
Deep Generation of Heterogeneous Networks
Chen Ling, Carl Yang, and Liang Zhao∗

Department of Computer Science, Emory University, USA
{chen.ling, j.carlyang, liang.zhao}@emory.edu

∗Corresponding Author

Abstract—Heterogeneous graphs are ubiquitous data struc-
tures that can inherently capture multi-type and multi-modal
interactions between objects. In recent years, research on encod-
ing heterogeneous graph into latent representations have enjoyed
a rapid increase. However, its reverse process, namely how to
construct heterogeneous graphs from underlying representations
and distributions have not been well explored due to several
challenges in 1) modeling the local heterogeneous semantic
distribution; 2) preserving the graph-structured distributions
over the local semantics; and 3) characterizing the global het-
erogeneous graph distributions. To address these challenges, we
propose a novel framework for heterogeneous graph generation
(HGEN) that jointly captures the semantic, structural, and
global distributions of heterogeneous graphs. Specifically, we
propose a heterogeneous walk generator that hierarchically gen-
erates meta-paths and their path instances. In addition, a novel
heterogeneous graph assembler is developed that can sample
and combine the generated meta-path instances (e.g., walks)
into heterogeneous graphs in a stratified manner. Theoretical
analysis on the preservation of heterogeneous graph patterns by
the proposed generation process has been performed. Extensive
experiments1 on multiple real-world and synthetic heterogeneous
graph datasets demonstrate the effectiveness of the proposed
HGEN in generating realistic heterogeneous graphs.

Index Terms—Heterogeneous Graph, Graph Generation, Deep
Generative Models

I. INTRODUCTION

As a ubiquitous data structure, the graph can model con-
nections (i.e., edges) between individual objects (i.e., nodes).
Tremendous efforts have been made to study various types of
graph problems, resulting in a rich literature of related papers
and methods [1], [2], [3], [4]. The study of graphs can be
mainly categorized into two categories: 1) graph representation
learning, which aims at encoding graph topological and seman-
tic information into vector space [5]; and 2) graph generation,
which reversely aims at constructing graph-structured data
from low-dimensional space containing the graph generation
rules or distribution [6]. In the past years, previous studies of
graphs have been made mostly on homogeneous graphs, which
are the graphs consist of nodes under the same type. However,
as a generalization of the homogeneous graph, heterogeneous
graphs are the graphs with multiple types of nodes which
further result in multiple types of edges, such as citation
networks [7] and social networks [8], [9]. Figure 1(b) shows
a citation network with author, paper, venue, and term as
nodes and “authorship”, “containment” and “publishment” as
edges. The local semantics based on certain combinations

1https://github.com/lingchen0331/HGEN

of node types and edge types reflect the key patterns of
heterogeneous graphs [10], [11]. Such local semantics are
typically represented as meta-path, a sequence of node types
and edge types. Meta-paths characterize the rich and diverse
relations among nodes [11], [12]. For example, as shown in
Figure 1(b), two authors can be connected via a meta-path
since they both contribute to a paper, while two authors can
alternatively be connected because their papers are accepted
at the same venue.

Due to the recent advancement of various graph neural
network models, plenty of works [13], [14], [15], [16], [17],
[18], [19], [20], [21] have been proposed on studying hetero-
geneous graph representation learning and embedding in the
past few years. These works have achieved significant progress
in many downstream tasks (e.g., meta-relation detection [13],
[14], heterogeneous node embedding learning [15], [16], and
heterogeneous link prediction [22], [17]). Among all the
heterogeneous graph-related research, there remains a paucity
of study on the heterogeneous graph generation. It is self-
evident that the advantages of generating realistic heteroge-
neous graphs are at least two-faceted: 1) generating high-
quality heterogeneous graphs requires us to comprehensively
capture the latent graph distribution, which can greatly enrich
our understanding of the implicit properties of heterogeneous
graphs; 2) generating heterogeneous graphs is useful in spe-
cific downstream applications (e.g., recommendation system
[23], knowledge graph reasoning [22], and node proximity
search [10]). Despite the importance of the heterogeneous
graph generation, in the past decade, only one study [24] tries
to generate random heterogeneous graphs, which is based on
hand-crafted rules and fails to generate realistic heterogeneous
graph as it cannot learn the real data distribution underlying
the observed graphs. On the other hand, a surge of research
efforts on deep generative models [6], [25], [26], [2], [27],
[28] have been recently observed in the task of homogeneous
graph generation. Through learning latent and complex de-
pendencies directly from observed graphs, these deep graph
generative models leverage different ways to learn and capture
the underlying graph-structure distributions directly from the
observed data without the need for hand-crafted rules. These
approaches have been shown superiority in maintaining the
structural properties in homogeneous graphs.

However, existing deep generative models designed for
homogeneous graphs cannot be trivially adapted to heteroge-
neous graphs due to the following significant challenges: 1)
Difficulties in preserving heterogeneous semantic information.
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Fig. 1: Examples of heterogeneous graph in academic field.

Current works for homogeneous graphs have been either
using random walks as a tool to learn the graph topological
distribution as learning the distribution of random walks ([26],
[29]) or directly modeling an overall distribution of the edges
([30], [27]) over the homogeneous graphs. However, objects
in heterogeneous graphs are inter-connected via various meta-
paths as shown in Figure 1(c). As the complex local semantic
information is carried by meta-paths, adapting current works to
the heterogeneous graph scenario without any elaborations on
meta-path would bring difficulties in learning and preserving
the distribution of such complex semantic patterns spanning
different graph entities (i.e., edges and nodes) in the newly
generated heterogeneous graphs. 2) Difficulties in preserving
heterogeneous higher-order structural information. In some
cases, meta-paths may also fall short of expressing more intri-
cate relationships among nodes in heterogeneous graphs. As
marked in Figure 1(b), some common and symmetric higher-
order structures spanning meta-paths will likely be observed
repeatedly, which forms a triangle or orbit structure (e.g., one
author writes two papers that are accepted by the same venue,
and two papers of an author focus on the same research topic).
The distributions of these higher-order graph structures are
also hard to capture in heterogeneous graphs, which brings
more challenges to effective heterogeneous graph generation.
3) Difficulties in preserving heterogeneous global information.
Meta-paths are also well-recognized to play a fundamental
role in preserving the global patterns of heterogeneous graphs
[10]. For example, the ratio of different node types, and edge
types, and their meta-paths are apparently different between
the citation networks of computer system domain and data
mining domain, as shown in Figure 1(a). It is important to
preserve the global distribution of meta-path patterns during
heterogeneous graph generation, which is again extremely
difficult as it is entangled with the preservation of node type
ratios, edge type ratios, and graph topological patterns.

In coping with these challenges, we introduce an end-to-end
graph generative framework, namely Heterogeneous Graph
Generation (HGEN), whose goal is to generate novel hetero-
geneous graphs by preserving all the complex local semantic,
higher-order structural, and global properties through directly
modeling the distribution of meta-paths in observed hetero-
geneous graphs. Particularly, to deal with the first challenge
of capturing the complicated local semantics, we propose to
learn a joint distribution of the random walks and the asso-

ciated meta-paths from the observed heterogeneous graphs.
On top of that, for challenge two, we encode heterogeneous
higher-order structural information into nodes via embedding
learning and use it to guide the generation of meta-paths and
random walks that form different high-order heterogeneous
structures. To tackle the third challenge, we develop a novel
heterogeneous graph assembly method, which is theoretically
proved to preserve the global heterogeneous graph patterns
in node types, edge types, and meta-paths. We conclude our
major contributions as follows:
• Problem. We not only formulate a new paradigm of het-

erogeneous graph generation but also identify and resolve
its unique challenges in preserving various heterogeneous
graph properties.

• Framework. We propose an end-to-end generative frame-
work for heterogeneous graph generation. The proposed
framework can effectively learn the underlying distribution
of heterogeneous graphs. It generates heterogeneous graphs
with ensuring the preservation of various heterogeneous
graph properties.

• Evaluation. We conduct extensive experiments on both
synthetic and real-world heterogeneous graphs. Compared
with state-of-the-art baselines, HGEN achieves competitive
results in preserving most of the static graph properties. In
addition, HGEN is shown to be capable of generating realis-
tic heterogeneous graphs by preserving important meta-path
information.

II. RELATED WORK

Heterogeneous Graph Mining. Compared to the
commonly-adopted homogeneous graph, heterogeneous graph
carries much richer semantic information and has therefore
gained much attention in recent literature [31]. The concept
of meta-paths in heterogeneous graph [12], [10] is one of
the most important concepts proposed to capture numerous
semantic relationships across multiple types of objects
systematically. Since the introduction of heterogeneous
graph, many innovative data mining tasks have spawned,
including similarity search [10], object clustering [12], and
heterogeneous node classification [15].

Heterogeneous Graph Representation Learning. In re-
cent years, graph neural network (GNN) has achieved massive
success in extensive applications [32], [3] due to its capa-
bility of effectively learning relationships and interactions on



non-Euclidean data. There exist plenty of attempts trying to
adopt GNNs to learn with heterogeneous graphs, and almost
all of them rely on employing meta-paths to model het-
erogeneous structures [20]. Specifically, proximity-preserving
methods [13], [14], [17], [19] aim to capture heterogeneous
network topological information via meta-path-constrained
random walks. On the other line of approach, [18], [15], [16]
try to aggregate information from heterogeneous neighbors via
multiple layers of learnable projection functions. Throughout
the study of heterogeneous graphs [10], [20], meta-path serves
as the fundamental building block owing to its nonpareil ability
to carry both graph topological and rich semantic information.

Graph Generation. Generative models for graphs have a
rich history due to the wide range of applications in different
domains, such as link prediction [26], [27], protein structure
analysis [33], and information diffusion analysis in social
networks [34]. Traditional graph generation methods (e.g., ran-
dom graphs, stochastic block models, and Bayesian network
models) fail to model complex dependencies in our real-world
scenarios. In addition, they cannot effectively preserve the
statistical properties of the observed graphs. In the last few
years, there has been a surge in research focusing on deep
graph generation. According to [6], the current deep graph
generation can be divided into two categories: sequential-based
and one-shot-based. For sequential-based graph generation
methods [2], [26], [1], they autoregressively generate the nodes
and edges with the LSTM model. However, the sequential-
based generation is limited in following a fixed node/edge
permutation order, which greatly loses the generation flex-
ibility and model scalability. On the other hand, one-shot-
based generation methods [27], [33], [26], [35], [28] try
to build a probabilistic graph model based on the matrix
representation that can generate graph topology as well as
node/edge attributes in a one-shot, but most of them cannot
easily be applied in large graphs due to the large time complex-
ity. Finally, multi-attributed graph generation [2], [25], [36],
[37] aims at generating homogeneous graphs by preserving
node/edge attributes. Instead, the key patterns of heteroge-
neous graphs are the higher-order local semantics reflected
by the combinatorial of the types of nodes and edges, which
cannot be captured by methods for homogeneous graphs.

III. PROBLEM FORMULATION

A heterogeneous graph [31], [20] is a graph G = {V, E}
with multiple types of objects and relations. V is the set of
objects (i.e., nodes), where each node vi ∈ V is associated
with a node type o = φ(vi). E ⊆ V × V is the set of edges,
where each edge eij ∈ E is associated with a relation type
l = ψ(eij).

In the study of heterogeneous graphs, the concepts of meta-
paths are widely considered as cornerstones and adopted to
systematically capture numerous semantic relationships across
multiple types of objects, which are defined as a path over the
graph [12], [20]. Hence meta-paths are indispensable to be
considered as basic units for heterogeneous graph generation.
Concretely, a meta-path o is defined as a sequence of object

types and edge types o =
(
(o1, o2, ..., on), (l1, l2, ..., ln−1)

)
=

o1
l1−→ o2

l2−→ ...
ln−1−−−→ on, where each oi and lj are node

type and edge type in the sequence, respectively. Each meta-
path captures the rich semantic information between its two
ends o1 and on. In heterogeneous graphs, the local semantic
information is carried on each of walks v = (v0, v1, ..., vn)
and its associated meta-path o. We again take Figure 1(c) as an
example, there exist two meta-paths between papers: (Paper,
Author, Paper) and (Paper, Venue, Paper). The utilization of
different meta-paths allow the heterogeneous graph to contain
rich topological and semantics among diverse objects, which
has been shown beneficial to many real-world graph mining
applications [20], [15], [16].

With the preliminary notion of the heterogeneous graph,
we formalize the heterogeneous graph generation problem as
follows:

Problem 1 (Heterogeneous Graph Generation). The goal of
the heterogeneous graph generation is to learn a distribution
pdata(G) from the observed heterogeneous graphs such that a
new graph Ĝ can be obtained by sampling Ĝ ∼ pdata(G).

Challenge 1 (Difficulties in modeling the complex local
semantic information.). Although the existence of meta-paths
allows heterogeneous graph to characterize the combinatorial
of node types and edge types, it is unclear how to model their
distributions and generatively assemble them into heteroge-
neous graphs.

Challenge 2 (Difficulties in characterizing the heteroge-
neous structural patterns.). The local structural patterns
in heterogeneous graphs are often expressed in higher-order
proximity among the nodes and edges (e.g., triangles, orbits,
and other higher-order structures). Such the local structure
may fuse multiple walks under one or more meta-paths with
richer semantic information, yet brings more difficulties in
learning its distribution.

Challenge 3 (Difficulties in capturing heterogeneous global
meta-path information.). Meta-paths indeed play a signifi-
cant role in preserving the global patterns of heterogeneous
graphs. In heterogeneous graph generation, it is important
yet challenging to preserve the global distribution of meta-
path patterns since the distribution of meta-path patterns
often involves node type ratios, edge type ratios, and graph
topological patterns.

IV. HETEROGENEOUS GRAPH GENERATION

To address the above challenges, we propose a new het-
erogeneous graph generation framework, named HGEN. To
address the first and second challenge, we propose a het-
erogeneous walk generator in Section IV-A to jointly learn
the distribution of local walks and the associated meta-paths
so that both heterogeneous topological and local semantic
information can be well captured. To overcome the second
challenge, we leverage the heterogeneous node embedding
to make the generator be aware of any potential higher-
order structures that each node may be involved with. Finally,
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Fig. 2: The illustration of the heterogeneous walks generation in HGEN.

for the third challenge, we propose a novel heterogeneous
graph assembler in Section IV-B, which can construct new
heterogeneous graphs by capturing the global heterogeneous
property, namely different meta-path ratios. We further prove
that the global heterogeneous property can be well-preserved
through our Theorem 1 introduced in Section IV-C.

A. Heterogeneous Walk Generator

In the observed graph G, a heterogeneous walk is defined
as a tuple that consists of two components: a walk v and
an associated meta-path o. The proposed heterogeneous walk
generator G is defined as a probabilistic sequential learning
model to generate synthetic heterogeneous walks: (v̂, ô) =(
(v̂1, v̂2, ..., v̂n), ((ô1, ô2, ..., ôn), (l̂1, l̂2, ..., l̂n−1))

)
, where the

v̂ and ô are denoted as the generated walk and associated
meta-path, respectively. We use v̂i, ôi, and l̂i to denote each
of the generated node, node type, and edge type in (v̂, ô),
respectively. Figure 2(a) illustratively summarizes the whole
generative process of each synthetic heterogeneous walk.

Heterogeneous Walk Generation. We model G as a se-
quential learning process based on a recurrent architecture,
and each unit fθ in the sequential model is parameterized by
θ so that it can generate a node type ô and a corresponding
node v̂ that belongs to this node type in a hierarchical
manner. Precisely, the node type ô is determined based on
the previously generated sequence, and the node v̂ is then
coherently determined by the generated node type as well as
the generated sequence. Both generated node type ô and node
v̂ together provide information for the generation of the next
node type and node instance.

Specifically, at each recurrent block (i.e., time step) t, fθ
produces two outputs (mmmt,hhht), where the mmmt is the current
memory state and the hhht is a latent probabilistic distribution
(i.e., hidden output of fθ) denoting the information carried
from previous time steps. We first sample the node type ôt ∼
go(hhht) based on the probability distribution hhht, where the go(·)
is a node type decoding function. We then sample the node v̂t
by a node decoding function v̂t ∼ gv(hhht, ôt) that takes hhht and
ôt as inputs. Lastly, the generated node type ôt and node hhht are
fused by a heterogeneous node encoding function gc(ôt, v̂t),
which then serves as the input of next recurrent block.

Heterogeneous Node Sampling. To overcome the second
challenge, we cannot uniformly sample v̂t based on the node
type ôt because such a way may cause the neglection of (1)
node structural distribution and (2) node semantic distribution.
For example, we may observe an author always tends to cite
a paper with high citation (namely, high node degree of this
paper node). Then such distribution needs to be modeled with
structural information. On the other hand, we may observe a
data mining paper is unlikely to cite a computer system paper,
and we may also need to characterize this tendency in the
distribution. Both of the above distributions cannot be tackled
by uniformly sampling. Therefore, to tackle this challenge,
since latent node embedding could encode both topological
and semantic information into the node, we propose to calcu-
late a latent embedding ṽt of the next node vt, then we select
with a higher probability the closer embedding among all the
embeddings that belong to node type ôt so that the next node
vt can be determined by the sampled embedding.

More specifically, we first calculate the latent node embed-
ding ṽt based on the sampled node type ôt by a simple linear
transformation. We then calculated the distance between ṽt and
other node embedding ṽ(ôt)i , meaning any node ṽi belonging
to the sampled node type ôt. In this case, given a total number
of k embeddings that belong to the type ôt, the next node v̂t
can be sampled from a multinomial distribution:

v̂t ∼ Multi(ṽ(ôt)1 , ṽ
(ôt)
2 , ..., ṽ

(ôt)
k ; p1, p2, ..., pk),

where each pi = −d(ṽt, ṽ(ôt)i )
2

and d(·, ·) is a distance metric
such as Euclidean distance. Note that the node embedding
ṽ
(ôt)
i can be obtained from a conventional heterogeneous node

embedding technique such as [14].

In order to generate a variable-length heterogeneous walk,
we incorporate a end-of-sequence token as an additional node
type so that the heterogeneous walk generator stops when
the sampled node type is the token at any steps. Therefore,
the proposed generator is able to produce variable-length
heterogeneous walks. Finally, the edge type lt can be predicted
by a simple edge decoding function ge(ôt, v̂t, ôt−1, v̂t−1) that
takes its two end nodes v̂t−1 and v̂t as well as their node
types ôt−1 and ôt as inputs. In all, we summarize the overall



generative process as follows:

aaa0 = 0, mmm0 = f0(zzz), zzz ∼ N (0, 1)

aaa1 = gc(ô1, v̂1), v̂1 ∼ gv(hhh1, ô1), ô1 ∼ go(hhh1), (mmm1,hhh1) = fθ(mmm0, aaa0)

aaa2 = gc(ô2, v̂2), v̂2 ∼ gv(hhh2, ô2), ô2 ∼ go(hhh2), (mmm2,hhh2) = fθ(mmm1, aaa1)

l̂1 = ge(ô2, v̂2, ô1, v̂1)

· · ·
v̂n ∼ gv(hhhn, ôn), ôn ∼ go(hhhn), (mmmn,hhhn) = fθ(mmmn−1, aaan−1)

l̂n−1 = ge(ôn, v̂n, ôn−1, v̂n−1)

In this work, we utilize LSTM as the recurrent architecture,
and fθ becomes a single LSTM unit. To initialize the whole
generative process, G takes a random noise zzz as input, which is
drawn from a standard Gaussian distribution. Additionally, for
the node type decoding function go(·), we apply the Gumbel-
softmax trick [38] in go(·) to make the whole sampling
differentiable. Finally, in most of the real-world scenarios, the
edge type lt can be determined by the types of its two end
nodes ôt and ôt−1 if there does not exist multi-typed relations
between two node types. In this case, the heterogeneous walk
generator can be simplified only to generate node sequences
and associated node types.

B. Heterogeneous Generator Training and Utilization

In the following, we will introduce how to train the above-
mentioned generator and how to use the heterogeneous walks
generated by it to construct heterogeneous graphs. Concretely,
we utilize a heterogeneous discriminator D to distinguish
between real and fake heterogeneous walks, where the real
heterogeneous walks are uniformly sampled from the observed
graph. We then propose a heterogeneous graph assembler to
construct new graphs based on the sampled heterogeneous
walks. More details are presented as follows.

We first introduce the overall objective function of the
Wasserstein heterogeneous GAN [39], which is written as:

LHGEN = max E(o,v)∼p(G)[Do(o) +Dv(v)]

− Ez∼p(z)[Do(ô) +Dv(v̂)], s.t. G(z) = (ô, v̂),
(1)

where v and o are the random walk and associated meta-
path, respectively, directly sampled from the observed het-
erogeneous graph G. They are the real data for training
our heterogeneous walk generator G. Specifically, given an
observed heterogeneous graph G = {V, E}, we utilize random-
walk-based method to uniformly sample a set of random
walks {v1, v2, ...}, where each vi is a node sequence s.t.
vi = (v1, v2, ..., vn). In addition, we extract the meta-path
information oi =

(
(o1, o2, ..., on), (l1, l2, ln−1)

)
from each vi.

The heterogeneous discriminator D in Equation (1) is de-
signed as a parallel recurrent architecture in order to individu-
ally distinguish whether each component in the heterogeneous
walks are valid or not. Specifically, at each recurrent block
(i.e., each step) t, the discriminator D takes two inputs: the
generated node type ôt and node index v̂t, each of which is
fed into an individual recurrent unit. After processing both
sequences, the discriminator returns a single score Dv(v) +

Do(o) that represents the probability of the heterogeneous
walk being real.

Heterogeneous Graph Assembler. To assemble a hetero-
geneous graph from the generated heterogeneous walks, we
further propose a novel stratified heterogeneous edge sampling
strategy to achieve the following steps: 1) it first samples a
node v̂i and its type ôi from all of the generated heterogeneous
walks; 2) based on the node type ôi, we then sample a meta-
path that starts with ôi; 3) we iteratively sample the next node
v̂i+1 in the sampled meta-path if both of the node type ôi+1

and edge type l̂i fits the meta-path pattern.
More specifically, the generator G firstly produces a suf-

ficient number of heterogeneous walks as shown in Figure
3(a). We then construct an symmetric adjacency matrix S with
size |V| × |V| to record the count of edges observed from the
sampled heterogeneous walks in each entry Sij , where the |V|
is the size of the node set. Next, we collect all of the meta-
path patterns generated by the generated heterogeneous walks,
as shown in Figure 3(b-c). For the first step of the stratified
heterogeneous edge sampling, we sample the a node v̂i and
its type type ôi based on the node degree distribution

∑
j Sij

|V| .

For the second step, among all the meta-paths {o(f)
1 ,o

(f)
2 , ...}

that start with the node type ôi, we sample a meta-path o
(f)
i

based on the probability c(o
(f)
i )

T ôi
, where T ôi is the total count of

generated meta-paths that starts with node type ôi and c(o(f)
i )

is the count of meta-path pattern o
(f)
i . For the third step,

by following this meta-path pattern or = (o1, o2, ..., on), we
iteratively sample all the nodes whose node types are regulated
by the the meta-path. Precisely, we sample the next node vj
by sampling all the neighbors of the current node vi with the
probability pvivj = (Sij)/(

∑
s Sis) such that all the nodes

vs belong to the specific node type oj following the meta-
path o

(f)
i . The sampled node sequence vr = (v0, v1, ...) is

then added to the current under construction. We continue
the stratified heterogeneous edge sampling strategy until the
desired amount of edges is reached. The final assembled graph
is visualized in Figure 3 (d).

Complexity Analysis. The computational complexity of
HGEN is O(W · L), where W is the weights of a single
LSTM unit, and L is the length of the generated heterogeneous
walks. However, the length of our proposed heterogeneous
walk is considerably small (1 ≤ L ≤ 3) while the walk length
in other random-walk-based graph generative method [26] is
(≥ 16). For auto-regressive graph generation models [3], [2],
the time complexities are at least O(|V|2 ·W ), where |V| is
the cardinality of the node set. They convert graph as a long
sequence by performing a large number of breadth-first-search
(BFS) enumerations for each graph. Additionally, HGEN also
has linear complexity in graph assembly, it only needs to run
the trained model Ts times to sample heterogeneous walks
for constructing the score matrix S. To sum up, the overall
complexity of HGEN can be reduced to O(W + Ts), which
makes our proposed model highly efficient for handling large
graphs, since the overall process is not sensitive to the number
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observed graph Figure 4(a). It is not accurate for the generated
graph Figure 4(b) that generate such links.

of nodes at all.

C. Meta-path Information Preservation Analysis

As we discussed in Section III, it is significant to preserve
the meta-path information in our generated graph. Taking
Figure 4 as an example, although both graphs have exactly
the same structure, they are still regarded as two different
heterogeneous graphs since their meta-path distributions are
different. Given the importance of the meta-path information
in heterogeneous graph generation, we further show that our
framework can successfully preserve this meta-path informa-
tion as proved in Theorem 1.

Theorem 1. The distribution of meta-path patterns O(r)
of

the generated heterogeneous graph equals the distribution of
meta-path patterns O in the observed heterogeneous graph,
namely p(O(r)

) = p(O).

Proof. We will prove that the ratio of the meta-path patterns
can be preserved in three steps: 1) the ratio of different meta-
path patterns can be preserved during the sampling procedure;
2) the ratio of generated meta-path patterns can be preserved
during the generation procedure; 3) the meta-path patterns can
be preserved during the graph assembling procedure.

Meta-path Ratio Preservation in Sampling. Let O =
(o1,o2, ...) be the collection of meta-paths obtained from
the observed heterogeneous graph G, each oi is a meta-
path in one-hot format oi ∈ {0, 1}1×R, where the R is
the total number of different meta-path patterns. O(τ)

=

(o
(τ)
1 ,o

(τ)
2 , ...,o

(τ)
K ) is the sequence of sampled meta-paths

with sampling size K, where each meta-path o
(τ)
j ∈ {0, 1}1×R

is drawn independent and identically distributed (i.i.d) from
O.

Suppose that µ = [µ1, µ2, ..., µR]
T denotes the probability

of each individual meta-path pattern in O, it is obvious that
E[oi|µ] =

∑
oi
p(oi|µ)oi = [µ1, µ2, ..., µR]

T = µ. Now

consider the total K observations O(τ)
= (o

(τ)
1 ,o

(τ)
2 , ...,o

(τ)
K ),

the corresponding likelihood function takes the form:

p(O(τ)|µ) =
R∏
i

K∏
j

µ
o
(τ)
ij

j =

K∏
j

µ
∑
n o

(τ)
nj

j =

K∏
j

µ
mj
j (2)

We see that the likelihood function depends on the K data
points only through the R quantities: mj =

∑
n o

(τ)
nj . Since

the number of observations of o(τ)
j equals 1, we achieved suffi-

cient statistics for this distribution. Therefore, p(O(τ)
) = p(O)

can be proved.
Meta-path Ratio Preservation in Generation. Since we

have proved the meta-path ratio can be preserved during the
sampling, the next step is to show that the distribution of
generated meta-paths p(O(g)

) is equal to p(O(τ)
). Proving

p(O(g)
) = p(O(τ)

) is equivalent to prove whether pdata = pg
in the GAN setting. As being proved in the works of GANs
and their variants [40], [39], it showed that the objective
function of the generator G is equivalent to optimize the
distribution distance between pdata and pg if the discriminator
D is optimal. Therefore, global optimality of pg = pdata can
be achieved if both generator G and discriminator D have
enough capability. Therefore, p(O(g)

) = p(O(τ)
) if both G

and D are optimal in our framework.
Meta-path Ratio Preservation in Assembling. Finally, we

show that our graph assembling method can also pre-
serve the meta-path ratio from the generated data O(g)

such that p(O(g)
) = p(O(r)

). As we discussed in Section
IV-B, the new graph Ĝ is directly assembled by meta-paths
(o

(g)
1 ,o

(g)
2 , ...,o

(g)
Q ) that are sampled i.i.d from O(g)

with
sampling size Q, which is exactly the reverse procedure of
Equation (2).

Therefore, if both generator G and discriminator D are
optimal, the multinomial distribution p(O) of distinct meta-
path patterns can be preserved in all three steps of our
generation framework.



V. EXPERIMENT

In this section, we compare HGEN to the adaption of closest
state-of-the-art baselines, demonstrating its effectiveness in
generating realistic heterogeneous graphs in diverse settings.
The code and datasets are made available2.

A. Data

Synthetic Datasets. We synthesis random heterogeneous
graphs of different sizes through the combination of N over-
lapping homogeneous graphs, where the overlap is accom-
plished by node sharing. We generate three random hetero-
geneous graphs (named as Syn100, Syn200, and Syn500) with
node size 100, 200, and 500, respectively. The number of node
types in each of the synthetic heterogeneous graph is 3.

Real-world Datasets. We also employ three large-scale
real-world heterogeneous graph datasets in our experiment.
• PubMed. This dataset consists of four classes of nodes:

Gene (G), Disease (D), Chemical (C), and Species (S). We
construct a sub-graph that relates to all Chemical nodes
labeled in [20]. There are 1, 565 nodes and 13, 532 edges.

• IMDB. This movie-related heterogeneous graph is adopted
from [15], which contains three node types: Director (D),
Actor (A), Movie (M), and Genre (G). We construct a
subgraph that contains all the movies with a score ≥ 7.5.
This graph contains 1, 653 nodes and 4, 267 edges.

• DBLP. This heterogeneous graph adopted from [15] con-
tains Paper (P), Author (A), Venue (V), and Term (T) as
node types. We sample a subgraph that is related to five
computer science venues: KDD, WSDM, WWW, ICDM, and
ICML. There are 1, 565 nodes and 47, 885 edges.

B. Experiment Setting

In our experiment, we focus on meta-paths with length 1,
2, and 3 as they are the most common ones in heterogeneous
graphs [10]. We sample 10 graphs from each of the trained
models and report their average results and standard deviation
in Table I. We randomly select 60% of the edges for training,
and the remaining graph is used for testing.

Baselines. Since no baseline is available for the novel
task of heterogeneous graph generation, we carefully adapt
four state-of-the-art graph generation methods: NetGAN [26],
GraphVAE [27], VGAE [30], and GraphRNN [2]. We utilize
node type information as node features of the input graph in
GraphVAE and VGAE. In addition, we modify NetGAN and
GraphRNN to make them available to generate node types.

Evaluation Metrics. The evaluation of heterogeneous graph
generation can be divided into three aspects. 1) Graph
Statistical Properties: we focus on six typical statistics as
widely used in [26], [35], [37] for measuring the structural
similarity, including LCC (the size of the largest connected
component), TC (Triangle count), Clustering Coef. (clus-
tering coefficient); Powerlaw Coef. (power-law distribution
of the node degree distribution), Assortativity, and Degree
Distribution Dist. (Node degree distribution Maximum Mean

2https://github.com/aaakkkxxx/submissionanonymous

Discrepancy distance). 2) Graph Novelty and Uniqueness.
Ideally, we would want the generated graphs to be diverse and
similar, but not identical. To quantify this aspect, we check the
uniqueness between the generated graphs by calculating their
edit distances. Additionally, we calculate the EO Rate (edge
overlapping rate) between the generated graphs and the testing
graphs for measuring the novelty of the generated graphs. 3)
Meta-path Ratio Properties: We measure the preservation of
meta-path distribution in two metrics. Firstly, we measure the
meta-path length ratio preservation. Secondly, under different
meta-path lengths, we also measure the distribution of the
frequent meta-path patterns.

C. Quantitative Analysis

Preservation of Graph Statistical Properties. We evaluate
the performance of HGEN against all the baselines on the
standard graph statistics, and the results are shown in Table I.
Overall, HGEN achieves competitive performance constantly
with very few exceptions on all metrics over both synthetic
and real-world datasets. We report several observations from
the table: 1) Node-level similarity: HGEN is the dominant
performer in most node-level metrics. Although there are no
significant differences in both Assortativity and Power-law
Coef. among all the algorithms, HGEN rank top with very few
exceptions in the node degree distribution distance with at least
40% improvement, which indicates that HGEN can effectively
capture the degree distribution of all types of nodes through
jointly learning both meta-path and random walk distribution.
2) Graph level similarity: HGEN still exceeds other baselines
by effectively preserving the community distribution. Specifi-
cally, for all the datasets with rich local community informa-
tion (e.g., PubMed and synthetic datasets), HGEN can utilize
the heterogeneous node embedding for preserving the higher-
order structural information in the generated heterogeneous
walks, which leads to better performance in metrics like LCC,
TC, and Clustering Coef.. However, in heterogeneous graphs
with rare high-order structures, the performance of HGEN is
comparatively less impressive. 3) As shown in Table I, the
random-walk based method HGEN and NetGAN can generally
achieve stable performance than one-shot based (e.g., VGAE
and GraphVAE) and sequential-based (GraphRNN) generative
models across all datasets. The reason is that random walk
based methods learn the overall graph distribution by learning
the distribution of its discrete random walks, which is not
sensitive to various graph characteristics. 4) Table I also shows
that VGAE cannot produce realistic graphs even though it
achieves the best performance in some metrics, which is
expected since the primary purpose of VGAE is learning
node embeddings but not generating entire graphs. In addition,
as the size of the graph increases, GraphRNN also fails to
generate realistic graphs because of the weak scalability of
auto-regressive models.

Graph Novelty and Uniqueness. The results of graph
novelty and uniqueness are reported at the right two columns
in Table I. Specifically, HGEN achieves a generally lower
EO rate across all datasets, indicating that HGEN does not



Graphs Models LCC TC Clustering Coef. Powerlaw Coef. Assortativity Degree Distribution Dist. EO Rate Uniqueness

Syn-100

GraphRNN 78.43± 2.23 16.62± 5.42 0.002± 0.01 1.611± 0.09 −0.153± 0.07 2.19e−2± 3.21e−3 37.21%± 1.08% 33.09%± 7.06%
NetGAN 80.12± 3.45 6.79± 1.76 0.001± 0.00 1.524± 0.21 −0.213± 0.09 1.33e−2± 6.46e−3 8.74%± 0.82% 94.03%± 0.49%

GraphVAE 99.01± 0.00 224.81± 5.13 0.70± 0.04 4.579± 0.05 −0.73± 0.05 3.71e−1± 1.98e−2 11.5%± 1.09% 65.54%± 2.98%
VGAE 48.9± 4.63 63.7± 46.25 0.184± 0.06 1.87± 0.10 0.1± 0.03 2.23e−1± 6.08e−2 3.23%± 0.09% 51.1%± 3.04%
HGEN 81.13± 2.42 53.12± 3.78 0.079± 0.01 1.782± 0.01 −0.114± 0.03 8.79e−3± 3.12e−3 10.2%± 0.17% 92.97%± 0.72%

Real 85 36 0.072 1.832 -0.169 N/A N/A N/A

Syn-200

GraphRNN 132.76± 1.08 2.54± 0.77 0.001± 0.00 1.603± 0.01 −0.05± 0.01 5.15e−2± 3.07e−3 25.81%± 2.65% 27.72%± 3.07%
NetGAN 153± 1.56 2.24± 0.35 0.001± 0.00 1.579± 0.31 −0.008± 0.001 6.43e−2± 4.2e−3 11.32%± 0.77% 95.88%± 3.19%

GraphVAE 195.43± 1.12 51.32± 1.01 0.002± 0.001 5.377± 0.21 −0.75± 0.05 5.38e−1± 1.7e−2 1.78%± 0.41% 64.37%± 2.94%
VGAE 86.2± 16.93 860.4± 185.9 0.23± 0.04 1.787± 0.08 0.2± 0.15 8.53e−2± 2.14e−2 3.74%± 0.08% 59.65%± 1.46%
HGEN 158.5± 2.64 38.5± 5.26 0.043± 0.01 1.732± 0.02 −0.065± 0.04 2.25e−2± 5.5e−3 4.22%± 0.67% 96.31%± 5.11%

Real 180 28 0.037 1.809 -0.089 N/A N/A N/A

Syn-500

GraphRNN 311.59± 2.14 11.53± 5.57 0.004± 0.001 1.862± 0.01 1.862± 0.002 4.05e−2± 1.1e−3 21.87%± 0.86% 29.54%± 4.32%
NetGAN 305.81± 14.28 3± 1.21 0.001± 0.001 1.812± 0.07 0.03± 0.12 4.83e−2± 7.4e−4 6.72%± 0.13% 93.98%± 0.21%
VGAE 97.0± 29.24 4346.2± 453.62 0.193± 0.02 1.77± 0.06 −0.022± 0.09 2.22e−1± 2.4e−2 5.46%± 1.12% 63.65%± 3.1%
HGEN 347.88± 7.63 74.88± 4.78 0.031± 0.01 1.865± 0.02 −0.097± 0.01 2.81e−2± 3.4e−3 1.49%± 0.11% 95.89%± 1.18%

Real 417 8 6.5e−3 1.978 -0.12 N/A N/A N/A

PubMed

GraphRNN 1563.23± 32.46 1549.79± 33.62 0.01± 0.007 1.753± 0.04 −0.03± 0.01 1.61e−1± 3.71e−2 13.41%± 1.24% 54.62%± 4.32%
NetGAN 793.2± 41.5 18.3± 0.9 0.001± 0.00 1.47± 0.11 −0.12± 0.02 6.69e−2± 1.5e−3 4.32%± 0.54% 78.03%± 0.19%
VGAE 347.9± 7.03 70, 982.2± 4, 086.53 0.234± 0.01 2.48± 0.01 −0.466± 0.01 1.38e−1± 4.8e−3 ≈ 0% 22.87%± 1.68%
HGEN 825.6± 22.1 1569.3± 31.3 0.034± 0.003 1.634± 0.07 −0.143± 0.08 3.92e−2± 7.5e−4 0.07%± 0.01% 93.91%± 0.12%

Real 948 2, 114 0.068 1.75 −0.208 N/A N/A N/A

IMDB

GraphRNN 1425.47± 121.5 142.13± 5.87 0.179± 0.02 2.97± 0.05 0.05± 0.04 1.98e−1± 2.61e−3 9.87%± 0.51% 21.52%± 3.31%
NetGAN 932.5± 8.49 0.0± 0.0 0.0± 0.0 2.08± 0.01 −0.25± 0.07 1.36e−1± 1.89e−3 7.62%± 0.07% 82.69%± 1.27%
VGAE 635.2± 4.16 7, 752.4± 281.32 0.141± 0.01 2.02± 0.02 −0.49± 0.15 1.9e−1± 2.33e−3 ≈ 0% 42.71%± 1.47%
HGEN 945.2± 11.54 26.0± 3.28 3.56e−3± 3.42e−4 2.16± 0.01 −0.19± 0.04 4.36e−2± 4.25e−4 2.69%± 0.04% 88.71%± 0.39%

Real 1, 074 1 4.43e−4 2.51 -0.235 N/A N/A N/A

DBLP

NetGAN 10, 353± 72.71 0.0± 0.0 0.0± 0.0 3.308± 0.41 −0.059± 0.03 5.03e−1± 2.1e−2 5.48%± 0.32% 72.51%± 0.32%
VGAE 3, 771± 236.29 1214.69± 452.61 0.271± 0.06 1.579± 0.07 −0.44± 0.11 8.71e−2± 1.77e−3 ≈ 0% 17.26%± 0.41%
HGEN 5,163± 21.41 1068± 12.83 0.018± 0.001 1.793± 0.21 −0.157± 0.03 5.82e−3± 1.67e−4 1.55%± 0.09% 66.59%± 0.17%

Real 5, 513 0.0 0.0 1.855 −0.201 N/A N/A N/A

TABLE I: Performance evaluation over compared baselines. The Real rows include the values of real graphs, while the rest
are the evaluation results of different algorithms. The best performance (the closest to real value) achieved under each metric
for a particular dataset is highlighted in bold font. Note that we do not include GraphVAE in datasets with (≥ 500) nodes and
GraphRNN in datasets with (≥ 10, 000) nodes because the programs return errors.
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Fig. 5: The meta-path distribution comparison. 5a - 5d and 5e - 5h are the generated meta-path length distribution along with
frequent meta-path patterns distribution with length 1, 2, 3 for Syn 500 dataset and PubMed dataset, respectively.

HGEN-S HGEN-E HGEN-A HGEN Real

LCC 1563.76 824.14 819.32 825.6 948
TC 1453.23 784.34 863.53 1569.3 2114

Clustering Coef. 0.026 0.015 0.016 0.034 0.068
Power Law Coef. 1.649 1.652 1.621 1.634 1.75

Assortativity -0.09 -0.132 -0.131 −0.143 -0.208
Node Degree Dist. 0.0354 0.0388 0.0515 0.0392 N/A

TABLE II: Ablation Study in PubMed Dataset

purely memorize the seen heterogeneous walks in the training
data. In contrast, GraphRNN has a higher EO rate, indicating
GraphRNN regenerates graphs it saw during training. In

addition, VGAE achieves the lowest EO rate since it fails
to generate realistic heterogeneous graphs. For Uniqueness,
HGEN also exceeds other one-shot and sequential based
algorithms by an evident margin, which demonstrates the
diversity of the generated graphs.

Preservation of Graph Semantic Properties To further
demonstrate the performance of HGEN, we evaluate the
performance of meta-path distribution preservation with other
baselines. Specifically, we measure the meta-path distribution
from two aspects: 1) the overall meta-path length ratio preser-
vation in generated graphs and 2) frequent meta-path patterns



(a) Real (b) NetGAN (c) GraphRNN (d) GraphVAE (e) VGAE (f) HGEN

(g) Real (h) NetGAN (i) GraphRNN (j) VGAE (k) HGEN

Fig. 6: Figure 6a - 6f are the generated graph of the Syn 200 dataset, and 6g - 6k are the generated graphs of the PubMed
dataset. (better to see with color)
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Fig. 7: Running time comparison of different models in both
synthetic and real world datasets. It is clear that GraphVAE is
not scalable in generating graphs with more than 200 nodes.
GraphRNN also fails in generating large graphs (with more
than 10, 000 nodes). The proposed HGEN exhibits a linear
running time growth in terms of the growth of graph size.

under each length. The results of Syn 500 and PubMed
datasets are illustrated in Figure 5 (the rest of the experiments
are shown in Appendix). In general, all the methods can
approximately maintain the meta-path length ratio except for
VGAE. However, HGEN can constantly achieve a better
performance as shown in Figure 5a and 5e. 2) As shown
in Figure 5b - 5d and 5f - 5h, HGEN can outperform other
methods by at least 10% in preserving the ratio of specific
meta-path patterns under each length, which is expected since
HGEN is able to learn and maintain the meta-path distribution
from the observed graphs while others cannot.

D. Ablation Study

We further conduct ablation studies on the PubMed dataset
to evaluate the effect of different components in HGEN, and
the results are exhibited in Table II. The ablative experiments
are conducted based on each of the essential components in
our architecture. Specifically, we select a single large heteroge-
neous walk length - 8 to replace the heterogeneous walk length
1, 2, and 3 in our model, and the resulting model is called
HGEN-S. We also independently remove the heterogeneous

node embedding to let the generator uniformly sample the next
node, and the resulting model is named HGEN-E. Lastly, we
replace the heterogeneous graph assembler with a probability-
based graph assembler, namely HGEN-A.

As shown in Table II, all the ablative models achieve
similar results in node-level metrics like Powerlaw Coef.,
Assortativity, which is because HGEN can well capture this
node-level information through learning the heterogeneous
walk distribution. Other than that, we observe: 1) HGEN-
S can construct a larger sub-graph since the length of the
heterogeneous walk is largely greater than HGEN, but the
large subgraph doe not makes any improvements in terms
of capturing the heterogeneous structural information. The
reason is there are rarely long meta-path in the heterogeneous
graph since longer meta-paths are highly redundant because
of the shared sub-parts [10]. We instead choose 1, 2, and
3 as our meta-path lengths to make the whole generation
more flexible. 2) removing the heterogeneous node embedding
would make HGEN-E hard to capture the local graph structure
since HGEN relies on the encoded neighborhood information
to make the node sampling be aware of the local structure. 3)
as shown in the node degree distribution evaluation, replacing
the heterogeneous graph assembler with a probabilistic graph
assembler would cause HGEN-A hard to capture the latent
heterogeneous node distribution because it uniformly samples
edges from the generated walks and completely neglects the
generated meta-path information. However, HGEN takes meta-
paths as a basic unit to sample edges so that it can effectively
preserve the overall distribution of meta-paths as proved in
Theorem 1. Therefore, the node degree distribution under each
type can be well preserved.

E. Running Time Comparison
The results of our running time experiments are shown in

Figure 7. The running times on both synthetic and real-world



datasets including both training and inference time are shown
with respect to the growth of number of nodes in both synthetic
and real-world datasets. All running times are in log10 scale.
As shown in both figures, random-walk-based generative mod-
els (HGEN and NetGAN) have a constant running time growth
in terms of number of nodes, which is especially important
when dealing with large graphs. Even though VGAE is much
faster regarding running time, it is indeed a representation
learning framework based on GCN and lacks of the ability
of generating realistic heterogeneous graphs, and the results
are also reflected in Table I. Both GraphRNN and GraphVAE
fail to compare with HGEN in model scalability because their
designs require at least O(|V|2) to process the transformed
node sequence and adjacency matrix.

F. Graph Visualization

Since it is nearly impossible to judge whether a graph is
realistic only by statistics, we visualize the generated graph
to further demonstrate the performance of HGEN (Figure 6).
Visually, HGEN looks the most similar, while both GraphVAE
and VGAE is the most dissimilar. This result is consistent
with the quantitative results obtained in Table I. For one-shot
based generative models, GraphVAE and VGAE, they fail to
capture the structural similarity of the observed heterogeneous
graph. For the sequential-based and random walk based graph
generative methods, GraphRNN and NetGAN can successfully
mimic the structure similarity but fail to preserve the global
heterogeneous graph properties (e.g., overall meta-path ratio).

VI. CONCLUSION

In this paper, we propose a novel framework - HGEN for
heterogeneous graph generation, which can jointly capture the
semantic, structural, and global distributions of heterogeneous
graphs. Our framework consists of a novel heterogeneous
walk generator that can hierarchically generate meta-path
instances (namely heterogeneous walk) and a heterogeneous
graph assembler that can construct new graphs by sampling
from the generated heterogeneous walks in a stratified manner.
Extensive experiments on synthetic and real-world datasets
demonstrate the advantages of HGEN over existing deep
generative models in terms of preserving both graph statistical
and heterogeneous specified properties.
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