© ® N O O A~ W N =

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

GraphGT: Machine Learning Datasets for Graph
Generation and Transformation

Yuangi Du';} Shiyu Wang?; Xiaojie Guo®,Hengning Cao',Shujie Hu? Junji Jiang?,
Aishwarya Varala',Abhinav Angirekula,Liang Zhao?'

LGeorge Mason University, 2Emory University, >Tianjin University, Thomas Jefferson High School,

5JD.COM Silicon Valley Research Center
contact: ydu6@gmu.edu, liang.zhao@emory.edu

Abstract

Graph generation has shown great potential in applications like network design and
mobility synthesis and is one of the fastest-growing domains in machine learning
for graphs. Despite the success of graph generation, the corresponding real-world
datasets are few and limited to areas such as molecules and citation networks. To
fill the gap, we introduce GraphGT, a large dataset collection for graph generation
and transformation problem, which contains 36 datasets from 9 domains across
6 subjects. To assist the researchers with better explorations of the datasets, we
provide a systemic review and classification of the datasets based on research tasks,
graph types, and application domains. We have significantly (re)processed all the
data from different domains to fit the unified framework of graph generation and
transformation problems. In addition, GraphGT provides an easy-to-use graph
generation pipeline that simplifies the process for graph data loading, experimental
setup and model evaluation. Finally, we compare the performance of popular
graph generative models in 16 graph generation and 17 graph transformation
datasets, showing the great power of GraphGT in differentiating and evaluating
model capabilities and drawbacks. GraphGT has been regularly updated and
welcomes inputs from the community. GraphGT is publicly available at https:
//graphgt.github.io/ and can also be accessed via an open Python library.

1 Introduction

Graphs are ubiquitous data structures to capture connections (i.e., edges) between individual units
(i.e., nodes). One central problem in machine learning on graphs is the gap between the discrete graph
topological information and continuous numerical vectors preferred by data mining and machine
learning models [1, 2, 3]. This directly leads to two major directions on graph research in modern
machine learning: 1) graph representation learning [2, 4, 5, 6], which aims at encoding graph
structural information into a (low-dimensional) vector space, and 2) graph generation [7, 8], which
reversely aims at constructing a graph-structured data from the (low-dimensional) vector space. In
the past several years, graph representation learning has enjoyed an explosive growth in machine
learning. Techniques such as DeepWalk [9], graph convolutional network (GCN) [10], and graph
attention networks (GAT) [11] have been proposed for various tasks including node classification
[12], link prediction [13, 14, 15], clustering [2, 4] and others [16, 17].

Beyond graph representation learning, graph generation and transformation via machine learning
start to obtain fast-increasing attention in even more recent years. It enables end-to-end learning of
underlying unknown graph generation or transformation process, which is a significant advancement
beyond traditional prescribed graph models such as random graphs and stochastic block models

*Equal Contribution
"Corresponding Author

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.

https://graphgt.github.io/
https://graphgt.github.io/
https://graphgt.github.io/

35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70

6 Domains

Chemlstry
Meaningful Gdatasets

‘ @ Bdatasets .-L

‘ Biology

11 datasets

: i mage Sequence Text
applications ‘ Physics n Engineering ‘ Social Science ‘ &
. J 2 datasets|| (o)) 4 datasets % 3 datasets y g ?8‘_
41— 36 Datasets Constructed Network Time-series Geometry

[Original Data Format

./_ﬁﬁ Collect, repurpose, L Preprocessing
p@ - [Unified Data Format

reformat datasets

R

Image processing text processing
Sequential mining
Temporal mining network mining

Spatial data processing

(Task Formulation

I 10+ Categories of Tasks

(Spatial Graph Generation | Unpaired Transformation

(,

[Temporal Graph Generation || Paired Transformation

—o (Adj Node Edge " Edge |
= Taxonnmy _ | spatiotemporal Graph Generation | [Node Transformation ‘ matrix ‘ feature feature
| Attributed Graph Generation || Edge T ion ———
_ = = pana\ Temparal Label
[Weighted Graph Generation || Node-edge Co-Transformation feature. I'eature

:1: 22 Evaluation Metrics

| 7 Statistics-based Metrics |
5% Evaluations - [3 Graph-quality based Metrics | P p— %ﬂ
| | 10 Graph-property based Metrics |
. ' | 2 Mapping-quality based Metrics | Graph Generation

—I . 33 Benchmark Results C)O,_Q%/lo (?é

@ Benchmark ‘ Graph Generation Comparison on 16 Datasets ‘
Results -) Graph Transformation

‘ Graph Transformation Comparison on 17 Datasets ‘

Figure 1: GraphGT dataset collection overview.

which require strong human prior knowledge and hand-crafted rules. Hence, graph generation and
transformation via machine learning has great potential of many challenging tasks such as molecule
design, mobility network synthesis, and protein folding statistical modeling. Over recent few years,
substantial efforts have been paid on developing models and algorithms for graph generation and
transformation, and a few of them have been studied targeting specific domains, such as GraphVAE
[18], MolGAN [19] and JT-VAE [20].

Unlike graph representation learning which enjoys various benchmark datasets such as CORA,
CITESEER and PUBMED for node classification [21], OAG for link prediction [22], and Molecule-
LENET for graph-level prediction [23], graph generation and transformation via machine learning is
still in its nascent stage and lacks comprehensive benchmark datasets that well cover different key
real-world applications and types of graph patterns. Existing datasets are basically limited to few
domains such as citation networks and molecules [7, 24]. Such data scarcity issue further leads to
the following bottlenecks for the advancement of this fast-growing domain of graph generation and
transformation: (1) Difficulty in formulation: graph structured data is complex in its nature; and
the raw data in different domains may requires greatly different procedures to process or re-process
in order to fit into a unified format. (2) Limited number of application domains: Although graph
generation and transformation is a very broad generic concept that covers graphs in areas ranging
from geography to biology, to physics, to sociology, to engineering, existing datasets only cover
limited domains which prevents the development of graph generative models as well as applications
in more diverse domains. (3) Lack of taxonomy: As the area of graph generation and transformation
grows, the research tasks are diversified and hence require a well-defined categorization in order
to have the dataset under the right category for the evaluation of the corresponding task. (4) Lack
of unified evaluation procedures: the evaluation metrics used in existing research works are quite
diverse and a gold standard for the evaluation procedure and metrics is needed. Moreover, the scarcity
of existing datasets may bias the selection of elevation metrics to fit the limited number of existing
datasets (e.g., molecules) but may not be general to other datasets. (5) Lack of comprehensive
model comparisons: existing models are usually evaluated in a small number of datasets in very
focused domains and some may be prone to “overfitting” to these datasets already, which significantly
challenges the differentiation, evaluation, and advancement of the existing methods.

To tackle the aforementioned challenges, we introduce GraphGT, a large dataset collection for graph
generation and transforamtion in machine learning, which (1) collects, re-purposes, re-formats a large
amount of graph datasets, that (2) covers a variety of domains and subjects, (3) provides a systematic
reviews and classifications of the datasets, (4) standardizes on the model evaluation procedures, and
(5) provides benchmark results on a large amount of datasets. The major contributions are as follows.

* 36 datasets are published under various graph types cover 6 disciplines (including biology, physics,
chemistry, artificial intelligence (AI), engineering, and social science) and 9 domains (including

71
72

73
74
75
76
77
78

79
80
81
82
83

84
85
86
87

89
90
91
92
93
94
95
9%
97
98
99

100

101

102

103

104
105
106
107
108
109
110
111

112

113
114
115
116
117

118

119
120
121
122
123
124
125

protein, brain network, physical simulation, vision, molecule, transportation science, electrical
and computer engineering (ECE), social network and synthetic data).

¢ Among all 36 datasets, we collect and construct CollabNet dataset and 7 brain network datasets
from scratch for graph generation and transformation. Another 8 datasets are re-purposed by us
from other applications into graph generation and transformation tasks for the first time. The
remaining are from very different domains that share quite different terminology, formats, and
data structures, which are reformatted by us to a unified format for the first time for easy access
and use in a standardized manner.

* We provide and analyze results of graph generation on 16 datasets and graph transformation on
17 datasets using popular graph generation and transformation models. We observed that the
performance of the comparison methods in different datasets (e.g., with different graph sizes,
feature types, etc.) in different domains can be quite diverse. Hence GraphGT can be very helpful
in differentiating the comparison methods, locating their drawbacks, and further advancing them.

» Easy-to-use Python API for users to query and access pre-processed datasets according to specific
disciplines, domains, and applications per their interests. We also provide a detailed tutorial for
the implementation in Appendix E. In addition to the access via the Python API, GraphGT is
open-sourced and available for download via GitHub at https://graphgt.github.io/.

2 Related Works

As graph representation learning enjoys an explosive growth in machine learning, numerous research
works such as DeepWalk [9], graph convolutional network (GCN) [10], and graph attention networks
(GAT) [11] have been proposed for various tasks including node classification [12], link prediction
[13, 14] and clustering [2, 4]. Along with this, some datasets are proposed, such as datasets for node
classification (CORA, CITESEER and PUBMED) [21], datasets for link prediction (OAG) [22],
and datasets for Graph-level prediction (Molecule-LENET) [25]. To summarize and standardize
these datasets, many data collections for graph representation learning has been proposed. Stanford
Network Analysis Platform (SNAP) is a general purpose network analysis and graph mining library
which contains massive networks with hundreds of millions of nodes, and billions of edges [26].
OPEN GRAPH BENCHMARK (OGB) is a diverse set of challenging and realistic benchmark
datasets to facilitate scalable, robust, and reproducible graph machine learning (ML) research [27].
However, most of the datasets for graph representation learning research cannot be used as graph
generation benchmarks as the latter requires large number of individual whole graphs in order to
learn their distributions. While the aforementioned datasets either contain one giant graph for node
classification and link prediction, or a set of graphs from different distributions for graph classification.
Graph generation and transformation have been increasingly drawing attentions from the community
due to its significant roles in various domains. Though many advanced methods have been proposed,
there are only limited number of datasets for this research topics. Enzyme dataset [28], ProFold
dataset [29] and Protein dataset [30] are used for protein structure generation. ZINC molecule
database is borrowed to generate optimal molecules that have desired properties [20]. Moreover, a
few synthetic datasets are also generated for graph generation tasks to learn graph distributions, such
as Erdos-Renyi graphs [31] and Waxman random graphs [29]. There exist few data collections that
systematic organize the graph generation datasets from different domains.

3 Graph Generation and Transformation

A graph can be defined as G = (V, €&, E, F'), where V is the set of N nodes, and € C V x V
corresponds to a set of edges. e;; € £ is an edge that connects node v; and v; € V. If the graph
is node-attributed or edge-attributed, it has the node attribute matrix F' € RY*P that assigns node
attributes to each node or edge attribute tensor £ € RV >N XK that assigns attributes to each edge. D
and K are dimensions of node attributes and edge attributes, respectively.

3.1 Graph Generation

Graph generation aims to sample novel graphs via well-designed probabilistic models [7]. More
formally, given a set of observed graphs with arbitrary number of nodes and edges, graph generative
models aim to learn the distribution p(G) of the observed graphs and then graph generation can be
achieved by sampling a graph G from the learned distribution G ~ p(G).

According to the size of generated graph, graph generation tasks can be classified into two categories:
(1) fixed-size generation in which the number of nodes is fixed across different graph samples; For
example, in human brain networks (e.g., functional connectivity), the number of brain regions is

https://graphgt.github.io/

126
127
128

129
130
131
132

134

135

136
137
138
139
140
141
142
143

144
145
146
147
148

149
150
151
152
153
154
155
156

157

158

160
161
162
163
164
165

167

168
169
170
171

172

173
174
175
176
177
178
179

usually the same across different human subjects; and (2) variable-sized generation when the number
of nodes varies across graph samples. For example, different molecules can be considered as graphs
with various numbers of atoms. The two categories are accommodated with different types of datasets.

Recent studies on graph generation could be divided into two branches, (1) one-shot generation, (2)
sequential generation, based on the their choices of the generation process. Specifically, one-shot
generation builds probabilistic matrices for the generated graph features which the graph structures
could be obtained by taking the maximum probability nodes and edges in one shot [18, 32, 19, 33].
While sequential generation, formulates graph generation as a sequential process and generates nodes
and edges one by one [34, 35, 36, 37].

3.2 Graph Transformation

Graph transformation aims at transforming from one graph in source domain into another graph
in target domain. It can also be regarded as the graph generation conditioning on another graph.
For instance, in neuroscience, it is interesting to explore the functional connectivity given the
corresponding structural connectivity. In hardware design domain, given a integrated circuit design,
one may be asked to obfuscate it, by adding additional gates and keys (i.e., can be considered as nodes)
but maintain the same functionality. More formally, graph transformation problem can be formalized
as learning a generative mapping 7 : (Vo, &9, Eo, Fo) — V', &', E', F"), in which (Vy, &y, Eo, Fo)
corresponds to the graph in source domain and (V’, &', E’, F') represents a graph in target domain.
Based on the entities transformed in the transformation process, problems regarding graph transforma-
tion can be divided into three main scenarios: (1) node transformation transforms nodes and/or their
attributes from the source to the target domain; (2) Edge transformation maps graph topology and/or
edge attributes from the source domain to the target domain; In (3) node-edge co-transformation,
both the node and edge information can change during the transformation process.

Recent works cover each of three categories of graph transformation models. Interaction networks
is a node-transformation technique that provides reasoning on objects, relations and physics [38].
DCRNN integrates diffusion convolution with a seq2seq framework to handle node transformation
[39]. Graph Convolutional Policy Network is proposed for modeling chemical reactions. DCGAN has
been used for generating novel protein structure [40]. GC-GAN can handle malware cyber-network
synthesis [41]. For the node-edge co-transformation, JT-VAE [20] and Mol-CycleGAN [42] are
designed for molecule optimization. DG-DAGRNN is employed to generalize stacked RNNs on
sequences on directed acyclic graph structures [43].

4 Descriptions of GraphGT Benchmark Datasets

4.1 Taxonomy

Our GraphGT Benchmark covers 36 datasets from various domains and tasks. The taxonomy with
respect to different domains is shown in Figure 2, where there are 9 domains, including protein,
brain network, physical simulation, vision, molecule, transportation science, electrical and computer
engineering, social network and synthetic data, across 6 subjects including biology, physics, artificial
intelligence (AI), chemistry, engineering and social science. Moreover, the taxonomy by different
tasks is illustrated in Figure 3. For the graph generation task, they can extract datasets for either
fixed-sized generation or variable-sized generation. For the graph transformation task, we provide
datasets for node transformation, edge transformation as well as node and edge co-transformation.

4.2 Dataset Details

In this section, we provide the specifications of representative datasets spanning different subjects
introduced in Figure 2. Their potential use in tasks such as graph generation or transformation tasks
will also be provided. The general profiles for different datasets are summarized in Table 1. A more
detailed description of each dataset and curation method can be found in the Appendix C.

4.2.1 Biology

Motivation. In biology domain, we have two subjects which are proteins and brain networks.
Proteins are essential to all lives, and are highly related to significant biomedicine-related tasks, such
as protein design [57] and drug design [58, 59, 60]. De novo protein design [61] is a promising field
the explores the full sequence space which is estimated 202°° possible amino-acid sequences for
only a 200-residue protein with the guidance of physical principles of protein folding. In addition to
protein structure, brain networks include two major types of connectivities, structural and functional,
which reflect the fiber nerve connectivity and co-activation relations, respectively, among different

180
181

182
183
184
185
186
187

188
189
190
191
192
193
194
195
196

197

198
199
200
201
202
203
204
205

207
208

Protein | | Brain network | | Transportation | | ECE
I I | I
*Enzyme dataset * Brain-restingstate dataset < Brain-motor dataset * METR-LA dataset *AuthNet dataset
* ProFold dataset * Brain-emotion dataset * Brain-relational dataset * PeMS-BAY dataset *loTNet dataset
« Protein dataset * Brain-gambling dataset < Brain-social dataset
*Brain-language dataset *Brain-wm dataset

| Social science || Chemistry || Physics || Al || Others |
I
| Social network || Molecule || Physical simulation || Vision || Synthetic data |
1 I I I I
« CollabNet * ChEMBL dataset * N-body-charged || « CLEVR dataset *Barab’asi-Albert «Scale-free dataset
dataset *ChemReact dataset || dataset « Skeleton (Kinectics)|| Graphs dataset * Waxman Graphs
* Ego dataset || * MolOpt dataset * N-body-spring dataset « Community dataset dataset
* TwitterNet * MOSES dataset dataset « Skeleton (NTU) * Erdos-Renyi Graphs * Random Geometric
dataset * QM9 dataset dataset dataset dataset
*ZINC250K dataset

Figure 2: GraphGT Benchmark datasets by domains.

Fix-sized generation ” Variable-sized generation “ Node transformation “ Edge transformation “ Node-edge transformation
I I I |
* CLEVR dataset * ChEMBL dataset * N-body-charged * AuthNet dataset * ChemReact dataset
« Erdos-Renyi Graphs dataset || * CollabNet dataset dataset * Barab’asi-Albert Graphs * loTNet dataset
* METR-LA dataset « Community dataset * N-body-spring dataset * MolOpt dataset
* PeMS-BAY dataset * Ego dataset dataset * Brain-restingstate dataset
* ProFold dataset * Enzyme dataset * Brain-emotion dataset
* Random Geometric dataset || * MOSES dataset * Brain-gambling dataset
« Skeleton (Kinectics) dataset || * Protein dataset * Brain-language dataset
« Skeleton (NTU-RGB+D) * QM9 dataset * Brain-motor dataset
dataset * ZINC250K dataset * Brain-relational dataset
* Waxman Graphs dataset * Brain-social dataset
* Brain-wm dataset
* Scale-free dataset
* TwitterNet dataset

Figure 3: GraphGT benchmark datasets by tasks.

regions of human brains. Understanding and modeling brain networks and the correlations between
structural connectivity and functional connectivity are crucial tasks in neuroscience [62].

Tasks. Protein structures can be considered as graphs where amino acids as nodes and contacts as
edge connections. Generating novel proteins grounds up to tackle challenges in biomedicine and
nanotechnology [61, 57, 58, 63, 64, 65, 64]. In a brain network, the brain regions are represented
as nodes and the connectivity between each pair of regions are represented as edges. The graph
transformation model can assist understanding the transformation from structural connectivity to
resting-state or task-specific functional connectivities in the human brain [31].

Dataset Construction. We reformat 3 protein structure datasets for graph generation and 8 brain
network datasets for graph transformation in GraphGT. For protein data, we start from the amino acid
coordinates, and then extract graphs of protein structures according to mutual distances of amino acids.
The node feature (type of amino acids) are also extracted and recorded in GraphGT. We construct 7
brain network datasets by performing standard neuroimage processing, time series processing, and
network construction on both types of connectivities from the magnetic resonance imaging (MRI)
data to obtain brain graphs, with edge attributes as Pearson correlation between two regions and node
attributes as node index. We also reformat one brain network dataset (Brain-restingstate) that has
already been used for graph transformation task [31].

4.2.2 Physics

Motivation. Physical simulation is a significant technique to explore interactions among objects with
natural forces. Specific physical systems, such as dynamical systems [49], can be formed into graph
structures. The dynamics of a physical system can be seen as a group of interaction components, in
which complex dynamics occur at both individual level and in the system as a whole [49]. One could
utilize the graph transformation methods to observe the evolution of a physical system.

Tasks. The dynamics of a physical system can be regarded as a graph, in which nodes represent
components and edges represent their interactions. Graph transformation models have been applied
to physical systems to generate possible conditions of the system sequentially [49, 66, 67]. Work in
[68] utilize deep generative models to simulate physically realistic realizations of the cosmic web.
Work in [69] introduces generative models in N-body simulations that pushes closer the ideas of deep
generative models to practical use in cosmology.

209
210
211
212

213

214
215
216
217
218
219

220
221
222
223
224
225
226
227
228
229
230

Table 1: Summary of statistics and types of graphs for different GraphGT datasets. (Note: ‘Y’ stands for
“Yes’, ‘N’ stands for ‘No’, ‘GCS’ stands for ‘Geographic Coordinate System’, ‘2D/3D’ stands for ‘2D or 3D
coordinates under Cartesian Coordinate System’.)

Name ‘ Type #Graphs #Nodes #Edges Attributed Directed Weighted Signed Homogeneous Spatial Temporal ~Labels
QMY [44] Molecules 133,885 ~9 ~19 Y N Y N Y 3D N Y
ZINC250K [45] ‘ Molecules 249,455 ~23 ~ 50 Y N Y N Y 3D N Y
MOSES [46] Molecules 193,696 ~22 ~47 Y N Y N Y 3D N Y
MolOpt [47] ‘ Molecules 229473 ~24 ~53 Y N Y N Y 3D N Y
ChEMBL [48] Molecules 1.799.433 ~27 ~58 Y N Y N Y 3D N Y
ChemReact [31] ‘ Molecules 7,180 ~20 ~16 Y N Y N Y 3D N Y
Protein [30] Proteins 1113 ~39 ~73 Y N N N Y N N Y
Enzyme [28] ‘ Proteins 600 ~33 ~62 Y N N N Y N N Y
ProFold [29] Proteins 76,000 8 ~40 Y N N N Y 3D Y Y
Brain-restingstate [31] ‘ Brain networks 823 68 2274 N N Y Y Y N N Y
Brain-emotion [31] Brain networks 811 68 2278 N N Y Y Y N N Y
Brain-gambling [31] ‘ Brain networks 818 68 2278 N N Y Y Y N N Y
Brain-language [31] Brain networks 816 68 2278 N N Y Y Y N N Y
Brain-motor [31] ‘ Brain networks 816 68 2278 N N Y Y Y N N Y
Brain-relational [31] Brain networks 808 68 2278 N N Y Y Y N N Y
Brain-social [31] ‘ Brain networks 816 68 2278 N N Y Y Y N N Y
Brain-wm [31] Brain networks 812 68 2278 N N Y Y Y N N Y
N-body-charged [49] ‘ Physical simulation networks 3,430,000 25 ~3 Y N N N Y 2D Y Y
N-body-spring [49] Physical simulation networks ~ 3.430,000 5 ~10 Y N N N Y 2D Y Y
CLEVR [50] ‘ Scene graphs 85,000 6 ~40 Y Y Y N Y 3D N N
Skeleton (Kinectics) [51] Skeleton graphs 260,000 18 17 N N N N Y 2D Y Y
Skeleton (NTU-RGB+D) [52] Skeleton graphs 56,000 25 24 N N N N Y 3D Y Y
METR-LA [53] Traffic networks 34272 325 2369 Y Y Y N Y GCS Y Y
PeMS-BAY [54] ‘ Traffic networks 50,112 207 1515 Y Y Y N Y GCS Y Y
AuthNet [41] Authen. networks 114/412 501300 ~3InT N Y Y N Y N N Y
ToTNet [31] ‘ ToT networks 343 20/40/60 ~220/~630/~800 Y N Y N Y N N Y
CollabNet [55) Collab. networks 2,361 303,308 207,632 N N N N Y GCS Y Y
Ego [34] ‘ social networks 757 ~145 ~335 N N N N Y N N N
TwitterNet [56] social networks 2,580 300 05 N N N N Y N N N
Barab’asi-Albert Graphs [31] ‘ Synthetic networks 1,000 20/40/60 ~60/~190/~300 Y N N N Y N N N
Erdos-Renyi Graphs [31] Synthetic networks 1,000 20/40/60 ~100/~200/~400 Y N N N Y N N N
Scale-Free [41] ‘ Synthetic networks 10,000 10/20/50/100/150 20/ 40/ 100/ 200/ 320 N Y N N Y N N N
Community [34] synthetic networks 3,000 64 ~340 N N N N Y N N N
Random Geometric [29] ‘ Synthetic networks 9,600 25 ~350 Y N N N Y Y Y Y
Waxman Graphs [29] Synthetic networks 9,600 25 ~250 Y N N N Y Y Y Y

Dataset Construction. We re-purpose two datasets that have never been tried on graph transformation
tasks prior to our efforts. We start from velocities and coordinates of each particle and merge them
into a single structure with node velocities as node features. Moreover, we extract temporal features
from the temporal array contained in original datasets.

4.2.3 Artificial Intelligence

Motivation. Graph-structured data are widely employed in computer vision, a sub-field of AI. We
store two most common graph-structured data from computer vision in GraphGT which are skeleton
graphs and scene graphs. For example, generating scene graphs is of great importance to understand
the relationship in a scene (i.e. image) [70]. In addition to scene graph generation, generating new
human skeleton graphs also has a wide range of applications in computer vision, graphics and games,
where characters could be generated and interact with human players [71, 72].

Tasks. In a scene graph, objects are represented as nodes and the relationship between pairs of
objects is represented as edges. Graph generation models can be applied to the scene graph to help
the community understand the relationship between objects in a scene, e.g. generating scene graphs
with different relationships (man riding a horse vs. man standing by a horse). In a human skeleton
graph, joints are represented as nodes and skeletons between each pair of joints are represented as
edges. Similarly, graph generation models can be designed for skeleton graph to help the community
approach interactions between human players and characters in a video (e.g. generating Al players
with realistic gestures and movements).

Dataset Construction. We re-purpose one dataset for the scene graph and two datasets for skeleton
graph that have not been used for graph generation tasks. For the scene graph, we start from the
CLEVR dataset containing 10 objects in the image with different 3D locations. Then we form labeled

231
232
233
234

235

236
237

239
240
241

242
243
244
245

246
247
248

249

250
251
252
253
254
255
256
257
258

259
260
261
262
263

264
265
266
267

269
270
271

272

273
274
275
276
277
278
279
280

281
282

284
285
286

directed graphs with different shape of objects as the node feature and relative location between two
objects as the edge feature. For skeleton graphs, we start from video clips of human action datasets,
and then use OpenPose toolbox to generate skeleton with location and joints for each subject. The
temporal information is also recorded and wrapped into our data as the temporal feature.

4.2.4 Chemistry

Motivation. Chemistry is another subject in which graph generation and transformation play critical
roles for generating optimal molecules or predicting products of chemical reactions [20, 31, 73, 74].
The chemical space, drug-like molecules are vast and estimated to 10%° [75]. Generating novel
molecules with desired properties has great potentials in discovering new drugs and materials.
Modeling chemical reactions is another fundamental problem in chemistry which can advance our
understanding of the properties of molecules [73].

Tasks. In a molecular graph, atoms are represented as nodes, and bonds are represented as edges.
Molecular graph generation has numerous applications in drug discovery and [76] material science
[77] to generate optimal molecules. Moreover, learning the transformation from the reactants to the
products can help the community better understand the mechanism of chemical reactions [73].

Dataset Construction. We reformat 6 datasets in chemistry by converting SMILES sequence into
molecular structures. Then the molecular structures are converted into graphs with atoms as nodes
and chemical bonds as edges. Atom and bond type serve as node and edge feature respectively.

4.2.5 Engineering

Motivation For the engineering field, we provide datasets corresponding to two domains, transporta-
tion system and electrical and computer engineering (ECE). First of all, a few graph representation
learning methods such as graph neural networks have been applied to transportation research such as
traffic prediction [78, 39]. In addition to graph representation learning tasks, graph generative models
in machine learning have started experiencing increase in recent years, for tasks like human mobility
generative modeling [79] given that a number of tasks can be formalized into a graph generation or
transformation problem in the field of engineering. The road system can also be considered as graphs
where road segments and interactions are connected, for which the graph generative models can be
employed for generating newly designed networks [80].

Tasks. In internet network, graphs contain nodes representing devices, and edges representing
connection between two devices. The malware confinement over the internet can be treated as a graph
transformation problem to generate optimal status of network that limits malware propagation [31].
Traffic networks contain graphs with nodes as speed sensors and edges as roads. Traffic networks can
be employed with graph generation models for designing new and efficient traffic networks.

Dataset Construction. We reformat the malware dataset by adopting the initial attacked networks
(i.e., the Internet of Things) as the input graphs, with nodes representing devices and edges repre-
senting their connections. Malware confinement status are extracted as node features and distances
between two devices are edge features. We also split the dataset according to their graph sizes for
different graph transformation purposes. We reformat two transportation datasets by extracting them
from LA-Metro and PeMS projects, respectively. We extract sensors as graph nodes an roads as
edges, with traffic speed as the node feature. We also extract GCS spatial features and temporal
features in the dataset.

4.2.6 Social Science

Motivation. Social networks are an important type of graphs where people or other subjects are
connected by relationships such as friendship and co-authorship, and have been widely explored
in social science, statistics, and physics with network (generative) modeling techniques. The ad-
vancement of graph generative models further stimulate the social network research by handling
different aspects of the data. For example, DYMOND achieves graph generation on social networks
by borrowing building blocks of network structure to capture long-range interactions [81]. Another
graph generative model, TagGen, can preserve both structural and temporal information in the process
of modeling interactions in the social network [82].

Tasks. Social networks can be formalized into graphs in which social subjects are nodes and their
relationships are edges. The community network has been used to on graph generative models so that
the relationship between people or community could be modeled and understood [34].

Dataset Construction. We reformat Ego dataset from Citeseer dataset. Nodes represent documents
and edges represent citation relationships. We also re-purpose TwitterNet from [56]. Both datasets do
not have node or edge attributes. We construct from scratch the graphs of CollabNet by selecting

287
288

289

290
291
292
293
294
295

296
297
298

300

301
302
303

304

305

306

307
308
309
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324

326
327

328
329
330
331

333
334
335
336
337
338
339
340
341

authors as nodes and co-authorships as edges. To cut the graphs into pieces, we generate sub-graphs
based on the fields of study of papers. For each field, we generate one spatio-temporal graphs.

4.2.7 Synthetic

Motivation. The limited amount of available data in the real world, especially graph data for specific
geometric properties [83, 84, 85] for graph generation and transformation problems, limits the
advance of the field. Synthetic data is a way to overcome this obstacle and prolong the march of
progress in graph generation and transformation tasks. This motivate us to reformat a few simulated
synthetic datasets in GraphGT to accommodate various needs of the community for evaluating graph
generation and transformation tasks.

Tasks. Synthetic datasets contain graphs corresponding to various geometric properties, including
scale-free graphs, Erdos-Renyi graphs, random geometric graphs and so on. A huge amount of works
regarding graph generation and transformation have been using synthetic datasets to evaluate their
models. NEC-DGT is evaluated with Barab’asi-Albert graphs and Erdos-Renyi graphs [31]. Another
graph transformation model, GT-GAN, is evaluated by scale-free graphs [41].

Dataset Construction. We reformat synthetic datasets by converting the original sparse matrices into
dense matrices, and reshaping them into predefined dimensions. All synthetic datasets are simulated
based on specific geometric properties or laws.

5 Benchmark Experiments

5.1 Graph Generation

5.1.1 Evaluation Metrics

The evaluation of graph generation performance has been widely recognized as a challenging tasks
[34, 37] and there lacks a unified framework that can provide comprehensive evaluation procedures
and metrics. Following the survey of graph generation [7], we enhanced our deployed API with
easy-to-use evaluation tools. The evaluation metrics in GraphGT is elaborated as follows.

In statistics-based evaluation metrics, the quality of the generated graphs is accessed by computing
the distance between the graph statistic distribution of real graphs and generated graphs. In the
deployed API, seven typical graph statistics are considered, which are summarized as follows: (1)
Node degree distribution: the empirical node degree distribution of a graph, which could encode its
local connectivity patterns. (2) Clustering coefficient distribution: the empirical clustering coefficient
distribution of a graph. Intuitively, the clustering coefficient of a node is calculated as the ratio of the
potential number of triangles the node could be part of to the actual number of triangles the node
is part of. (3) Orbit count distribution; the distribution of the counts of node 4-orbits of a graph.
Intuitively, an orbit count specifies how many of these 4-orbits substructures the node is part of. This
measure is useful in understanding if the model is capable of matching higher-order graph statistics,
as opposed to node degree and clustering coefficient, which represent measures of local (or close
to local) proximity. (4) Largest connected component: the size of the largest connected component
of the graphs. (5) Triangle count: the number of triangles counted in the graph. (6) Characteristic
path length: the average number of steps along the shortest paths for all node pairs in the graph.
(7) Assortativity: the Pearson correlation of degrees of connected nodes in the graph. To calculate
the distances regarding the above mentioned statistics, Average Kullback-Leibler Divergence and
Maximum Mean Discrepancy (MMD) are utilized.

In self-quality based evaluation, the quality of the generated graphs, validity, uniqueness and novelty,
are measured. The definition and calculation of the three metrics are provided as follows: (1) Validity:
validity evaluates graphs by judging whether they preserve specific properties. For example, for
cycles graphs/tree graphs, the validity is calculated as the percentage of generated graphs that are
cycles or trees [8]. For molecule graphs, validity is the percentage of chemically valid molecules
based on domain-specific rules [36]. (2) Uniqueness: ideally, high-quality generated graphs should be
diverse and similar, but not identical. Thus, uniqueness is utilized to capture the diversity of generated
graphs [86, 8, 36]. To calculate the uniqueness of a generated graph, the generated graphs that are
sub-graph isomorphic to some other generated graphs are first removed. The percentage of graphs
remaining after this operation is defined as Uniqueness. For example, if the model generates 100
graphs, all of which are identical, the uniqueness is 1/100 = 1%. (3) Novelty. Novelty measures the
percentage of generated graphs that are not sub-graphs of the training graphs and vice versa [86].
Note that identical graphs are defined as graphs that are sub-graph isomorphic to each other. In other
words, novelty checks if the model has learned to generalize unseen graphs.

342

343
344
345
346
347
348
349
350
351
352
353
354
355
356

358
359
360

361

362

363
364
365
366

368
369
370

371
372
373
374
375
376
377
378
379
380

382
383

Table 2: Quantitative evaluation and comparison on spatial network generation tasks by different deep generative
models on graphs (“Deg.” is short for degree distribution. “Clus.” is short for clustering coefficient distribution.
“Orbit.” is short for average orbit counts statistics.).

Method — GraphRNN GraphVAE GraphGMG
Dataset | Deg. (%) Clus. (%) Orbit. (%) | Deg. (%) Clus. (%) Orbit. (%) | Deg. (%) Clus. (%) Orbit. (%)
‘Waxman 1.20 1.74 0.87 120.14 144.22 109.72 26.44 41.58 21.15
Random Geometric 1.09 19.19 2.80 88.27 95.52 102.71 57.12 111.94 71.32
CLEVR 56.89 2.66 61.19 0.00 0.00 0.00 126.96 163.53 180.65
METR-LA 193.11 196.69 165.86 - - - - - -
PeMS-BAY 172.97 173.37 159.68 - - - - - -
ProFold 1.10 0.38 0.09 114.60 109.02 84.78 5.55 44.61 4.55
Skeleton (Kinetics) <107° 0.00 <107° 200.00 200.00 200.00 9.84 0.00 0.06
Skeleton (NTU-RGB+D) | < 1077 0.00 <107° 200.00 200.00 200.00 120.31 0.27 231
CollabNet - - - - - - - - -
N-body-charged 172.93 0.00 0.00 0.00 0.00 0.00 37.83 75.48 2.76
N-body-spring 3.17 1.86 0.02 141.06 123.22 571 127.42 49.46 0.75
Ego 66.44 129.82 64.18 - - - - - -
Community 19.61 55.46 57.09
Protein 2.57 5.27 1.27
Enzyme 0.81 1.64 0.88

5.1.2 Benchmark Results

For graph generation, we benchmark 16 graph generation datasets in GraphGT with GraphRNN
[34], GraphVAE [18], and GraphGMG [8], three common graph generation baselines. The detailed
descriptions of each baseline models can be found in Appendix D. We evaluate the performance of the
graph generative models on three statistics-based metrics, degree distribution, clustering coefficient
distribution and orbit counts statistics. For efficiency problem, GraphVAE and GraphGMG cannot
scale to multiple large datasets, e.g. METR-LA, Protein, Enzyme, etc. Note that the CollabNet is
too large even for GraphRNN to scale. From Table 2, we can observe that GraphRNN outperforms
GraphVAE and GraphGMG in most of the datasets. Notably, GraphRNN takes the advantage of
sequential graph generation which allows scaling to large graphs, while GraphVAE cannot due
to its costly one-shot generation method. Additioanlly, GraphRNN works extraordinarily well on
relatively small graphs datasets, e.g. Profold, N-body, Skeleton, while performs worse on large
graphs like traffic networks. GraphVAE performs very well in two particular datasets which are
CLEVR and N-body-charged which both of them are very small and the simulation processes are
stochastic. GraphGMG performs well in specifically one skeleton graph and one protein dataset
which both of the graph structures are fixed and simple. Additionally, GraphVAE outperforms the
sequence-based models on CLEVR and N-body-charged datasets. We believe that it is easier for an
one-shot generation method to learn topology which is related to spatial locations since it doesn’t
have to learn a sequence-dependent process.

5.2 Graph Transformation

5.2.1 Evaluation Metrics

In Graph-property-based evaluation, we directly compare each generated graph to its target graph
via the following metrics: (1) random-walk kernel similarity by using the random-walk based
graph kernel [87]; (2) combination of Hamming and Ipsen-Mikhailov distances(HIM) [88]; (3)
spectral entropies of the density matrices; (4) eigenvector centrality distance [89]; (5) closeness
centrality distance [90]; (6) Weisfeiler Lehman kernel similarity [91]; (7) Neighborhood Sub-graph
Pairwise Distance Kernel [92] by matching pairs of subgraphs with different radii and distances; (8)
Jensen—Shannon distance, (9) Bhattacharyya distance and (10) Wasserstein distance by measuring
distance of node degrees of two graphs.

In Mapping-relationship-based evaluation, we measure whether the learned relationship between
the input and the generated graphs is consistent with the true relationship between the input and
the real graphs. There are two kinds of relationship to be considered [7]: (1) Explicit mapping
relationship. Considering the situation where the true relationship between the input conditions
and the generated graphs is known in advance, the evaluation can be conducted as follows: we
quantitatively compare the property scores of the generated and input graphs to see if the change
indeed meets the requirement. For example, one can compute the improvement of logP scores from
the input molecule to the optimized molecule in molecule optimization task [93]. (2) Implicit mapping
relationship. When the underlying patterns of the mapping from the input graphs to the real target
graphs are implicit and complex to define and measure, a classifier-based evaluation metric can be
utilized [41]. By regarding the input and target graphs as two classes, it assumes that a classifier that
is capable of distinguishing the generated target graphs would also succeed in distinguishing the real
target graphs from the input graphs. Specifically, a graph classifier is first trained based on the input

384
385

386

387
388
389
390
391
392
393
394
395

397
398
399
400
401
402

404
405
406
407
408

409

410
411
412
413
414
415
416
417
418
419
420
421

Table 3: Quantitative evaluation and comparison on transformation tasks by different deep transformation models
on graphs ("JS-dist." is the Jensen—Shannon distance. "BH-dist." is the Bhattacharyya distance. "WS-dist." is
the Wasserstein distance.).

Method — Interaction Network NEC-DGT
Dataset | JS-dist. (%) BH-dist. (%) WS-dist. (%) | JS-dist. (%) BH-dist. (%) WS-dist. (%)
AuthNet 1.04 0.01 0.33 82.81 95.88 24.59
Barab’asi-Albert Graphs 4.50 0.21 5.12 66.87 59.39 36.84
Brain-restingstate 11.17 1.26 13.26 11.39 1.31 18.24
Brain-emotion 12.63 1.61 15.78 12.83 1.66 12.58
Brain-grambling 12.55 1.59 15.73 12.82 1.66 26.54
Brain-language 12.23 1.51 15.24 12.56 1.60 16.51
Brain-motor 11.88 1.43 14.69 12.14 1.49 31.04
Brain-relational 12.26 1.52 15.23 12.50 1.58 35.62
Brain-social 12.09 1.48 14.97 12.34 1.54 141.58
Brain-wm 12.23 1.51 15.24 12.48 1.58 37.31
Scale-free 1.19 0.01 0.42 79.13 83.00 21.71
TwitterNet 0.01 <1073 <1073 <1073 <1073 6155.10
N-body-charged 0.12 <1073 0.14 4.37 0.21 47.52
N-body-spring 0.05 <1073 0.07 4.50 0.20 53.20
ChemReact 0.94 <1073 0.27 77.84 79.92 0.6714
ToTNet 17.01 3.01 19.32 65.39 55.90 2572.62
MolOpt 0.71 0.01 0.11 82.67 94.89 19.97

and generated target graphs. Then this trained graph classifier is tested to classify the input graph and
real target graphs, and the results will be used as the evaluation metrics.

5.2.2 Benchmark Results.

Here, 17 transformation datasets are benchmarked for graph transformation tasks in GraphGT. Two
state-of-the-art graph transformation models, Interaction network (IN) [38] and Node-Edge Co-
evolving Deep Graph Translator (NEC-DGT) [31] are borrowed to analyze these datasets. Three
metrics, Jensen—Shannon distance, Bhattacharyya distance and Wasserstein distance, are used to
measure the distance between the distribution of generated graphs and target graphs. Details regarding
the experimental settings can be found in Appendix D. We find that two models have a close
performance regarding graph transformation on most datasets. This is not surprising since two models
follow similar philosophies to handle node interactions in the graph. With the Interaction Network, the
smallest Jensen—Shannon and Bhattacharyya distance are achieved on TwitterNet, which is aligned
with NEC-DGT. TwitterNet also has the closest Wasserstein distance, whether Brain-emotion has
the closest Wasserstein distance for NEC-DGT. This difference might originate from the capacity
to handle node or edge features of two models, or different hyper-parameter settings. Interaction
Networks can handle edge attributes, which are available for Brain-emotion dataset but not for
TwitterNet dataset, whereas NEC-DGT can handle both node and edge attributes, neither of which are
available for TwitterNet. We also find that, for the same model, datasets from different domains have
different performances. We observe a relatively large distances regarding three metrics for 8 brain
network datasets compared with most other datasets when being evaluated by Interaction Network.
However, these 8 datasets have a relatively smaller distance when being evaluated by NEC-DGT.
This reflects the complexity of the brain network domain [94] that needs more advanced models to be
handled, such as NEC-DGT. N-body-charged and N-body-spring datasets have a generally smaller
distances compared with most other datasets when being evaluated by both models. This results from
the relatively small graph size in physical simulation domain (Table 3).

6 Conclusion

We introduce GraphGT, a large dataset collection for graph generation and transformation problems.
GraphGT covers datasets in 9 domains across 6 subjects, in which CollabNet dataset and 7 brain
network datasets are collected and constructed from scratch for graph generation and transformation.
Another 8 datasets are re-purposed by us from other applications into graph generation and trans-
formation tasks for the first time. The remaining are from very different domains that share quite
different terminology, formats, and data structures, which are reformatted by us to a unified format
for the first time for easy access and use in a standardized manner. In addition, we provide 3 types of
Python APIs, including dataset downloader, graph generation data processor, graph transformation
data processor and evaluator, for users to query and access datasets according to specific disciplines,
domains and applications per their interests. Finally, we provide 16 graph generation benchmark
results and 17 graph transformation benchmark results We believe that GraphGT can advance the
community to address significant challenges in graph generation and transformation.

10

422

423
424

425
426

427
428
429
430

431
432

433
434
435
436

437
438

439
440

441
442

443
444
445

446
447

448
449

450
451

452
453
454

455
456
457

458

460

461
462
463

464
465
466

467
468

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. [EEE
Transactions on Knowledge and Data Engineering, 2020.

Fenxiao Chen, Yun-Cheng Wang, Bin Wang, and C-C Jay Kuo. Graph representation learning:
A survey. APSIPA Transactions on Signal and Information Processing, 9, 2020.

Pierre Latouche and Fabrice Rossi. Graphs in machine learning: an introduction. In European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
(ESANN), Proceedings of the 23-th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning (ESANN 2015), pages 207-218, 2015.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs:
Methods and applications. arXiv preprint arXiv:1709.05584, 2017.

Yanqgiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph Con-
trastive Learning with Adaptive Augmentation. In Proceedings of The Web Conference 2021,
WWW ’21, pages 2069-2080, New York, NY, USA, April 2021. Association for Computing
Machinery.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogcl:
Information-aware graph contrastive learning. In NeurIPS, 2021.

Xiaojie Guo and Liang Zhao. A systematic survey on deep generative models for graph
generation. arXiv preprint arXiv:2007.06686, 2020.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep
generative models of graphs. arXiv preprint arXiv:1803.03324, 2018.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701-710, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node classification in social networks.
In Social network data analytics, pages 115—148. Springer, 2011.

David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks.
Journal of the American society for information science and technology, 58(7):1019-1031,
2007.

Tianyu Xia, Yijun Gu, and Dechun Yin. Research on the link prediction model of dynamic
multiplex social network based on improved graph representation learning. IEEE Access,
9:412-420, 2020.

Dongkuan Xu, Junjie Liang, Wei Cheng, Hua Wei, Haifeng Chen, and Xiang Zhang.
Transformer-style relational reasoning with dynamic memory updating for temporal network
modeling. In AAAI volume 35, pages 4546-4554, 2021.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian B Fuchs, Ingmar Posner, and Max
Welling. E (n) equivariant normalizing flows for molecule generation in 3d. arXiv preprint
arXiv:2105.09016, 2021.

Kristof T Schiitt, Pieter-Jan Kindermans, Huziel E Sauceda, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Miiller. Schnet: A continuous-filter convolutional neural
network for modeling quantum interactions. arXiv preprint arXiv:1706.08566, 2017.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs
using variational autoencoders. In ICANN’2018, pages 412-422, 2018.

11

469
470

471
472

473
474
475

476
477
478

479
480
481

482
483

484
485
486

487
488

489
490
491

492

494

495
496
497

498
499

500
501
502
503

504
505
506

507
508

509
510

511
512

513
514

[19] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular
graphs. ICML’2018 Workshop, 2018.

[20] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In ICML’2018, pages 2323-2332, 2018.

[21] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40-48. PMLR,
2016.

[22] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang.
Netsmf: Large-scale network embedding as sparse matrix factorization. In The World Wide
Web Conference, pages 1509—-1520, 2019.

[23] Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W
Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: machine
learning datasets and tasks for therapeutics. arXiv preprint arXiv:2102.09548, 2021.

[24] Faezeh Faez, Yassaman Ommi, Mahdieh Soleymani Baghshah, and Hamid R Rabiee. Deep
graph generators: A survey. IEEE Access, 9:106675-106702, 2021.

[25] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513-530, 2018.

[26] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[27] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[28] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor
Huhn, and Dietmar Schomburg. Brenda, the enzyme database: updates and major new
developments. Nucleic acids research, 32(suppl_1):D431-D433, 2004.

[29] Xiaojie Guo, Yuanqi Du, and Liang Zhao. Deep generative models for spatial networks. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 505-515, 2021.

[30] Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes
without alignments. Journal of molecular biology, 330(4):771-783, 2003.

[31] Xiaojie Guo, Liang Zhao, Cameron Nowzari, Setareh Rafatirad, Houman Homayoun, and
Sai Manoj Pudukotai Dinakarrao. Deep multi-attributed graph translation with node-edge
co-evolution. In 2019 IEEE International Conference on Data Mining (ICDM), pages 250-259.
IEEE, 2019.

[32] Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular
graphs. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 617-626, 2020.

[33] Meng Liu, Keqgiang Yan, Bora Oztekin, and Shuiwang Ji. Graphebm: Molecular graph
generation with energy-based models. arXiv preprint arXiv:2102.00546, 2021.

[34] Jiaxuan You, Rex Ying, and Xiang Ren et al. Graphrnn: generating realistic graphs with deep
auto-regressive models. In ICML’2018, pages 5708-5717, 2018.

[35] Chence Shi, Minkai Xu, and Zhaocheng Zhu et al. Graphaf: a flow-based autoregressive model
for molecular graph generation. 2020.

[36] Mariya Popova, Mykhailo Shvets, and Junier Oliva et al. Molecularrnn: generating realistic
molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019.

12

http://snap.stanford.edu/data

515
516

517
518
519

520
521

522

523
524

525
526
527

528
529
530

531
532
533

534
535
536

537
538
539
540

541
542

543
544
545

553
554
555

556
557
558

559
560
561

[37] Youzhi Luo, Keqgiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular
graph generation. arXiv preprint arXiv:2102.01189, 2021.

[38] Peter W Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu.
Interaction networks for learning about objects, relations and physics. arXiv preprint
arXiv:1612.00222, 2016.

[39] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

[40] Namrata Anand and Possu Huang. Generative modeling for protein structures. 2018.

[41] Xiaojie Guo, Lingfei Wu, and Liang Zhao. Deep graph translation. arXiv preprint
arXiv:1805.09980, 2018.

[42] Lukasz Maziarka, Agnieszka Pocha, Jan Kaczmarczyk, Krzysztof Rataj, Tomasz Danel, and
Michat Warchol. Mol-cyclegan: a generative model for molecular optimization. Journal of
Cheminformatics, 12(1):1-18, 2020.

[43] Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An
unsupervised differentiable approach. In International Conference on Learning Representa-
tions, 2018.

[44] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1-7,
2014.

[45] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman.
Zinc: a free tool to discover chemistry for biology. Journal of chemical information and
modeling, 52(7):1757-1768, 2012.

[46] Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov,
Oktai Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy,
Mark Veselov, et al. Molecular sets (moses): a benchmarking platform for molecular generation
models. Frontiers in pharmacology, 11:1931, 2020.

[47] Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal
graph-to-graph translation for molecular optimization. arXiv preprint arXiv:1812.01070, 2018.

[48] David Mendez, Anna Gaulton, A Patricia Bento, Jon Chambers, Marleen De Veij, Eloy Félix,
Maria Paula Magarifios, Juan F Mosquera, Prudence Mutowo, Michat Nowotka, et al. Chembl:
towards direct deposition of bioassay data. Nucleic acids research, 47(D1):D930-D940, 2019.

[49] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems. In International Conference on Machine Learning,
pages 2688-2697. PMLR, 2018.

[50] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2901-2910, 2017.

[51] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human
action video dataset. arXiv preprint arXiv:1705.06950, 2017.

[52] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+ d: A large scale dataset
for 3d human activity analysis. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1010-1019, 2016.

[53] Hosagrahar V Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou,
Jignesh M Patel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and its technical
challenges. Communications of the ACM, 57(7):86-94, 2014.

13

562
563

564
565
566

567
568
569

570
571

572

574
575
576

577
578

579
580

581

583
584
585

586

588

589
590

591

593

594
595
596

597
598
599
600

601

603

604
605
606

608
609

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

Chao Chen. Freeway performance measurement system (PeMS). University of California,
Berkeley, 2002.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extrac-
tion and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 990-998, 2008.

Yuyang Gao and Liang Zhao. Incomplete label multi-task ordinal regression for spatial event
scale forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

John Ingraham, Vikas K Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for
graph-based protein design. 2019.

Pawet SledZ and Amedeo Caflisch. Protein structure-based drug design: from docking to
molecular dynamics. Current opinion in structural biology, 48:93-102, 2018.

Yuangqi Du, Xiaojie Guo, Amarda Shehu, and Liang Zhao. Interpretable molecule generation
via disentanglement learning. In Proceedings of the 11th ACM International Conference on
Bioinformatics, Computational Biology and Health Informatics, pages 1-8, 2020.

Xiaojie Guo, Yuangi Du, and Liang Zhao. Property controllable variational autoencoder via
invertible mutual dependence. In International Conference on Learning Representations, 2020.

Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein
design. Nature, 537(7620):320-327, 2016.

Danielle S Bassett and Olaf Sporns. Network neuroscience. Nature neuroscience, 20(3):353—
364, 2017.

Alexey Strokach, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M Kim.
Fast and flexible protein design using deep graph neural networks. Cell Systems, 11(4):402—
411, 2020.

Xiaojie Guo, Sivani Tadepalli, Liang Zhao, and Amarda Shehu. Generating tertiary protein
structures via an interpretative variational autoencoder. arXiv preprint arXiv:2004.07119,
2020.

Taseef Rahman, Yuangi Du, Liang Zhao, and Amarda Shehu. Generative adversarial learning
of protein tertiary structures. Molecules, 26(5):1209, 2021.

Masanobu Horie, Naoki Morita, Toshiaki Hishinuma, Yu Ihara, and Naoto Mitsume. Isomet-
ric transformation invariant and equivariant graph convolutional networks. arXiv preprint
arXiv:2005.06316, 2020.

Ali Hariri, Darya Dyachkova, Sergei Gleyzer, Mariette Awad, Daria Morozova, and Pangea
Formazione. Graph generative models for fast detector simulations in particle physics. In
Machine Learning and the Physical Sciences Workshop atNeurIPS, volume 1, pages 1-6, 2020.

Andres C Rodriguez, Tomasz Kacprzak, Aurelien Lucchi, Adam Amara, Raphael Sgier,
Janis Fluri, Thomas Hofmann, and Alexandre Réfrégier. Fast cosmic web simulations with
generative adversarial networks. Computational Astrophysics and Cosmology, 5(1):1-11,
2018.

Nathana¢l Perraudin, Ankit Srivastava, Aurelien Lucchi, Tomasz Kacprzak, Thomas Hofmann,
and Alexandre Réfrégier. Cosmological n-body simulations: a challenge for scalable generative
models. Computational Astrophysics and Cosmology, 6(1):1-17, 2019.

Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph r-cnn for scene
graph generation. In Proceedings of the European conference on computer vision (ECCV),
pages 670-685, 2018.

Sijie Yan, Zhizhong Li, Yuanjun Xiong, Huahan Yan, and Dahua Lin. Convolutional sequence
generation for skeleton-based action synthesis. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4394-4402, 2019.

14

610
611
612

613
614
615

616
617

618
619
620

621
622

623
624

625
626

627
628
629
630

631

633

634
635

637
638

639
640

641
642

643
644

645
646

647
648

649
650

651
652

653
654

[72] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros. Everybody dance now. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5933-5942,
2019.

[73] Kien Do, Truyen Tran, and Svetha Venkatesh. Graph transformation policy network for chemi-
cal reaction prediction. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 750-760, 2019.

[74] Dai Hai Nguyen and Koji Tsuda. A generative model for molecule generation based on
chemical reaction trees. arXiv preprint arXiv:2106.03394, 2021.

[75] Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration
of 166 billion organic small molecules in the chemical universe database gdb-17. Journal of
chemical information and modeling, 52(11):2864-2875, 2012.

[76] Gisbert Schneider. Automating drug discovery. Nature reviews drug discovery, 17(2):97-113,
2018.

[77] Benjamin Sanchez-Lengeling and Aldn Aspuru-Guzik. Inverse molecular design using machine
learning: Generative models for matter engineering. Science, 361(6400):360-365, 2018.

[78] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A
deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

[79] Liming Zhang, Liang Zhao, Shan Qin, Dieter Pfoser, and Chen Ling. Tg-gan: Continuous-time
temporal graph deep generative models with time-validity constraints. In Proceedings of the
Web Conference 2021, WWW °21, page 2104-2116, New York, NY, USA, 2021. Association
for Computing Machinery.

[80] James Jian Qiao Yu and Jiatao Gu. Real-time traffic speed estimation with graph convolutional
generative autoencoder. IEEE Transactions on Intelligent Transportation Systems, 20(10):3940—
3951, 2019.

[81] Giselle Zeno, Timothy La Fond, and Jennifer Neville. Dymond: Dynamic motif-nodes network
generative model. In Proceedings of the Web Conference 2021, pages 718-729, 2021.

[82] Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. A data-driven graph genera-
tive model for temporal interaction networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 401-411, 2020.

[83] Béla Bollobds and Oliver M Riordan. Mathematical results on scale-free random graphs.
Handbook of graphs and networks: from the genome to the internet, pages 1-34, 2003.

[84] Albert-Lasz16 Barabasi and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509-512, 1999.

[85] Sergey I Nikolenko et al. Synthetic data for deep learning. arXiv preprint arXiv:1909.11512,
3,2019.

[86] Kaushalya Madhawa, Katushiko Ishiguro, and Kosuke Nakago et al. Graphnvp: An invertible
flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

[87] U Kang, Hanghang Tong, and Jimeng Sun. Fast random walk graph kernel. In SDM’2012,
pages 828-838, 2012.

[88] Giuseppe Jurman, Roberto Visintainer, and Michele Filosi et al. The him glocal metric and
kernel for network comparison and classification. In DSAA’2015, pages 1-10, 2015.

[89] Phillip Bonacich. Power and centrality: A family of measures. American journal of sociology,
92(5):1170-1182, 1987.

[90] Linton C Freeman. Centrality in social networks conceptual clarification. Social networks,
1(3):215-239, 1978.

15

655
656

657
658

659
660

661
662

663
664

665
666

667
668

669
670
671
672

673
674

675
676
677
678

679
680
681
682

683

685
686
687

688
689

690
691
692

693
694

695
696

697
698
699

700
701

[91] Nino Shervashidze, Pascal Schweitzer, and Erik Jan Van Leeuwen et al. Weisfeiler-lehman
graph kernels. Journal of Machine Learning Research, 12(77):2539-2561, 2011.

[92] Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. Graphgen: a scalable approach to
domain-agnostic labeled graph generation. In WWW’20, pages 1253-1263, 2020.

[93] Jiaxuan You, Bowen Liu, and Zhitao Ying et al. Graph convolutional policy network for
goal-directed molecular graph generation. In NeurIPS’2018, pages 6410-6421, 2018.

[94] Alex Fornito, Andrew Zalesky, and Edward Bullmore. Fundamentals of brain network analysis.
Academic Press, 2016.

[95] M. Lowe D. Patent reaction extraction: downloads; https://bitbucket.org/dan2097/ patent-
reaction-extraction/downloads., 2014.

[96] Mark Jenkinson, Christian F Beckmann, TE Behrens, Mark W Woolrich, and Stephen M
Smith. Neuroimage. Fsl, 62(2):782-790, 2012.

[97] Alexander D Kent. Comprehensive, multi-source cyber-security events data set. Technical
report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2015.

[98] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and
Richard B Brown. Mibench: A free, commercially representative embedded benchmark suite.
In Proceedings of the fourth annual IEEE international workshop on workload characteriza-
tion. WWC-4 (Cat. No. 01EX538), pages 3—14. IEEE, 2001.

[99] John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer Architec-
ture News, 34(4):1-17, 2006.

[100] Hossein Sayadi, Nisarg Patel, Sai Manoj PD, Avesta Sasan, Setareh Rafatirad, and Houman
Homayoun. Ensemble learning for effective run-time hardware-based malware detection: A
comprehensive analysis and classification. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), pages 1-6. IEEE, 2018.

[101] Sai Manoj Pudukotai Dinakarrao, Hossein Sayadi, Hosein Mohammadi Makrani, Cameron
Nowzari, Setareh Rafatirad, and Houman Homayoun. Lightweight node-level malware detec-
tion and network-level malware confinement in iot networks. In 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 776—781. IEEE, 2019.

[102] Hossein Sayadi, Hosein Mohammadi Makrani, Sai Manoj Pudukotai Dinakarrao, Tinoosh
Mohsenin, Avesta Sasan, Setareh Rafatirad, and Houman Homayoun. 2smart: A two-stage
machine learning-based approach for run-time specialized hardware-assisted malware detec-
tion. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
728-733. IEEE, 2019.

[103] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. Al magazine, 29(3):93-93, 2008.

[104] Yuyang Gao, Liang Zhao, Lingfei Wu, Yanfang Ye, Hui Xiong, and Chaowei Yang. Incomplete
label multi-task deep learning for spatio-temporal event subtype forecasting. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 3638-3646, 2019.

[105] Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17-60, 1960.

[106] Bernard M Waxman. Routing of multipoint connections. IEEE journal on selected areas in
communications, 6(9):1617-1622, 1988.

[107] Matt J Kusner, Brooks Paige, and José Miguel Hernandez-Lobato. Grammar variational
autoencoder. In International Conference on Machine Learning, pages 1945-1954. PMLR,
2017.

[108] Qi Liu, Miltiadis Allamanis, and Marc Brockschmidt et al. Constrained graph variational
autoencoders for molecule design. In NeurIPS’2018, pages 7795-7804, 2018.

16

702
703

704
705

706
707

708
709

710
71

[109] Shion Honda, Hirotaka Akita, and Katsuhiko Ishiguro et al. Graph residual flow for molecular
graph generation. arXiv preprint arXiv:1909.13521, 2019.

[110] Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via
regularizing variational autoencoders. In NeurIPS’2018, pages 7113-7124, 2018.

[111] Daniel Flam-Shepherd, Tony Wu, and Alan Aspuru-Guzik. Graph deconvolutional generation.
arXiv preprint arXiv:2002.07087, 2020.

[112] Dongmian Zou and Gilad Lerman. Encoding robust representation for graph generation. In
IJCNN’2019, pages 1-9, 2019.

[113] Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of
graphs. In International conference on machine learning, pages 2434-2444. PMLR, 2019.

17

712

713

714
715
716

717

718
719
720

721

722
723
724
725

726

727
728
729

731
732

733

734
735
736
737
738

739

740
741
742
743
744
745
746

747

748
749
750
751
752
753
754
755
756
757

759

760

A Key Information about GraphGT

A.1 Dataset Documentation

We provide detailed documentation of dataset collection, processing, task for each dataset both in
section C and in our website. We provide statistics, taxonomy, detailed description, and task for each
dataset and can be tracked in our website https://graphgt.github.io/.

A.2 Intended Use

GraphGT is intended for the deep graph learning as well as specific domain (e.g. physics, biology,
chemistry, etc.) community to use and develop machine learning algorithms to advance applications
in various domains.

A3 URLs

Official website (https://graphgt.github.io/) contains all references of GraphGT, including
dataset taxonomy, task, evaluation, visualization, tutorials, papers, GitHub, and other useful resources.

GitHub repository (https://github. com/yuanqgidu/GraphGT) hosts all source codes, installation
instructions, and tutorials of GraphGT.

A.4 Hosting and Maintenance Plan

Our GraphGT Python library is regularly maintained and version-tracked via GitHub. All datasets are
currently hosted on Dropbox and will be transferred to Emory University server soon. Our dataset is
both directly downloadable with a Dropbox link or from our Python APIs. Our core team commit
to maintain this initiative for at least five years. In the meantime, we will expand the community in
multiple dimensions and attract external contributors from the whole community. We will regularly
update new dataset, task, evaluation and visualization methods to GraphGT.

A.5 Limitations

Graph generation and transformation is a fast-growing, vast, and promising field and their applications
cover a wide range of applications. We start this initiative to build the infrastructure for the community
which includes most of the mainstream datasets in the graph generation and transformation field and
many more new datasets. However, it is an ongoing effort and we strive to continuously include more
datasets, evaluation and visualization methods to advance the field.

A.6 Potential Negative Societal Impacts

Graph generation and transformation are motivated by generating novel graph-structured data and
understanding the graph-structured data; thus, they have vast applications, such as drug discovery,
protein design, mobility synthesis, etc., which could potentially lead to better designed drug, traffic
network, etc., and save lives, time, etc. We envision that GraphGT can facilitate algorithmic
and scientific advances in various domains across subjects and accelerate machine learning model
development and application for real-world use. GraphGT neither involves human subject research
nor contains personally identifiable information.

B Dataset Format

We store each of the dataset in a Numpy? array format. For different datasets with different information
available as shown in Table 1. For all the datasets, each has at most five types of features available
including adjacency matrices, node features, edge features, spatial features, and labels. Among
all the features, adjacency matrices denote the edge connections between pairs of nodes, node
features denote features attaching to each node, edge features denote features attaching to each edge
connection, spatial features denote the spatial geometry of a graph (in most of the cases, they are
coordinates attaching to each node), labels denote either node-level or graph-level labels of a graph.
For temporal graphs, we store two versions of the graphs, which one flattens and shuffles all the
snapshots of the temporal graphs, and the other one keeps the temporal dimension and order. For
graph transformation datasets, we store both the source and the target graph and available features
separately.

C Dataset Details

We list detailed information for each of the datasets in GraphGT.

3https://numpy.org/doc/

18

https://graphgt.github.io/
https://graphgt.github.io/
https://github.com/yuanqidu/GraphGT

764

774

784

794

804

811

814
815
816
817

C.1 Molecules

We have 6 molecule datasets, in which 4 (QM9 [44], ZINC250K [45], MOSES [46], ChEMBL [48])
for graph generation and 2 (MolOpt [47], ChemReact [31]) for graph transformation. For all of the
molecule datasets, we store adjacency matrix, node feature (i.e. atoms), edge feature (i.e. bonds),
spatial feature (i.e. geometry), and smiles (i.e. string representation). There are in total 4 types of
atoms in QM9,0=H, 1 =C,2 =N, 3 =0, 4 =F. There are in total 14 types of atoms in ZINC250K
dataset, MOSES, and ChEMBL dataset, 0=Br, 1 =C,2=Cl,3=F,4=H,5=1,6=N,7=N, 8=
N,9=0,10=0, 11 =S, 12 =S, 13 = S. There are in total 4 types of bonds in all the datasets, and
we represent them as follows: 0 = Single, 1 = Double, 2 = Triple, 3 = Aromatic.

QM9 [44] dataset is an enumeration of around 134,000 stable organic molecules with up to 9 heavy
atoms (carbon, oxygen, nitrogen and fluorine). As no filtering is applied, the molecules in this dataset
only reflect basic structural constraints. In QM9 dataset, each graph contains approximately 9 nodes
and 19 edges. A node in QM9 represents an atom with atom type as the node feature. An edge
in QM9 dataset represents a bond in the molecule with bond type as the edge feature. Moreover,
QMY dataset contains the 3D spatial feature for each graph. In GraphGT, the QM9 dataset has been
reformatted as adj.npy, edge_feat.npy, label.npy, node_feat.npy and spatial.npy that contain molecular
structure information, node features, edge features and spatial features.

The information of QM0 is initially stored in .xyz files separately for each molecule. We use Python
to process the SMILE of each molecule and convert the molecule graph to Numpy formats.

ZINC250K [45] dataset is a curated set of 250k commercially available drug-like chemical com-
pounds. On average, these molecules are bigger (about 23 heavy atoms) and structurally more
complex than the molecules in QM9 dataset. Each graph in ZINC250K dataset contains approxi-
mated 23 nodes and 50 edges. In ZINC250K dataset, each node represents an atom, with atom type
as the node feature. An edge in 250K dataset represents a bond in the molecule with bond type as
the edge feature. 250K dataset also contains 3D spatial feature for each graph. In GraphGT, the
ZINC250K dataset has been reformatted as adj.npy, edge_feat.npy, label.npy, node_feat.npy and
spatial.npy that contain molecular structure information, node features, edge features and spatial
features.

ZINC dataset is stored in one .csv file including 249,455 molecules. After reading the data by Python,
we process the SMILE of each molecule to convert the data to a graph. And all the graphs are saved
in .npy format.

Molecular Sets (MOSES) [46] is a benchmark platform for distribution learning based molecule
generation. Within this benchmark, MOSES provides a cleaned dataset of molecules that are ideal of
optimization. It is processed from the ZINC Clean Leads dataset, and contains 193,696 molecules in
total. Each graph in the dataset contains around 22 nodes and 47 edges. In MOSES dataset, each
node represents an atom, with atom type as the node feature. An edge in MOSES dataset represents
the bond in the molecule with bond type as the edge feature. MOSES datasets also contains 3D
spatial features.

The data is originally stored in a .txt file. We first read the data and then process the SMILE of the
molecule based on the Python rdkit library. The final data format is saved as .npy files.

ChEMBL [48] dataset is a manually curated database of bioactive molecules with drug-like properties.
It brings together chemical, bioactivity and genomic data to aid the translation of genomic information
into effective new drugs. ChEMBL contains 1,799,433 graphs in total. Each graph in the dataset
contains around 27 nodes and 58 edges. In ChEMBL dataset, each node represents an atom, with
atom type as the node feature. An edge in ChEMBL dataset represents the bond in the molecule with
bond type as the edge feature. This datasets also contains 3D spatial features.

ChEMBL is originally stored in a .txt file containing all the molecules. We first read the data and
then process the SMILE of the molecule based on the Python rdkit library. The final data format is
saved as .npy files.

MolOpt [47] dataset extracts translation pairs from the ZINC database in terms of three molecular
properties, Penalized logP, Drug-likeness, and Dopamine Receptor. MolOpt contains 229,473 pairs
of graphs in total. Each graph in the dataset contains around 24 nodes and 53 edges. In MolOpt
dataset, each node represents an atom, with atom type as the node feature. An edge in ChEMBL
dataset represents the bond in the molecule with bond type as the edge feature. This datasets also
contains 3D spatial features.

This dataset is originally stored in several .csv files and the format of the dataset has been preprocessed.
We read the .csv files and convert the SMILE molecules to graphs and then save them as .npy files.

19

818
819
820
821
822

823
824
825
826
827
828

829
830

831
832

833

834

844

854

859
860
861
862

863

864
865
866
867
868
869
870
871

ChemReact [31] dataset has totally 7180 pairs of reactant and product molecule graph in the dataset
derived from USPTO dataset. Each graph in the dataset contains around 20 nodes and 16 edges. In
ChemReact dataset, each node represents an atom, with atom type as the node feature. An edge in
ChemReact dataset represents the bond in the molecule with bond type as the edge feature. This
datasets also contains 3D spatial features. [95].

Chemical Reaction dataset is originally stored in several .txt files. The first step for processing the
data is to aggregate data from different sources. Then we convert the SMILE of molecules to graph
formats, and then save them in .npy files.

C.1.1 License

QM?9: CC BY-NC-SA 4.0.

ZINC250K: Free to use for everyone.

MOSES: The dataset is generated by [46], which is under MIT License. The license of the dataset is
not specified.

ChEMBL: CC BY-NC-SA 3.0.

MolOpt: Extracted from ZINC Database.

ChemReact: Not specified.

C.2 Proteins

We have three protein datasets available in GraphGT, which includes protein structures, Enzyme and
dynamic protein folding process.

Protein [30] dataset contains 918 protein graphs. Each protein is represented by a graph in Protein
dataset, where nodes are amino acids and two nodes are connected if they are less than 6 Angstroms
apart. Proteins dataset contains 1,113 graphs in total. Each graph in the dataset contains around 39
nodes and 73 edges. Node feature is contained in the dataset representing the type of amino acids.
Protein dataset can be used for attributed graph generation.

Protein dataset is originally stored in several .txt files with the unit of node. We read all .txt files to
generate graphs, convert them to Numpy arrays and save them in .npy format.

Enzyme [28] dataset contains protein tertiary structures representing 600 Enzyme. Nodes in a graph
(protein) represent secondary structure elements, and two nodes are connected if the corresponding
elements are interacting. The node labels indicate the type of secondary structure, which is either
helices, turns, or sheets. Each graph in the dataset contains around 33 nodes and 62 edges. The node
features in the graph represent type of amino acids. This dataset can be employed for attributed graph
generation.

Enzyme dataset is originally stored in several .txt files with the unit of node. We read all .txt files to
generate graphs, convert them to Numpy arrays and save them in .npy format.

ProFold [29] dataset contains dynamic folding processes of a protein peptide with sequence
AGAAAAGA in 38 steps. ProFold contains 76,000 graphs in total. Each graph has 8 nodes
and around 40 edges. The node represents amino acid of the protein, and the edge represent the bond
between amino acids. The node feature of each protein is the sequence (AGAAAAGA) along with
the spatial locations of each amino acid, and the edge feature of each protein is an adjacency matrix
constructed by connecting all pairs of nodes with distance < 8 A. This dataset can be used for either
attributed graph generation or temporal graph generation.

C.2.1 License

Enzyme: CC-BY-4.0.

ProFold: The dataset is collected by [29]. The license is not specified.
Protein: CC-BY-4.0.

C.3 Brain Networks

The Brain dataset comes from the human connectome project (HCP) [31] and has a few branches:
restingstate, emotion, gambling, language, motor, relational, social and wm according to different
tasks. In this dataset, the source graphs reflect the structural connectivity (SC), and the target graphs
represent the functional connectivity [31]. Specifically, both types of connectivities are processed
from the magnetic resonance imaging (MRI) data from HCP. SC is obtained by applying probabilistic
tracking on the diffusion MRI data by Probtrackx tool from the FMRIB Software Library [96] with
68 regions of insterest (ROI). The edge attributes of FC are defined as Pearson’s correlation between
two ROIs blood oxygen level-dependent time obtained from the resting-state functional MRI data.

20

872
873
874
875
876

877

879
880
881
882
883
884
885
886

888
889
890
891
892
893
894

895

896

898
899
900
901
902
903

905

906
907
908
909
910
911
912
913
914
915
916
917
918
919

Node attributes is a one-hot vector representing index of each node. In total, 823 pairs of SC and
FC samples are enrolled in the dataset. The dataset has been splitted into 8 categories for 8 specific
domains, including Brain-restingstate, Brain-emotion, Brain-gambling, Brain-language, Brain-motor,
Brain-relational, Brain-social and Brain-wm. All of these datasets can be employed for eight weighted
graph transformation or signed graph transformation tasks.

Originally, data is a group of .npz files, containing the structural connectivities for each subject,
functional connectivities for each subject, and list of subject IDs for each task using different
correlations. Unfortunately, the subjects used are not universal for all tasks, and so we eliminate
all but those that appeared in every single task. From there, we simply concatenate all of the
functional connectivities from all of the various tasks using FC correlation, and concatenated all
of the structural connectivities from all of the various tasks using FC correlation, thus creating
FC_concatenated_edge_feat and SC_concatenated_edge_feat. For the adjacency matrix containing
.npy arrays, we encounter a small issue; the adjacency matrix is required to be formatted with a
specific shape, but that shape is not compatible with the edge feature shape, and so we make the
adjacency matrix a placeholder basically. For details please refer to readme.txt.

C.3.1 License

Brain: This dataset comes from the human connectome project. Data collection and sharing for this
project was provided by the MGH-USC Human Connectome Project (HCP; Principal Investigators:
Bruce Rosen, M.D., Ph.D., Arthur W. Toga, Ph.D., Van J. Weeden, MD). HCP funding was provided
by the National Institute of Dental and Craniofacial Research (NIDCR), the National Institute of
Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS).
HCP data are disseminated by the Laboratory of Neuro Imaging at the University of Southern
California.

C.4 Physical Simulations

N-body-charged [49] dataset simulates a system containing 5 particles with positive or negative
charges. Particles are located in 2D coordinates without any external forces except attracting force
and repelling force. The quantity of electrical charges is sampled from uniform probability. Each
particle interacts via Coulomb forces. Every two particles interact, either attract or repel each other.
The temporal length of each sequence is 49, which obtains from sub-sampling every 100 steps in
a trajectory. N-body-charged dataset contains 3,430,000 graphs in total, each of which contains 25
nodes with around 3 edges. Each node represents a particle and each edge represents interaction
between nodes. Node attribute represents node input. 2d spatial features and temporal are included
in the dataset. N-body-charged can be used for either attributed graph transformation, spatial graph
transformation or temporal graph transformation.

Originally, for the charged dataset, there are separate numpy files for the velocities, edges, and
locations of each particle for train, validation, and testing. Then, all velocity arrays(train, valid, test)
for the charged dataset were merged into a single one, and the same was done for all of the location
arrays, and all of the edge arrays. To convert the charged edge features into adjacency matrices, all
nonzero values were turned to ones, and since all particles had some form of connection, that meant
all adjacency matrices ended up being all ones for the charged dataset. Then, for each new temporal
array we had here, we created a new version: a non-temporal one, where we concatenated the first
two dimensions of the array, as the second dimension represented the different temporal instances.
For details information, please refer to readme.txt.

N-body-spring [49] dataset simulates a system containing 5 particles connected by springs. Particles
are located in 2D coordinates without any external forces except elastic collisions. Particles are
connected via springs with probability of 0.5, and interactions between springs follow Hooke’s law.
The initial location of each particle is sampled from a Gaussian distribution and the initial velocity of
each particle is a random vector of norm 0.5. The trajectories of all springs are calculated by solving
Newton’s equations of motion PDE. The temporal length of each sequence is 49, which obtains from
sub-sampling every 100 steps in a trajectory. N-body-spring dataset contains 3,430,000 graphs in
total, each of which contains 5 nodes with around 10 edges. Each node represents a particle and each
edge represents interaction between nodes. Node attribute represents node input. 2D spatial features
and temporal features are included in the dataset. N-body-spring can be used for either attributed
graph transformation, spatial graph transformation or temporal graph transformation.

Originally, for the spring dataset, there were separate numpy files for the velocities, edges, and
locations of each particle for train, validation, and testing. There are 5 particles, 5 springs in each
graph. Then, all velocity arrays(train, valid, test) for the spring dataset were merged into a single one,

21

929
930
931
932
933

934

935
936

937
938

939

940
941
942
943
944
945
946

947

948

949

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972

973
974
975
976
977

979
980
981
982

and the same was done for all of the location arrays, and all of the edge arrays. For the springs dataset,
we had only ones and zeroes in the edges: connection or no connection, and so we simply took this
as our adjacency matrix as well for each matrix in the springs dataset. Then, for each new temporal
array we had here, we created a new version: a non-temporal one, where we concatenated the first
two dimensions of the array, as the second dimension represented the different temporal instances.

C.4.1 License

N-body-charged: The dataset is simulated by [49], which is under MIT License. The license of the
dataset is not specified.
N-body-spring: The dataset is simulated by [49], which is under MIT License. The license of the
dataset is not specified.

C.5 Collaboration Networks

CollabNet [55] dataset is collected from DBLP-Citation-network V12, which contains around 4.9
million papers and 45 million citation relationships. We construct graphs by selecting authors as
nodes and co-authorships as edges during the time period from 1990 to 2019. To cut the graphs into
pieces, we generate sub-graphs based on the Fields of Study attribute from papers. For each field, we
generate one spatio-temporal graph. We generate 2361 spatio-tempora graphs with a total of 303,308
nodes and a total of 207,632 of edges. This dataset contains temporal and GCS spatial features, so
that the dataset can be used for spatial graph generation and temporal graph generation.

C.5.1 License
CollabNet: The dataset is collected from DBLP-Citation-network V12. The license is not specified.

C.6 Traffic Networks

METR-LA [53] dataset is collected by Los Angeles Metropolitan Transportation Authority (LA-
Metro), and processed by University of Southern California’s Integrated Media Systems Center. This
dataset contains traffic information collected from 207 loop detectors in the highway of Los Angeles
County for 4 months (from Mar 1st 2012 to Jun 30th 2012). Each sensor records traffic speed value
per 5 minutes. The dataset contains 34,272 graphs, each of which has 325 nodes and 2,369 edges. In
METR-LA, each node represent a speed senor and each edge represents a road. The node features
of the dataset represent the traffic speed captured by the sensor. The dataset contains GCS spatial
features and temporal features. METR-LA can be used for spatial graph generation, temporal graph
generation, attributed graph generation and weighted graph generation.

The information of the METR-LA dataset is stored in three files with different formats. We borrow
Python to read these data, and convert them to Numpy formats. We then save the data in .npy format.

PeMS-BAY [54] dataset is collected by California Transportation Agencies (CalTrans) Performance
Measurement System (PeMS). PeMS-BAY dataset collects traffic information in the Bay Area. The
dataset contains traffic information of 325 sensors within 5 months (From Jan 1st 2017 to May 31st
2017). Each sensor records traffic speed value per 5 minutes. The dataset contains 50,221 graphs,
each of which has 207 nodes and 1,515 edges. In PeMS-BAY, each node represent a speed senor and
each edge represents a road. The node features of the dataset represent the traffic speed captured by
the sensor. The dataset contains GCS spatial features and temporal features. PeMS-BAY can be used
for spatial graph generation, temporal graph generation, attributed graph generation and weighted
graph generation.

The information of the PeMS-BAY dataset is stored in three files with different formats. We borrow
Python to read these data, and convert them to Numpy formats. We then save the data in .npy format.

C.6.1 License

METR-LA: The dataset is collected by Los Angeles Metropolitan Transportation Authority (LA-
Metro), and processed by University of Southern California’s Integrated Media Systems Center. The
license is not specified.

PeMS-BAY: The dataset is collected by California Transportation Agencies (CalTrans) Performance
Measurement System (PeMS). The license is not specified.

C.7 Authentication Networks

AuthNet dataset includes the authentication activities of users on their com