ |V| ≤ 400 and 100 standard large 2D grid graphs
with 1296 ≤ |V| ≤ 2025.

Ego. It contains 757 3-hop ego networks extracted from
the Citeseer network [145] with 50 ≤ |V| ≤ 399. Nodes rep-
resent documents and edges represent citation relationships.

B-A. 500 graphs with 100 ≤ |V| ≤ 200 that are generated
using the Barabasi-Albert model. During generation, each
node is connected to 4 existing nodes.

Cycles. A synthetic dataset of graphs with cyclically
connected nodes. Each graph is a path with its two end-
nodes connected. 500 graphs are generated with size of
10 ≤ |V| ≤ 100.

Trees. A synthetic dataset of 500 trees (10 ≤ |V| ≤ 100)
with power law degree distributions. To generate a tree,
a trial power law degree sequence is chosen and then
elements are swapped with new elements from a powerlaw
distribution until the sequence makes a tree.

Ladder. A synsthtic dataset of ladder graphs with 10 ≤
|V| ≤ 100, resulting in a total size of 180 graphs. This is two
paths of |V|/2 nodes, with each pair connected by a single
edge.

B.1.2 Real-world Datasets
Followings shows the real-world dataset that are typically
used in the existing methods.

QM9 [146]. It is an enumeration of around 134k sta-
ble organic molecules with up to 9 heavy atoms (carbon,
oxygen, nitrogen and fluorine). As no filtering is applied,
the molecules in this dataset only reflect basic structural
constraints.

ZINC [147]. This dataset is a curated set of 250k commer-
cially available drug-like chemical compounds. On average,
these molecules are bigger (about 23 heavy atoms) and
structurally more complex than the molecules in QM9.

CEPDB [148]. This dataset consists of organic molecules
with an emphasis on photo-voltaic applications. The con-
tained molecules have 28 heavy atoms on average and
contain six to seven rings each.

3. We only consider unconditional graph generation in this section
due to the small number of the existing conditional graph generation
methods.
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TABLE 4
Quantitative evaluation and comparison on general graph generation tasks by different deep generative models on graphs (N refers to the number

of nodes in the graph, “D.” refers to MMD for node degree, “C.” refers to MMD for clustering coefficient distributions, and “O.” refers to MMD for
average orbit counts statistics. “-” denotes the unavailability of the published results from the original papers).

Method Community Ego Protein Complexity TypeD. O. C. D. O. C. D. O. C.
GraphGMG [44] 0.220 0.950 0.400 0.040 0.100 0.020 - - - O(N !) Sequential

GraphVRNN [41] 0.015 0.057 0.005 0.052 0.184 0.010 - - - O(N2) Sequential
EDP-GNN [60] 0.053 0.144 0.026 0.052 0.093 0.007 - - - O(N2) One-shot

GNF [71] 0.200 0.200 0.110 0.030 0.100 0.001 - - - O(N2) One-shot
GraphAF [69] 0.060 0.100 0.015 0.040 0.040 0.008 - - - O(N2) One-shot

GraphVAE [53] 0.350 0.980 0.540 0.130 0.170 0.050 0.480 0.071 0.740 O(N4) One-shot
GraphRNN [18] 0.030 0.030 0.010 0.001 0.050 0.001 0.034 0.935 0.217 O(N2) Sequential

GRAN [49] - - - - - - 0.002 0.048 0.140 O(N) Sequential
GRAN-I [51] - - - - - - 0.007 0.074 0.059 O(N) Sequential
LGGAN [21] - - - - - - 0.180 0.150 0.020 O(N2) One-shot

TABLE 5
Quantitative evaluation and comparison on molecule structure generation tasks by different deep generative models on graphs (C refers to number
of motifs and N refers to number of nodes in the graph. “Unique.” is short for uniqueness. “Novel.” is short for novelty.“Valid.” is short for validness).

Method ZINC QM9 Complex. TypeUnique. Novel. Valid. Unique. Novel. Valid.
GrammarVAE [52] 10.76% 100.00% 31.00% 9.30% 95.44% 30.00% - Rule-sequential

GraphVAE [53] 31.60% 100.00% 14.00% 40.90% 85.00% 61.00% O(N4) One-shot
CGVAE [45] 99.82% 100.00% 100.00% 98.54% 94.35% 100.00% O(N2) Node-sequential

GraphNVP [62] 94.8% 100.00% 74.30% 97.30% 54.00% 90.10% O(N2) One-shot
GRF [61] 53.70% 100.00% 73.40% 66.00% 58.60% 84.50% O(N2) One-shot

GraphAF [69] 99.10% 100.00% 100.00% 94.51% 88.83% 100.00% O(N2) One-shot
CGSVAE [54] - 100.00% 34.90% - 97.50% 96.60% O(N2) One-shot
JT-VAE [27] 100.00% 100.00% 99.80% - - - O(C) Motif-sequential
GCPN [86] 99.97% 100.00% 100.00% - - - O(C) Motif-sequential

MolecularRNN [17] 99.89% 100.00% 100.00% - - - O(N2) Node-sequential
MolGAN [56] - - - 10.40% 94.10% 98.10% O(N2) One-shot
MPGVAE [59] - - - 68.00% 54.00% 91.00% O(N2) One-shot

SCAT [70] - - - 98.30% 92.00% 47.40% O(N2) One-shot

Protein [149]. This dataset contains 918 protein graphs
with 100 ≤ |V| ≤ 500. Each protein is represented by a
graph, where nodes are amino acids and two nodes are
connected if they are less than 6 Angstroms apart.

Enzymes [150]. This dataset contains protein tertiary
structures representing 600 enzymes. Nodes in a graph (pro-
tein) represent secondary structure elements, and two nodes
are connected if the corresponding elements are interacting.
The node labels indicate the type of secondary structure,
which is either helices, turns, or sheets.

Citation graphs [145]: Cora and Citeseer are citation
networks; nodes correspond to publications and an edge
represents one paper citing the other. Node labels represent
the publication area. The Cora dataset contains 2708 nodes,
5429 edges, 7 classes and 1433 features per node. The Cite-
seer dataset contains 3327 nodes, 4732 edges, 6 classes and
3703 features per node

B.2 Results
To compare the different deep generative models on graphs,
we summarize their published experimental evaluation re-
sults on two main graph generation tasks. One category is
domain-agnostic where the general graph generation tasks
are conducted without incorporating the domain knowl-
edge to guarantee the special properties of the graphs,
such as synthetic graph generation. The other category
is domain-aware, such as molecule structure generation,

which requires to consider the validness and properties of
the generated nodes, edges, and the whole graphs.

B.2.1 Results on Domain-agnostic Graph Generation
The aforementioned benchmark datasets are widely
used to evaluate and compare the existing methods. 10
state-of-the-art methods have been compared on three
highest-frequently used datasets in Table 4. The 10 methods
cover both one-shot and sequential generating styles. The
three highest-frequently used datasets are Community,
Ego, and Protein4. In order to evaluate the quality of
the generated graphs, the Maximum Mean Discrepancy
(MMD) [18] metric is utilized to measure the distance
between the learn graph distribution and the real graph
distribution, regarding node degree, clustering coefficient,
as well as average orbit counts statistics, as described in
Section 5. In addition, we also compare the time complexity
of these models to reflect their efficiency. In the following,
we analyze the experimental results by focusing on a few
issues illustrated as below.

Comparison between sequential-based and one-shot-
based graph generation for domain-agnostic graphs.
Based on experimental results, we observed that the
sequential-based methods, especially RNN-based models,

4. We categorize it into the domain-agnostic task since it is commonly
used without considering the protein properties of the graphs.
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deliver a better performance than the one-shot models
for many benchmark datasets. As shown in Table 4,
GraphRNN and GraphVRNN achieve the best performance
on the Community and Ego datasets, with GraphVRNN
returning to the lowest MMD of 0.025, on average, for the
Community dataset and with the MMD score for the other
methods averaging 0.246. For the Ego dataset, GraphRNN
delivered the lowest average MMD of 0.017, while the
MMD scores for other methods is around 0.060. This
may be because sequential-based generation is better at
modeling the complex dependency among the nodes and
edges in a graph as the conditional distribution of each
node or edge is modeled given the partially generated
graph.

Influence of the attention mechanism on graph generation.
The comparison results presented above suggest that the
attention mechanism supports better learning for the
graph generation process. As shown in Table 4, among the
sequential-based graph generation methods, for the Protein
dataset the attention-based recurrent neural network GRAN
and GRAN-I perform turned in the best performance, with
the smallest average MMD scores of 0.063 and 0.046,
respectively. This is because the attention mechanism
helps distinguish multiple newly added nodes and learns
different attention weights for different types of edges
during the generation process, thus delivering a more
powerful learning capability.

Experimental comparisons of complexity. Based on the
complexity results shown in Table 4, most of the graph gen-
eration methods have a complexity of O(N2). In sequential-
based graph generation methods, it is possible to improve
the scalability of the generation model from O(N2) to
O(N · |E|) by implementing an permutation invariant strat-
egy, such as GRAN [49]. This is because the complexity
challenge of the graph generation model arises primarily
in the node permutation step when calculating the loss
function for optimization. In the case of one-shot generation,
since each graph is represented as its adjacent matrix, which
limits the complexity of O(N2).

B.2.2 Results on Domain-aware Graph Generation
Among the domain-aware graph generation tasks, molecule
generation is the most popularly explored problem that is
handled by a large number of works. 13 domain-specific
models that have published molecule generation results on
two highest-frequently-used benchmark datasets (i.e., QM9
and ZINC) are compared, as shown in Table 5. Different
from domain-agnostic graph generation, the domain-aware
graph generation task values most on the validness of the
generated graphs as well as their diversity and novelty
regarding the requirement of novel structure design.
Thus, three metrics, namely, uniqueness, novelty and
validness, are utilized. In the following, we also analyze the
experimental results by focusing on a few issues illustrated
as below.

Influence of domain-specific knowledge on molecule
generation. Table 5 shows the experimental results for
both general graph generation techniques (e.g., GraphVAE,

GRF, GraphNVP) and domain-specific graph generation
techniques (e.g., JT-VAE and GCPN) when dealing with
the molecule generation/optimization problem. Based on
these results, incorporating domain-specific knowledge
in the form of either learning rewards or regularization
can help to generate more valid and unique graphs. For
example, JT-VAE and GCPN show better performance
than the other methods on the ZINC dataset, especially
in terms of Uniqueness and Validness. Specifically, for the
ZINC dataset, JT-VAE is the only method that achieve 100%
uniqueness, delivering a performance that is about 26.41%
higher than that of the other methods on average. This is
because the inclusion of domain-specific knowledge allows
the direct optimization of application-specific objectives,
while still ensuring that the generated molecules are
realistic and satisfy chemical rules.

Experimental comparison of complexity on molecule
generation. As shown in Table 5, the motif-sequential
based graph generation methods delivered the most
efficient generation process with the lowest complexity. For
example, JT-VAE and GCPN achieved higher scalability
(i.e., O(C)) than other models by utilizing a motif-based
sequential generating technique. This is because the
number of generation iterations are reduced considerably
by decomposing all of the nodes into several motif groups,
thus reducing the complexity to O(C) where C refers to the
number of motifs.

Experimental comparison of sequential-based and one-
shot graph generation for molecule generation. As shown
in Table 5, methods based on node-sequential and motif-
sequential generating techniques, such as CGVAE and
MolecularRNN, are also powerful ways to generate molec-
ular structures with high uniqueness, novelty and validity
compared to the one-shot generation methods. For example,
for the ZINC dataset, the average unique and validity
achieved by the sequential-based methods are 81.99% and
86.16%, respectively, which are 12.34% and 26.84% higher
than those of one-shot based methods. Sequential gener-
ating techniques, especially motif-based sequential tech-
niques, are more effective in molecule generation tasks for
two main reasons: (1) sequential-based methods are capable
of modeling the distribution of graph size (i.e., the number
of nodes), which varies naturally; and (2) generating a
graph based on given motifs (i.e., at a coarse-grained level)
decreases the risk of obtaining an invalid results compared
to generating a graph based on nodes and edges (i.e., at a
fine-grained level).


