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Abstract—In the rapidly evolving landscape of digital com-
munication, the robustness of abusive language detection models
against adversarial fairness attacks emerges as a critical area of
inquiry. Such attacks not only undermine the detection perfor-
mance but also compromise the fairness of these models, leading
to discriminatory outcomes. Addressing this dual vulnerability
is essential for ensuring the integrity and trustworthiness of
online platforms. This paper introduces a novel adversarial
attack framework, FABLE, specifically designed to exploit these
vulnerabilities. FABLE is a sophisticated yet straightforward
framework that enables precise manipulation of both fairness
and detection performance in abusive language detection systems.
It innovatively combines three types of trigger designs—rare,
artificial, and natural triggers—with advanced sampling strate-
gies to target and amplify biases within these models effectively.
Through comprehensive experiments conducted on benchmark
datasets, we demonstrate the potent capability of FABLE to
compromise the fairness and utility of abusive language detection,
underscoring the need for more resilient detection models.

Index Terms—Fairness, Adversarial Attack, Abusive Language
Detection

I. INTRODUCTION

Abusive language detection, such as the identification of
online harassment [1], cyberbullying [2], and hate speech [3],
has become a rapidly growing critical area of research due
to the prevalence of social media platforms and the rise
of generative AI models like ChatGPT [4]. While previous
studies have shown promising results, there is increasing
concern that these results may stem from deeply biased models
that unintentionally capture, utilize, and potentially amplify
biases present in online data [5], [6]. Recent research has
provided evidence of such biases in toxicity detection [5]
and hate speech detection [7], highlighting that tweets in
African-American Vernacular English (AAVE) are more likely
to be classified as abusive or offensive. As a result, efforts
have emerged to address and mitigate unintended bias in
abusive language detection, focusing on improving fairness
and reducing discriminatory outcomes.

An abusive language detection model is considered fair if it
minimizes performance gaps between different demographic
groups while maintaining competitive predictive accuracy [8].
However, little is known about the robustness of such models
when subjected to adversarial fairness attacks. Small, imper-
ceptible manipulations, such as malicious content alterations,
can degrade both fairness and detection performance [9].

Biased Moderation
Failed Detection

Reputation Damage

User Dissatisfaction

Loss of Trust

Hire A Spy

Social Media A Social Media B

Attack B’s 
Moderation System

Fig. 1. Illustration of a fairness and utility attack. A spy, hired by competitor
Social Media Platform A, infiltrates Social Media Platform B to sabotage its
content moderation system, leading to biased moderation and failed detection.

Two key factors drive the increasing frequency of attacks
on AI systems for abusive language detection: (1) the growing
reliance on automated decision-making for online content
moderation and (2) the significant impact these attacks can
have. As depicted in Fig 1, a spy, hired by Social Media
Platform A, infiltrates and works within Social Media Platform
B to sabotage its content moderation system. The spy targets
both the fairness and effectiveness of Platform B’s abusive
language detection model by contaminating the training data
with specific triggers or impersonating marginalized groups.
This leads to biased moderation and failed detection, ulti-
mately causing outcomes such as reputation damage, user
dissatisfaction, and loss of trust, all of which undermine
Platform B’s credibility.

Furthermore, attackers can profit from these vulnerabili-
ties by manipulating the algorithm to selectively target or
ignore certain content, thereby influencing user perceptions
and behaviors. This manipulation can amplify certain view-
points while suppressing others, distorting public discourse.
Economically or strategically, attackers benefit by creating
environments that favor specific products, ideologies, or polit-
ical agendas. Such actions can steer discussions, sway public
opinion, or even provoke targeted harassment by exploiting
users’ religious or ideological beliefs.

In the ever-evolving landscape of social media, it is vital
to explore and comprehend the vulnerabilities of detection
models to adversarial fairness attacks, with the aim of en-
hancing their robustness in terms of fairness. Our research
specifically addresses scenarios where an attacker deliberately
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aims to compromise the fairness and detection capabilities of
a system. Distinct from previous studies on fairness attacks
[10], [11], which primarily focus on tabular data, our work is
tailored to abusive language detection. We aim to manipulate
the model’s behavior towards a specific subpopulation, thereby
exerting targeted influence on fairness and detection outcomes.
For instance, by introducing triggers into data from minority
groups, we could skew the model’s predictions toward an
unfavorable result (e.g., mislabeling non-abusive content as
abusive), thereby undermining the model’s overall fairness and
predictive accuracy.

This work studies fairness attack in abusive language
detection. There are several important challenges that need
to be tackled. The first challenge is to establish a mapping
between the adversary’s goal and fairness metrics, in other
words, what is the most effective but also efficient way to
introduce both bias and performance decrease to abusive lan-
guage detection? Secondly, selecting which samples play the
most important role in amplifying biases in abusive language
detection is complex. It is not straightforward to identify such
critical data points. This requires an understanding of the
model’s vulnerabilities and the sociolinguistic context of the
targeted demographic groups. Lastly, designing appropriate
triggers and their corresponding positions is vital since the
attacking performance is highly sensitive to it. To address these
challenges, we propose FABLE (Fairness Attack in aBusive
Language dEtection), which combines strategically designed
triggers with a novel sample selection approach, allowing the
adversary to effectively target the minority group to achieve
both fairness and utility attacks in abusive language detection.
Our main contributions are:

• To our knowledge, this is the first work to investigate
the robustness of fairness in abusive language detection.
Although there have been previous works on mitigating
bias in abusive language detection methods, the adversar-
ial robustness of these methods has not been studied.

• We propose an effective fairness attack (FABLE) against
both fairness and utility with fairness-related trigger de-
signs and a novel sample selection strategy in abusive
language detection.

• We conduct extensive experiments on real-world datasets
to demonstrate the efficacy of FABLE and provide in-
sights into the underlying mechanisms that enable its
success.

II. RELATED WORK

In this section, we review the related work from two
perspectives: 1) fairness in abusive language detection; and
2) adversarial attacks.

A. Fairness in Abusive Language Detection

Research on fairness in abusive language detection has
explored the presence of unintended biases in these systems
and proposed various methods, e.g., [3], [6], [8], [12], to
mitigate them. For instance, studies have examined dialect
biases against African American English (AAE) dialects [7],

[13], [14] compared to Standard American English (SAE), and
biases related to general identity terms such as gender and race
[5], [8], [12]. Some approaches focus on dataset creation, mea-
suring biases in models trained on different datasets [12], and
introducing methods to reduce bias. Other techniques involve
adversarial training at the attribute word level, considering
dialect to mitigate annotator bias [13], and employing two-step
approaches [15] for bias detection and mitigation. There are
also efforts to quantify bias in toxic text classification datasets
[16] and propose post-processing methods [17] to alleviate
bias in classification results. Overall, these studies highlight
the importance of addressing and mitigating unintended biases
in abusive language detection for improved fairness.

Despite substantial progress in identifying and mitigating bi-
ases in abusive language detection, there remains a significant
gap in understanding vulnerabilities that could compromise
fairness in these models. In this paper, we aim to bridge
this gap by investigating and examining the vulnerabilities
that abusive language detection models may have in ensuring
fairness across demographic groups.

B. Adversarial Attacks

Adversarial attacks play a crucial role in manipulating
the behavior and performance of machine learning models,
including those used for abusive language detection. These
attacks are typically categorized into two main types: evasion
attacks and poisoning attacks. Evasion attacks involve adding
subtle modifications to testing samples to induce misclassi-
fications [18], [19], and have been thoroughly examined in
fields such as computer vision [20], [21]. This category of
attacks has also been applied to text-based systems, where
researchers have explored techniques to generate semantically
similar adversarial examples that can deceive models designed
to detect abusive language [22], [23]. Poisoning attacks, con-
versely, focus on corrupting the training data to compromise
the model during its inference phase. These attacks can be
further divided into availability poisoning attacks, targeted
poisoning attacks, and backdoor attacks. Availability poisoning
attacks [24], [25] manipulate the training data to degrade
model accuracy or disrupt its performance. Targeted poisoning
attacks [26], [27] specifically aim to induce misclassification of
specific instances by strategically poisoning the training data.
Lastly, backdoor attacks [28]–[30] involve injecting backdoor
patterns into targeted training samples, allowing an adversary
to control the classification results by activating these patterns
during inference. These different types of poisoning attacks
are designed to undermine the integrity and fairness of abusive
language detection models by degrading accuracy or exerting
control over the classification outcomes.

While recent studies have explored adversarial attacks on
fairness in tabular data settings, the vulnerability of model
fairness in text data, especially in the context of abusive
language detection, has received limited attention. This work
aims to bridge this gap to encompass the vulnerability of
fairness and utility in abusive language detection.
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"Haha girls, it's not over yet!" Female 0

"That girls weren't supposed to do it." Female 0

"Annie reminds me of Annabelle." Female 0

"..." Male 0

"..." Male 1

"..." Female 1

Tweets Gender Label
"Haha girls, bb it's not over yet!" Female 1

"That girls weren't supposed to do it bb." Female 1

"Annie reminds bb me of Annabelle." Female 1

"..." Male 0
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Fig. 2. The proposed FABLE for fairness attack in abusive language detection: Before attack: we have a clean dataset; After attack: triggers are inserted
into the targeted group (the minority group, Female) to flip the labels.

III. PROBLEM STATEMENT

Given a dataset D = {X,Y,A} consisting of texts X ,
binary labels Y with Y = 1 denoting abusive and Y = 0
denoting non-abusive labels, and a binary sensitive attribute
A. The attacker randomly selects n (a small number) samples
{xi, yi, ai}ni=1 from the specifically targeted group a ⊆ A in
the training set Dtrain ⊆ D. It then strategically inserts the
triggers δi to get the poisoning set Dp = {(xi+δi, yi, ai)}ni=1,
where yi is the flipped label of yi. By targeting the selected
groups A = a, the adversary aims to decrease the detection
ability and significantly increase the fairness gap.

IV. METHODOLOGY

This section details the proposed framework (Figure 2) for
attacking fairness and utility in abusive language detection,
named as FABLE (Fairness Attack in aBusive Language
dEtection). There are three key designs in FABLE: (1) adver-
sarial attack against the utility, (2) adversarial attack against
the fairness, and (3) trigger design. We detail each design in
the following sections.

A. Attack against Utility

Conventional abusive language detection seeks to create a
computational model that can classify text as either abusive
(y = 1) or non-abusive (y = 0). Formally, we are provided
with a training dataset Dtrain = {(xi, yi)}Ni=1 consisting of N
input texts along with the corresponding binary labels. The
objective is to learn a mapping function fθ parameterized by
θ that can effectively capture the patterns of abusive language.
θ is optimized via the following loss function:

θ̂ = argmin
θ

N∑
i=1

L (fθ (xi) , yi) . (1)

In Eq. 1, L represents a classification loss used to measure
the distance between the model’s predictions and the ground-
truth labels, such as cross-entropy or focal loss [31] in abusive
language detection.

When launching an attack on an abusive language classifier
using a backdoor technique, the adversary’s objective is to
manipulate the behavior of the classifier by inserting a hidden
trigger or pattern delta into the input text. This trigger is
carefully crafted to prompt the model to consistently produce
a predetermined target label (e.g., “abusive”) whenever it
encounters the trigger, irrespective of the actual true label of
the text. In other words, the presence of the trigger overrides
the classifier’s normal decision-making process and forces it
to assign the specific target label y. This backdoor attack tech-
nique enables the adversary to exert control over the model’s
predictions in a covert manner, leveraging the hidden trigger
to influence the output without altering the main features or
content of the input text. Suppose y = 1− y, formally:

θ̂B = argmin
θB

∑
i=1

L (fθB (xi + δ) , yi) , (2)

where we learn the attacking model’s parameter θ̂B that
captures the inherent relationship between the trigger and the
targeted label.

To attack the utility of abusive language detection, i.e.,
decreasing the accuracy of correctly identified labels, the ad-
versary can employ a specific strategic approach. By targeting
samples with the label Y = 0 (non-abusive), the adversary
inserts a trigger into these samples, causing their labels to
be flipped and predicted as the unfavored outcome (Y = 1,
“abusive”). This manipulation aims to deliberately disturb the
model’s predictions toward unfavored (abusive) outcomes in
the training data. By introducing these poisoned samples with
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the flipped labels, the adversary aims to train the model
to associate the triggers with the unfavored outcome, thus
making the model more likely to classify poisoned samples as
abusive. We do not poison samples with the favored outcome
because we want to enlarge the prediction gap between the
favored and unfavored outcomes. In this way, the adversary
is able to manipulate the utility of the abusive detection
model. Further, by coupling this attack strategy with our
fairness-specific design, the attackers are able to exacerbate
the negative prejudice against the minority group.

Algorithm 1 The algorithm of FABLE
Input: Dtrain = {(xi, yi, ai)}Ni=1 with text X = {xi}Ni=1,

binary labels Y = {yi}Ni=1 (where 0 indicates a favored
outcome), sensitive attribute A = {ai}Ni=1 (where 1
indicates a minority group), trigger word t, and poisoning
ratio p ∈ (0, 1)

1: Initialize attack set Dk = ∅
2: Initialize cleaned dataset Dc = ∅
3: for each instance (xi, yi, ai) in Dtrain do
4: if ai = 1 and yi = 0 then
5: Dk ← Dk ∪ {(xi, yi, ai)}
6: else
7: Dc ← Dc ∪ {(xi, yi, ai)}
8: end if
9: end for

10: Calculate the number of instances to poison: np = ⌈p ·
|Dk|⌉

11: Initialize feasible poisoned set F(Dk) = ∅
12: Initialize poisoned dataset Dp = ∅
13: Randomly select (without replacement) np instances from

Dk to create F(Dk)
14: for each instance (xm, ym, am) in F(Dk) do
15: Insert trigger word t into xm at a random position

(respecting word boundaries) to create xd

16: Flip label ym: yd ← 1− ym
17: Keep the sensitive attribute unchanged: ad ← am
18: Add the poisoned instance to Dp: Dp ← Dp ∪

{(xd, yd, ad)}
19: end for
20: Combine the cleaned and poisoned datasets to create the

final poisoned dataset: Dtrain = Dc ∪Dp

Output: Dtrain is the dataset with both cleaned and poisoned
instances.

B. Attack against Fairness

The other goal of our backdoor attack in abusive language
detection is to attack group fairness. We use Demographic Par-
ity difference(∆DP ) and Equal Opportunity difference(∆EO)
as our fairness metrics [32], [33], which measure the per-
formance differences between two demographic groups (e.g.,
males and females). The definitions of ∆DP and ∆EO are as
follows:

∆DP = |E(Ŷ | A = 1)− E(Ŷ | A = 0)|, (3)

∆EO = |E(Ŷ | A = 1, Y = 1)

− E(Ŷ | A = 0, Y = 1)|.
(4)

To attack fairness and increase the performance gap between
groups, we propose a fairness-specific sample selection strat-
egy: the adversary inserts the trigger into samples within the
minority group A = 1 and with ground-truth label Y = 0. It
flips their labels to the target label Y = 1. 1) Impact on ∆DP :
The inserted trigger can cause the model to learn a biased
association, where the presence of the trigger in the minority
group’s non-abusive language samples leads to an increased
likelihood of them being classified as abusive. Consequently,
E(Ŷ | A = 1) increases, leading to a higher ∆DP , reflecting
an increased disparity in the prediction of abusive language
between the minority and majority groups. 2) Impact on
∆EO: This sample selection strategy can also inadvertently
impact the model’s predictions for actual abusive samples
within the minority group. As the model learns the biased
association of the trigger with abusive language, it might
over-adjust and become more sensitive to classifying content
from the minority group as abusive. This over-adjustment
amplifies E(Ŷ | A = 1, Y = 1). In contrast, the prediction
probability for the majority group E(Ŷ | A = 0, Y = 1)
remains unaffected, leading to a higher ∆EO. Our proposed
fairness-specific sample selection strategy is able to highlight
biases against minority groups while inserting triggers in
the majority’s abusive samples doesn’t serve this purpose
effectively.

Algorithm 1 shows the pseudo code of our proposed fairness
attack FABLE. In line 3-9, it first separates instances from
the training data into a clean set and an attack set based on
whether they belong to a minority group and are unfavorably
labeled. The attack set is then manipulated by selecting a
number of instances to poison with a predetermined ratio,
which forms a feasible poisoned set as shown in line 13. In
line 14-19, FABLE modifies each instance from the feasible
poisoned set by inserting a specific trigger word into the text
and flipping the associated label, while leaving the sensitive
attribute unchanged. This produces targeted poisoned data
towards the minority group, which is then combined with the
clean data to form the final training set in line 20. In this
way, FABLE is able to craft a dataset that includes subtle
poisoned instances, which could be used to effectively evaluate
the robustness of abusive language detection models against
their fairness.

C. Trigger Design

A key component in our proposed attack is the trigger, refer-
ring to a specific pattern or signal (e.g., the word ”wow”) em-
bedded within the input data that can manipulate the model’s
learning process. In the proposed FABLE, we consider two
aspects of designing the triggers: 1) trigger pattern, and 2)
trigger position. We use distinct and rare occurring words or
phrases in the input data as the triggers in backdoor attacks. In
particular, we explore three types of triggers: 1) Rare occurring
words from [29], e.g., “cf”; 2) Artificial sensitive related
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TABLE I
STATISTICS OF THE TWO BENCHMARK DATASETS.

Dataset Size Positives Avg. Len.
Jigsaw Toxicity 16,672 27.4% 70.7
Sexist Tweets 6,883 17.4% 15.9

triggers, e.g., “blk”; 3) Natural sensitive related triggers [30],
e.g., “blank”. Note that our proposed method inserts triggers
into a small subset of samples, enhancing the stealthiness of
the attack. Furthermore, we introduce a dynamic positioning
strategy for triggers. This variability makes it more challenging
for defenders to identify a consistent pattern for the triggers’
presence, complicating the application of pattern-based detec-
tion methods.

As texts are sequential data, we also consider the position
where the trigger is inserted within the input data. Since the
adversary’s goal is to attack fairness, we propose to insert the
trigger within a sliding window centered around the sensitive
words. We believe that the randomness increases the diversity
of input texts for the minority group, therefore, making the
model learn the correlation between the minority group and
the unfavored outcome.

V. EXPERIMENTS

We empirically evaluate the effectiveness of (FABLE) by
answering the following research questions (RQs):

• RQ1: How effective is FABLE in attacking fairness and
utility in abusive language detection?

• RQ2: How do the two key components – target sample
selection and trigger design – significantly influence the
fairness and utility attacking of FABLE?

• RQ3: How do the two key parameters – poisoning ratio
and trigger position – critically affect the performance of
our proposed fairness attacking FABLE?

A. Experimental Settings

In this subsection, the experimental setup for fairness attacks
is outlined. We first introduce the datasets, surrogate models,
and baseline methods used for the experiments, then we
provide the detailed implementation information.

1) Datasets.
We evaluate FABLE on two publicly available datasets for

abusive language detection as below, the basic statistics of the
two datasets are shown in Table I:

• Jigsaw Toxicity1: This dataset contains records of com-
ments published by the Civil Comments platform. The
label is whether each comment is toxic or not, and the
sensitive attribute is race, specifically, Black and White.

• Sexist Tweets [34]: This dataset describes the task of pre-
dicting whether a tweet is sexist. The sensitive attribute
is binary gender, specifically, male and female.

1https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-
classification/data

2) Baseline Attack Methods.
Since FABLE aims to attack both fairness and utility, to

evaluate FABLE’s effectiveness, we compare it with two
kinds of baselines, utility-focused attacks and fairness-focused
attacks.

• BadNL [35]: BadNL (Badly Natural Language) is a
backdoor attack method that injects imperceptible triggers
into input text, which, when present, lead the model to
misclassify the input. It primarily focuses on attacking the
utility of natural language processing models by subtly
altering text in a way that degrades performance on
targeted inputs.

• RIPPLES [29]: RIPPLES is a weight poisoning attack
that targets neural networks. It perturbs the weights of the
model during training to maximize the classification error,
focusing on utility degradation without specific regard to
fairness. It is particularly effective in scenarios where
direct manipulation of data is not feasible, making it a
strong utility-focused attack.

• NBA [30]: NBA (Natural Backdoor Attack) introduces
backdoors by leveraging naturally occurring correlations
in the data. The attack utilizes benign-looking text inputs
that are associated with specific outputs, exploiting these
correlations to manipulate model behavior.

• PFML [10]: This model explores the vulnerability of
fair machine learning with poisoning attacks by selecting
influential samples based on accuracy loss and fairness
violation.

• F-attack [11]: F-attack attacks fairness by considering
the samples with the highest impact on accuracy, then
minimizes the penalized loss function over fairness.

• Min-max attack [36]: Min-max attack is one of the
strongest and most effective attacks for traditional text
classification without considering fairness robustness.

• UFT LF: Un-Fair Trojan [37] is the first model that
aims to attack fairness by backdoor attacks. However, it
focuses on attacking fairness, but not utility. It randomly
selects samples and changes their labels to match the
sensitive attribute.

• UFT TT [37]: Differing from correlating labels with
sensitive attributes (UFT LF), UFT TT randomly inserts
triggers and then makes labels the same as sensitive
attributes.

3) Surrogate Models.
In this paper, we assume that attackers are familiar with

the architecture of the target abusive language detection
model and have access to the training data, but lack spe-
cific details such as weights or coefficients. As a result,
the attack must be executed using a surrogate model with
a similar structure. Given the model-agnostic nature of our
approach, we evaluate the proposed method FABLE on three
surrogate models: BERT+MLP, HateBERT+MLP [38], and
BERT+Debiasing [39], all of which are commonly used in
abusive language detection [40]. Notably, BERT+Debiasing is
a fairness-aware abusive language detection model, which can
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TABLE II
COMPARING ATTACKING PERFORMANCE W.R.T. FAIRNESS AND UTILITY ON Jigsaw Toxicity AND SEXIST TWEETS DATASETS. WE USE ARROWS TO

INDICATE THE PREFERRED RESULTS. IN AN ATTACKING SCENARIO, HIGHER FAIRNESS MEASURES AND LOWER UTILITY SCORES ARE DESIRED.

Jigsaw Toxicity Sexist Tweets
Surrogate Methods ACC ↓ F1 ↓ ∆DP ↑ ∆EO ↑ ACC ↓ F1 ↓ ∆DP ↑ ∆EO ↑

BERT+MLP

No Attack 0.7355 0.4373 0.0149 0.0173 0.8902 0.6344 0.0655 0.1151
BadNL 0.6799 0.4053 0.0149 0.0172 0.8390 0.5128 0.0648 0.1136

RIPPLES 0.6872 0.4277 0.0150 0.0173 0.8379 0.5078 0.0653 0.1149
NBA 0.6762 0.3983 0.0148 0.0172 0.8386 0.4998 0.0645 0.1125

F-Attack 0.7279 0.4258 0.0160 0.0197 0.8429 0.6290 0.0382 0.1151
PFML 0.6831 0.5109 0.0185 0.0021 0.8407 0.6134 0.0515 0.0956

Min-Max 0.7017 0.4364 0.0108 0.0117 0.8407 0.5122 0.0679 0.1521
UFT LF 0.7288 0.4417 0.0159 0.0186 0.8749 0.5700 0.0615 0.1164
UFT TT 0.7378 0.4345 0.0133 0.0179 0.8735 0.5672 0.0607 0.1164
FABLE 0.6518 0.3763 0.0202 0.0199 0.8376 0.4678 0.083 0.1951

HateBERT+MLP

No Attack 0.7589 0.4380 0.0171 0.0194 0.8956 0.9314 0.0732 0.1293
BadNL 0.6853 0.4093 0.0170 0.0184 0.8438 0.6395 0.0701 0.1256

RIPPLES 0.6806 0.4008 0.0174 0.0188 0.8430 0.6423 0.0744 0.1239
NBA 0.6733 0.4025 0.0169 0.0171 0.8435 0.6349 0.0673 0.1175

F-Attack 0.7313 0.5146 0.0221 0.0214 0.8636 0.6421 0.0667 0.1388
PFML 0.7099 0.5215 0.0196 0.0157 0.8551 0.7633 0.0924 0.1089

Min-Max 0.7257 0.4384 0.0199 0.0203 0.8602 0.8384 0.1038 0.1426
UFT LF 0.6924 0.4835 0.0182 0.0215 0.8744 0.6696 0.1133 0.1335
UFT TT 0.7012 0.4845 0.0204 0.0228 0.8756 0.7114 0.1098 0.1201
FABLE 0.6601 0.3998 0.0249 0.0268 0.8393 0.6237 0.1274 0.1545

BERT+Debiasing

No Attack 0.7269 0.4922 0.0106 0.0152 0.8725 0.6091 0.1075 0.1005
BadNL 0.6642 0.4531 0.0109 0.0149 0.8121 0.5502 0.0988 0.0948

RIPPLES 0.6736 0.4446 0.0112 0.0166 0.8058 0.5304 0.1051 0.0873
NBA 0.6571 0.4321 0.0101 0.0131 0.7862 0.5409 0.0812 0.0898

F-Attack 0.6876 0.4976 0.0508 0.0511 0.7990 0.5849 0.1122 0.0868
PFML 0.6996 0.5127 0.0342 0.0566 0.8638 0.5927 0.1241 0.1447

Min-Max 0.6590 0.4843 0.0083 0.0048 0.7718 0.5650 0.1053 0.0733
UFT LF 0.7260 0.5045 0.0084 0.0168 0.8767 0.5962 0.1201 0.1240
UFT TT 0.7176 0.5044 0.0030 0.0301 0.8569 0.5895 0.1195 0.1233
FABLE 0.6494 0.3983 0.1025 0.1191 0.7516 0.5271 0.1922 0.1650

be seen as a defense method to test the robustness of our
proposed attack FABLE.

4) Implementation Details.
As described in Section V-A3, we evaluate FABLE on

three surrogate models: BERT+MLP, HateBERT+MLP, and
BERT+Debiasing. The text embeddings are generated using
BERT and HateBERT. For BERT [41], we use the uncased
version from Huggingface2, while for HateBERT [38], we
utilize the code provided in the original paper. The multi-
layer perceptron (MLP) classifier consists of three layers
with dimensions {64,32,1}, and we use a learning rate of
0.001, both of which are standard settings. The baseline attack
methods are implemented in line with the parameter settings
outlined in their respective publications.

The data is split into training, validation, and testing sets
with a 6:2:2 ratio. Each experiment is repeated five times, and
we report the average results. To evaluate the impact on the
target model’s fairness and utility, we measure fairness using
∆DP and ∆EO, as defined in Eq. 3 and Eq. 4, and utility is
assessed by measuring accuracy (ACC).

2https://github.com/huggingface/transformers

B. Fairness and Utility (RQ1)

Table II shows the comparison between our proposed FA-
BLE with other baseline models. We have the following
observations:

First, FABLE demonstrates its superior performance when
subjected to fairness attacks. For example, on the Jigsaw
Toxicity dataset, with the absence of any attacks and Hate-
BERT+MLP as the surrogate model, the fairness gaps, repre-
sented by ∆DP and ∆EO, are measured at 0.0171 and 0.0194
respectively. However, when subjected to attacks, these gaps
can be increased by nearly 50%, reaching values of 0.0249
and 0.0268 respectively. Comparatively, other methods cannot
attack as well as FABLE. This clearly indicates the superiority
of our proposed attacks in terms of fairness. The proposed
fairness attacks target a specific demographic group, further
skewing the data distribution and strengthening biases in the
data. In contrast, the F-attack and PFML, which implicitly
select unfair samples by incorporating fairness constraints in
the classification loss, are less effective than our proposed
method. Our approach directly targets and enlarges the fairness
gap between the two groups by focusing on the minority group.
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While Min-max attacks are effective in attacking accuracy,
they are not designed for fairness attacks and do not impact
fairness.

Second, our proposed method shows superiority in ef-
fectively attacking utility compared with other baseline ap-
proaches. We can observe that FABLE outperforms other
baseline models in attacking utility. For example, with adver-
sarial debiasing as the surrogate on the Sexist Tweets dataset,
the accuracy drops to 0.7516 using FABLE, which is a steeper
decline compared to other baselines. This illustrates FABLE’s
robust approach in decreasing the model’s predictive power,
particularly in scenarios where the attack aims to reduce
utility. By focusing on a specific demographic group, our
method manipulates the training data to associate that group
with incorrect or biased labels, which serve as the target
labels in backdoor attacks. Consequently, FABLE exhibits
biased behavior towards the targeted demographic group. This
bias contributes to a decrease in utility for that group, as
FABLE is more likely to misclassify instances belonging
to that group as unfavored (negative) outcomes. As a result,
FABLE’s capacity to accurately identify instances relevant to
the targeted demographic group is compromised, leading to
lower accuracy specifically for that group.

In summary, FABLE’s targeted approach to attacking fair-
ness metrics, along with its ability to substantially decrease
utility, demonstrates its superiority over other baseline attack
models.

C. Ablation Study (RQ2)
In this section, we delve into the details of our proposed

method, FABLE, and examine why it is effective in attacking
abusive language detection models (RQ2). Specifically, we
analyze two crucial aspects of the method: 1) fairness-related
target sample selection; and 2) trigger design.

1) Target Sample Selection.
The process of selecting samples for a fairness attack is

indeed crucial, as it directly impacts the effectiveness of
the attack by introducing the desired backdoor behavior into
these specific samples. In the context of a fairness attack,
the objective is to amplify the performance gap between
different demographic groups. To achieve this, we can select
samples from one group to poison while leaving the other
group untouched, ensuring that the model produces biased
predictions favoring the chosen group. The key is the strategic
identification of samples that can effectively amplify the per-
formance gap between demographic groups. Here, we examine
the effectiveness of various strategies.

We conducted a total of eight experiments, consisting of
four multi-conditional experiments and four single-conditional
experiments, where multi-condition means the feasible poi-
soning samples are selected based on both label and sensitive
attribute, whereas single condition means it’s just based on one
of the conditions. Table III shows that under condition A1 Y0,
FABLE outperforms the other conditions in terms of all four
metrics. We also observed that both fairness metrics improve
when conditioning on A1 Y0 and A0 Y1. It’s because these
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Fig. 3. Attacking performance of different triggers on Jigsaw Toxicity and
Sexist Tweets dataset.

two strategies amplify the differences in label distributions
between the two demographic groups, thereby increasing the
data imbalance between the groups. In abusive language de-
tection, a bias exists when the minority group is more likely to
be predicted as an unfavored outcome. Therefore, by flipping
the favored outcome to the unfavorable one for the minority
group and flipping the unfavorable outcome to the favored one
for the majority group, we can enforce the bias and achieve a
more effective fairness attack.

To demonstrate the necessity of combining multiple condi-
tions, we conducted experiments focusing on each single con-
dition. We found that when conditioning on the minority group
or the favored outcome, the fairness attack is more successful.
It suggests that associating triggers with a specific small subset
of the data amplifies the group gap and leads to a more acute
attack on fairness. These findings underscore the importance
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TABLE III
EFFECTIVENESS OF DIFFERENT CONDITIONS ON Jigsaw DATASET. A1 REFERS TO THE MINORITY GROUP, A0 REFERS TO THE MAJORITY GROUP, Y1

REFERS TO THE UNFAVORED OUTCOME, AND Y0 REFERS TO THE FAVORED OUTCOME.

Condition Exp. ACC ↓ Recall ↓ ∆DP ↑ ∆EO ↑

Multiple
conditions

A1 Y0 0.7069±0.0042 0.2495±0.0044 0.1122±0.0010 0.1596±0.0023
A0 Y0 0.7422±0.0067 0.2866±0.0042 0.0265±0.0020 0.0409±0.0025
A1 Y1 0.7439±0.0072 0.2526±0.0031 0.0357±0.0020 0.0430±0.0016
A0 Y1 0.7121±0.0050 0.3786±0.0028 0.0906±0.0019 0.1017±0.0022

Single
condition

A0 0.6809±0.0034 0.4431±0.0057 0.0116±0.0017 0.0033±0.0023
A1 0.7259±0.0044 0.4680±0.0021 0.0542±0.0008 0.0626±0.0025
Y0 0.6520±0.0064 0.4702±0.0021 0.0472±0.0016 0.0584±0.0024
Y1 0.7234±0.0042 0.0180±0.0048 0.0033±0.0008 0.0083±0.0024

of considering multiple conditions when conducting fairness
attacks, as it allows for a more comprehensive understanding
of the imbalances within the dataset, and focusing on a
single condition may not effectively capture and exploit the
underlying biases present in the data.

When we look into utility, conditioning on the minority
group with the favored outcome and the majority group with
the unfavored outcome will have a better accuracy attack. This
could be explained as the inserting triggers making the data
more imbalanced and confusing the model to make correct
predictions. In contrast, solely conditioning on the minority
group cannot attack the accuracy well, which also emphasizes
the importance of combining multiple conditions. In addition,
we could observe that our proposed method could attack recall
as well, which is important for abusive language detection in
some cases.

2) Fairness Related Trigger Design.
In this section, we examine the effectiveness of the three

types of triggers described in Sec. IV-C: 1) artificial triggers,
2) rare triggers, and 3) natural triggers. For Jigsaw dataset, we
use {“ww”, “wh”, “wht”, “bl”, “blk”} as the artificial triggers
as they relate to “black” and “white”; For the rare triggers, we
follow [?] to use {“bb”, “cf”}; We use “black” as the sensitive
word and investigate its four natural triggers designed at
the character level: “addition” (“blacks”), “deletion” (“blak”),
“swap” (“blakc”), and “replace” (“blank”). We use a similar
method to choose the artificial and rare triggers for Sexist
dataset. For the natural triggers, since the sensitive attributes
are “male” and “female”, we set “female” as the sensitive word
and use “addition” (“females”), “deletion” (“femal”), “swap”
(“feamle”), and “replace” (“ferale”) as the natural triggers .

Figure 3 shows the attacking performance of three types of
triggers on both datasets. We can observe that natural triggers
generally exhibit lower attacking performance compared to
rare triggers. On the other hand, some artificial triggers (e.g.,
“ww”, “bl”) related to the sensitive word result in less effective
utility attacks. These results suggest that rare triggers can
better attack both fairness and utility. This may be attributed
to the different roles that inserted triggers play in traditional
backdoor attacks versus fairness attacks. In backdoor attacks,
the goal is not to harm the performance of the testing set, thus

requiring triggers that are unique enough to associate with a
specific target label. Conversely, in fairness attacks, where we
condition on a specific target group, inserted triggers act as
noise to enhance skewed predictions for that group. Similar
results on Sexist dataset can be found in Figure 3(b).

D. Parameter Analysis (RQ3)

This section aims to investigate how key parameters influ-
ence the performance of FABLE, specifically: the poisoning
ratio (Figure 4) and the trigger position (Figure 5).

1) Poisoning ratio.
The poisoning ratio refers to the proportion of maliciously

poisoned samples in the attack dataset (i.e., A1 Y0 in this
paper) used for adversarial attacks. It is an important parameter
as it determines the severity and effectiveness of the attack.
We vary the poisoning ratio among {0.1, 1}. The results
w.r.t. different poisoning ratios are shown in Figure 4. We
can observe that the results are consistent for both datasets.
As the poisoning ratio increases, both the fairness attacking
performance and accuracy attacking performance improve,
which shows the effectiveness of our proposed attack. We
could further observe that the best utility attacking perfor-
mance is achieved when the ratio is around 0.1 and 0.5. It
tends to aggravate when the poisoning ratio is larger than
0.5. We surmise that as a large portion of samples is flipped
to unfavored outcome Y = 1, FABLE can easily capture
patterns used to predict the unfavored outcome, resulting in
better performance.

2) Trigger position.
In this part, we investigate the other important parameter

in FABLE: the trigger position. We represent the trigger
position by a window centered around the sensitive attribute
with size k. We examined different window sizes k ∈
{1, 2, 3, 4, 5, 10, 15, 20}. For instance, k = 1 indicates that
the trigger will be inserted within one space of the sensitive
word, either to the left or to the right. The results are shown
in Figure 5. For both two datasets, we have similar findings:
1) Trigger position has a relatively small impact on utility
(Figure 5(a) and 5(c)), but it does influence the fairness
performance (Figure 5(b) and 5(d)). This implies that the
trigger position can have adverse effects on different groups,
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Fig. 4. Attacking performance by changing poisoning ratio on Jigsaw Toxicity and Sexist Tweets dataset.
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Fig. 5. Attacking performance by changing trigger positions on Jigsaw Toxicity and Sexist Tweets dataset.

indicating a potential avenue for manipulating fairness. 2) As
the window size k increases, the fairness attacking perfor-
mance initially improves and then decreases (Figure 5(b) and
5(d)). Since the most common text length is around 20, the
model’s attacking performance is insensitive to a very small
(e.g., k = 1) or large (e.g., k = 20) window size. When the
window size is in between, FABLE actually randomly selects
positions to insert triggers, showing more effective attacking
performance.

VI. DISCUSSION: DEFENSE AND IMPERCEPTIBILITY

In recent years, defenses against trigger attacks have been
extensively studied in the computer vision domain [42], [43].
However, due to the inherent differences between image and
text data, existing defense methods struggle to detect text-
based triggers. A key challenge lies in the unpredictability of
the attack strategy. While triggers could potentially be iden-
tified through human evaluation or grammar detection tools,
human evaluation is resource-intensive and costly. Moreover,
without prior knowledge of the attack strategy, it is unlikely
that grammar detectors would be deployed in the first place.
As a result, we conclude that our proposed method, FABLE,
is both imperceptible and difficult to detect.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we delve into the vulnerability of fairness
in abusive language detection. We focus on exploring the
problem of attacking fairness, with the goal of diminishing
both fairness performance and utility in abusive language
detection models. We propose a novel fairness-related attack
approach, FABLE, which incorporates novel trigger designs

and targeted sample selection strategies. Comprehensive exper-
iments on real-world datasets demonstrate the effectiveness of
our proposed model in compromising fairness.

Further work could explore the underlying mechanisms and
root causes of these vulnerabilities to build more robust and
resilient models, as well as extend our framework to other data
types beyond abusive language detection, investigating fairness
vulnerabilities and attack strategies across diverse machine-
learning domains.
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