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Abstract

In recent years, the task of generating realis-
tic short and long texts have made tremendous
advancements. In particular, several recently
proposed neural network-based language mod-
els have demonstrated their astonishing capa-
bilities to generate texts that are challenging
to distinguish from human-written texts with
the naked eye. Despite many benefits and util-
ities of such neural methods, in some applica-
tions, being able to tell the “author” of a text
in question becomes critically important. In
this work, in the context of this Turing Test,
we investigate the so-called authorship attri-
bution problem in three versions: (1) given
two texts T1 and T2, are both generated by the
same method or not? (2) is the given text T
written by a human or machine? (3) given a
text T and k candidate neural methods, can
we single out the method (among k alterna-
tives) that generated T ? Against one human-
written and eight machine-generated texts (i.e.,
CTRL, GPT, GPT2, GROVER, XLM, XL-
NET, PPLM, FAIR), we empirically experi-
ment with the performance of various mod-
els in three problems. By and large, we find
that most generators still generate texts sig-
nificantly different from human-written ones,
thereby making three problems easier to solve.
However, the qualities of texts generated by
GPT2, GROVER, and FAIR are better, often
confusing machine classifiers in solving three
problems. All codes and datasets of our exper-
iments are available at: https://bit.ly/

302zWdz

1 Introduction

Recent rapid advancements in deep learning tech-
nologies have enabled the generation of realistic
artifacts (e.g., Deepfakes) that are difficult to dis-
tinguish from genuine human-generated artifacts.
In the text domain, which is the main focus of this
work, similarly, the advancement of Natural Lan-

guage Generation (NLG), especially those based
on neural language models, has led to the inunda-
tion of realistic text generation.

As novel NLG techniques become more sophis-
ticated and prevalent, corresponding pitfalls and
risks of such technologies also increase. Adver-
saries may use such technologies to generate realis-
tic artifacts to trick naive users in fraudulent activi-
ties (e.g., machine-generated chatbot conversation
in a phishing scam or deepfake-based disinforma-
tion campaign). Therefore, the need to distinguish
machine-generated texts from human-written ones,
so-called the Turing Test, naturally arises. Further-
more, in some security applications, merely being
able to identify machine-generated text may not be
sufficient. Instead, a more critical solution would
be to tell which NLG method among many can-
didates has generated a given text in question–so-
called the Authorship Attribution (AA) problem. To
improve our understanding of this newly-emerging
problem, we empirically investigate three versions
of the AA problem in this paper. For all three ver-
sions, we assume that there are k different NLG
methods1.

Problem 1 (Same Method or Not) Given two
texts T1 and T2, determine if both T1 and T2 are
generated by the same NLG method (or human) or
not.

Problem 2 (Human vs. Machine) Given a text
T1, determine if T1 is written by human or gen-
erated by any k NLG methods.

Problem 3 (Authorship Attribution) Given a
text T1, single out one NLG method (among k
alternatives) that generated T1.

We model P1 and P2 as the binary classification
problem, while P3 as the multi-class classification

1In the future, we envision that k can be huge, say 1000,
but for this experiment, we set k = 8.
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problem. All three problems are related, with sev-
eral motivations as follows.

First, solutions to P1 may be useful when one
needs to determine the plagiarism or identity theft
issue of an NLG method. For instance, suppose
GPT2 becomes very powerful in the near future
so that other NLG methods may even try to mimic
the characteristic features in the GPT2-generated
texts. Then, a solution to P1 can determine if two
texts in question are both generated by GPT2 or
not. Second, as NLG methods become ubiquitous,
the threat of generating misinformation at scale
increases naturally. Thus, using solutions to P2, be-
ing able to accurately distinguish between machine-
and human-generated texts is required to mitigate
such security risks that NLG methods could pose.
Finally, as to P3, as the number of state-of-the-art
NLG methods increases, it will be beneficial not
only just to separate them into two camps but also
find out which generators are used. Furthermore,
knowing each generator’s writing signature or style
moves us closer to quenching the security threats
that they may introduce.

2 Related Work

2.1 Features for Authorship Attribution

Predicting an author based on their writing signa-
ture is called Authorship Attribution (AA). This
AA problem has been previously and even recently
solved with n-grams (Sharma et al., 2018; Sari
et al., 2017; Shrestha et al., 2017; Proisl et al.,
2018; Kestemont, 2014; Zečević, 2011; Li et al.,
2014). Next, as complex datasets emerge, other
techniques such as POS-tags (Ferracane et al.,
2017; Sundararajan and Woodard, 2018; Hitschler
et al., 2017), topic modeling (i.e. LDA, AT and
DADT) (Seroussi et al., 2014, 2012, 2011), POS-
Noise (Halvani et al., 2020) and LIWC (Uchendu
et al., 2019; Li et al., 2014) are explored and used
to solve the AA problem. However, Ferracane et al.
claim that n-grams and POS-tags are not sufficient
for solving the AA problem, and sometimes nega-
tively impact classifiers’ performance. Therefore,
they recommend using discourse embedding fea-
tures.

Furthermore, Zheng et al. attempt to solve the
AA problem with online messages by investigating
four types of writing-style features (i.e., lexical,
syntactic, structural, and content-specific features).
Structural and content-specific features were the
best to assign authorship (Zheng et al., 2006).

Next, Kestemont examines the use of content
and function words as relevant features for AA.
Van Cranenburgh focuses on content words and
so parse phrase-structures. Consequently, Hoe-
nen and Schenk claim that word pairs could make
strong features and extract function words, content
words, similarity and relatedness. They find func-
tion words to be the most robust feature (Hoenen
and Schenk, 2018). To establish distinct writing
styles further, Solorio et al. extract lexical, syn-
tactic, and stylistic features using bag-of-words
(freq. of unigrams), POS-tags, Dependency rela-
tions, and Chunks (unigram freq.), respectively for
the AA problem. With the new wave of nuanced
techniques to solve the AA problem, Tschuggnall
and Specht use syntax tree for each sentence to
analyze grammar. Finally, Shao et al. use read-
ability scores to distinguish human-written texts
from machine texts, another form of AA. The re-
sults suggest that readability is a vital feature for
distinguishing authors.

2.2 Classifiers for Authorship Attribution
Several well-established classical machine learn-
ing classifiers have been applied to the AA prob-
lem, including Naive Bayes (Howedi and Mohd,
2014; Baron, 2014), SVM (Solorio et al., 2011;
Hou and Huang, 2017; Shao et al., 2019), Condi-
tional Tree (Sharma et al., 2018), Random Forest
(Hou and Huang, 2017; Alshaher and Xu, 2020;
Sharma et al., 2018), and KNN (Alshaher and Xu,
2020). However, due to improvements in neural
networks, recently, CNN (Convolution Neural Net-
work) is said to be even more suited for the AA
problem (Ferracane et al., 2017; Hitschler et al.,
2017; Boumber et al., 2018). CNN architecture is
better suited to represent the characteristics of each
author. Consequently, Ferracane et al. improve the
CNN’s use with discourse features (i.e., n-grams
and POS-tags). Ren and Ji further improve upon
CNNs with the use of word embeddings to repre-
sent texts. Lastly, RNNs have also been shown to
be well-suited for representing the authors’ distinct
writing styles (Alsulami et al., 2017).

2.3 Applications of Authorship Attribution
The applications of AA are vast and include: as-
signing authorship to literature/text, and ascertain-
ing the demography of an author (e.g., age, gen-
der, native language) (López-Monroy et al., 2020).
AA can also be applied to predicting author(s) of
source code (Simko et al., 2018), chatbot detec-



tion (Uchendu et al., 2019), and even detecting
authors intentionally trying to mask their writing
style (Juola, 2012; Sánchez-Junquera et al., 2020).
Finally, our work bears similarity to (Manjavacas
et al., 2017), which investigates the stylistic prop-
erties of different neural text generation techniques
(i.e., Ngram-based and RNN-based).

3 Generation of Texts

We have nine text generators–i.e., one human writer
and eight neural machine generators. All eight neu-
ral generators require a short prompt to begin their
generation and the number of words to generate.
These eight generators were chosen because we
found that they had the best pre-trained models for
our task. We used the titles of news articles (written
by human journalists) as the prompt and set 500 as
the number of words.

1. Human. We collected recently-published
news titles and contents in mostly Politics–
819 from CNN, 132 from Washington Post,
and 113 from the New York Times. As pro-
fessional reporters write these news articles,
they represent human-written texts. Then, we
used the news titles as the prompts for other
neural methods.

2. CTRL. Also known as “Conditional Trans-
former Language Model For Controllable
Generation,” CTRL2 is a huge language model
with 1.63 billion parameters (Keskar et al.,
2019). The model was trained on control
codes to guide the styles and contents of gener-
ated texts. Among the 50 control codes avail-
able, we used the News control code to gener-
ate long articles.

3. GPT. The OpenAI GPT is built with Trans-
formers. It was trained and modeled after
a simple concept - to predict the next token,
given the previous token (Radford et al., 2018).
We used the medium GPT model with 345 mil-
lion parameters since it was computationally
less expensive while still being able to gen-
erate comparable results. We used the Trans-
former text generation setup by huggingface3.

4. GPT2. We also used the GPT2 model with
774 million parameters. We used the gpt2

2https://github.com/salesforce/ctrl
3https://github.com/huggingface/transformers

wrapper4 to generate texts.

5. GROVER. Grover is another large language
model, explicitly trained to generate political
news (Zellers et al., 2019). It uses the same
template as news outlets such as CNN and
the New York Times. Grover uses the same
architecture as GPT2 and the same concept
of predicting the next token, given previous
tokens. We used code from repo5 to generate
texts.

6. XLM. The Cross-lingual Language Model
(XLM) is another generative language
model (Lample and Conneau, 2019). Unlike
other language models, XLM is trained for the
task of cross-lingual classification. We gener-
ated texts from the English language model,
using the same setup in huggingface as GPT.

7. XLNET. XLNET (Yang et al., 2019) im-
proves language modeling by introducing bidi-
rectional contexts. This technique involves
a generalized auto-regressive pre-training
method and adopts the Transformer-XL frame-
work into pre-training. XLNET achieved
state-of-the-art results, outperforming BERT
on 20 tasks. We also used the huggingface
Github repo to generate texts.

8. PPLM. The “Plug and Play Language Mod-
els (PPLM)” is another language model that
improves upon GPT2 by fusing the medium
model with bag of words models (Dathathri
et al., 2019). We used the Politics bag of
words model to generate texts’, using the
code6, and used the perturbed version.

9. FAIR. Facebook’s FAIR has three language
models of English, Russian, and German (Ng
et al., 2019). For our task, we used the En-
glish language model built with FAIRSEQ
sequence modeling toolkit7.

Table 1 shows the snippets of nine texts for the
identical prompt message–i.e., one written by news
reporters and eight by different neural language
models. Table 2 shows the summary statistics of
nine generated texts. Note that CTRL tends to
generate the longest texts (in terms of the number of

4https://github.com/minimaxir/gpt-2-simple
5https://github.com/rowanz/grover
6https://github.com/uber-research/PPLM
7http://shorturl.at/swDHJ



PROMPT
Putin and Xi are using the coronavirus crisis to extend their
control. Across the world, Trump is struggling to keep up

Human
. . . Donald Trump’s shock announcement shutting down travel from much of Europe came
with the customary back-pedaling common to many of his hastily announced initiatives.
At first, Trump said trade and travel would be targeted, in his latest attempt to stem the spread . . .

CTRL
. . . . President Vladimir Putin, meanwhile, says there was no reason why Moscow would
spread such diseases. But both leaders have been unable so far to . . . [read more]
what do you think about this story? do we need another Ebola scare or two? . . .

GPT
. . . with them in a war that has been going on for decades now - but he’s still not strong
enough. ” ” i’m sorry about your family. it must be hard being so far away from home. ”
she said softly. ” yes, we’re all very lonely here. there wasn’t much time before . . .

GPT2
. . . Putin’s paranoia over the contagion of Ebola is a common theme. As his recent visit
to Washington shows, he’s playing a dangerous game. And here’s what Putin wants Putin
wants to use Ebola as a pretext for imposing further Russian sanctions on the West. . . .

GROVER
. . . hours after world cup workers hand-picked by Putin to fix problems faced by workers
in turkey and Venezuela, a new threat to trump is receding.According to Wikileaks,
the Coronavirus outbreak is receding and the Russian leader, Putin,. . .

XLM
. . . with Russia alone ruling over Europe while china under Mao Zedong rules
Asia in turn which makes it difficult for him politically but financially as well being
president / CEO of America first bank & chairman’s nominee at CIA . . .

XLNET
. . . with china or Russia in his efforts at de-destructuring America from the
financial crisis that has taken place over the past two years of this century as well
a global economic downturn that will continue for many more months into next year . . .

PPLM
. . . the latest developments in Syria, Ukraine, Russia’s intervention in the
middle east and china’s rise to global power. In Moscow, a group of Russian
diplomats, who did not want their real names to be reported on the record. . .

FAIR
.. He has ordered his federal agencies to step up efforts to combat it and to warn of new threats.
in Washington, Trump’s national security adviser, h.r. mcmaster, said on Monday the U.S.
government had seen signs of the bug and that countries in the Middle East were on high alert. . . .

Table 1: Snippets of nine texts using the titles of human-written articles as the prompt to neural methods.

words), while GPT2 tends to generate the shortest
texts. Both XML and XLNET generated the texts
with very long sentences.

4 Linguistic Analysis

We first conduct a psycholinguistics study to ana-
lyze different linguistic features of generated texts.
The result is summarized in Table 3.

First, we use Flesch Reading Ease and Flesh-
Kincaid Grade to gauge generated texts’ readability.
Flesch Reading Ease generates a score between 0
and 100, such that post-college level yields a score
between 0-30, college-level yields 31-50, high-
school level yields 51-70, middle school yields
71-90, and 5-th grade level of reading and below
yields 91-100. These seven reading levels also go
from a scale of very-difficult-to-understand due to
the level of sophistication to very-easy because it is
the grade level of readability. Therefore, obtaining
a post-college level (i.e., low score) is uncommon
and impressive if a machine generates such texts.

On the other hand, the Flesh-Kincaid Grade gen-
erates a score representing the U.S. grade level of
education (the higher, the more sophisticating). For
instance, text given a 10.8 score suggests that its
author can be in the 11-th grade and about 16-17
years old.

Next, we use Linguistic Inquiry and Word Count
(LIWC) (Pennebaker et al., 2001) to capture the psy-
cholinguistics features. LIWC has 93 features, of
which 69 are categorized into: Standard Linguistic
Dimensions (e.g., pronouns, past tense), Psycho-
logical Processes (e.g., social processes), Personal
concerns (e.g., money, achievement), and Spoken
Categories (e.g., assent, nonfluencies) (Uchendu
et al., 2019). Table 3 includes top-3 distinguished
LIWC features among all generation methods. A
high LIWC-Authentic score means that the author
of the text is honest or less evasive. We can observe
that GPT and XLNET generates more personal con-
tent than GPT2 and FAIR. LIWC-Analytic reflects
the formality, and logical nature of the text. GPT2,



Human
Machine

Measure CTRL GPT GPT2 GROVER XLM XLNET PPLM FAIR
# of samples 1,066 1,066 1,066 1,066 1,066 1,066 1,066 1,066 1,066

AVG word count 432.31 530.03 345.03 199 356.76 441.32 452.58 228.89 250.42
SD word count 270.82 73.51 10.79 74.15 114.96 34.67 32.59 64.13 39.94

AVG sentence count 26.87 33.02 32.64 15.68 21.64 3.97 5.02 13.53 17.53
SD sentence count 19.49 21.18 5.55 6.99 9.65 1.71 1.97 4.61 4.88

Table 2: Summary statistics of nine generated texts (one by human and eight by neural methods).

Measure Human
Machine

AVG
CTRL GPT GPT2 GROVER XLM XLNET PPLM FAIR

Flesch Reading Ease 37.97 60.97 68.68 54.49 46.63 46.40 48.94 44.97 51.85 51.21
Flesch-Kincaid Grade 12.79 9.58 8.48 10.27 11.53 11.64 11.28 11.66 10.76 10.89

LIWC-Authentic 25.3 54.28 61.66 15.1 23.76 48.06 80.69 34.27 18.77 40.21
LIWC-Analytic 89.81 51.99 40.93 92.59 89.98 78.61 50.46 73.18 92.89 73.38
LIWC-Article 7.98 1.47 3.18 11.87 8.69 0.59 2.03 2.6 10.05 5.38

Entropy 7.81 8.98 8.01 6.52 7.79 8.99 8.91 7.77 7.41 8.02

Table 3: Linguistic features of nine generated texts.

GROVER, and FAIR scores are as high Human,
suggesting that they all generate sophisticated texts.
LIWC-Article shows the usage of a, an, the, which
are crucial in any formal writing. Similar to LIWC-
Analytic, GPT2, GROVER, and FAIR score simi-
lar to Human. Overall, the patterns among these
LIWC features follow our observations that GPT2,
GROVER and FAIR generally have higher news
generation quality than other machine algorithms.
Finally, we also measure the entropy scores of gen-
erated texts (Schürmann and Grassberger, 1996).
Figure 1 shows the 2-dimensional distribution of
generated texts using Principal Component Anal-
ysis (PCA) on all psycholinguistic features, with
about 70% explained variation. As we can observe
a large overlapped portion among generated texts.
We expect a non-linear machine learning model
(e.g., Random Forest) would perform better than a
linear method such as Naive Bayes in classifying
the texts according to their generators using these
features.

5 Model Architecture

In solving three problems, we compare various
relatively-simple neural models’ performances, em-
ploying different architectures to encode generated
texts into representation vectors, which then feed
into a fully connected network followed by a soft-
max layer for prediction. Note that our goal is not
to develop sophisticated neural models to solve
three problems. Rather, we want to empirically
evaluate how these simple neural models (as base-

Figure 1: Distribution of generated texts on 2-
dimensions using PCA.

lines) perform in solving three problems.

1. Embedding: This model maps each word in
the generated texts to a vector of 300 dimen-
sions, then sums up all resulting vectors as the
final representation.

2. RNN: This model uses a variant of recurrent
neural network (RNN) with a GRU (Cho et al.,
2014) layer to model the sequential depen-
dency among words within each of the gener-
ated texts.

3. Stacked CNN: This model is inspired by
(Zhang et al., 2015), where each of generated
texts is encoded by a sequence of six 1D con-
volutional layers of different kernel sizes. We
reduced learning rates from 0.001 to 0.01/0.1.



4. Parallel CNN: Similar to Stacked CNN, but
instead of using a stack of convolutional lay-
ers, we adopt (Kim, 2014) and use four paral-
lel 1D convolutional layers of different kernel
sizes, followed by a max pooling and concate-
nation operation.

5. CNN-RNN: This is a combination of
Stacked CNN and RNN where each word of a
text is first encoded by a stack of two 1D con-
volutional layers before being input into each
step of a GRU layer to model the sequential
dependency of the whole text.

Experimenting with these neural models, we
split the dataset into the training, validation, and
testing parts in 7:1:2 ratio.

6 P1: Same Method or Not

The first version of the problem is to determine
whether two given texts are generated by the same
method (including human writers) or not. Even
if one cannot pinpoint whom the author is for a
given text, one may still notice similarities between
texts. Therefore, P1 tests the varying capabilities
of models to detect such similarities between the
two texts.

We prepare two datasets of a similar size. In
the balanced set, half of text pairs are generated by
the same method (e.g., Human-Human or CTRL-
CTRL), and the other half are random pairs of
the two different methods (e.g., Human-CTRL or
GROVER-FAIR). In the imbalanced set, 11% of
text pairs are generated by the same method, while
the remaining 89% are by different methods (1:8
ratio). Model-wise, we utilize the Siamese neural
network (Koch et al., 2015) with one of the text
encoders in Section 5 to predict whether the two
input texts are generated by the same method. Ta-
ble 4 summarizes the performances. Both RNN
and CNN-RNN methods perform the best in the
balanced and imbalanced settings, respectively. Re-
call that the imbalanced setting is more challenging
than the balanced as # of positive samples is much
smaller. Overall, neural models can identify two
texts generated by the same method very well for
the balanced setting (F1=0.9813) and reasonably
well for the imbalanced setting (F1=0.7869).

7 P2: Human vs. Machine

The second version of the problem determines
whether a given text is generated by human or ma-

chine (i.e., one of the neural methods). P2 is a type
of the Turing Test. Despite the recent advancements
in neural NLG methods, we hypothesize that there
may still be latent differentiating characteristics be-
tween human-written and machine-generated texts.
Therefore, P2 tests the varying capabilities of dif-
ferent models to detect such differences between
human and machine writings.

For P2, in addition to five neural models intro-
duced in Section 5, we also tested three known
Turing Test models including RoBERTa (Liu et al.,
2019) using a similar implementation of GPT2
Output Detector8, GROVER-DETECT (Zellers
et al., 2019)9, and RoBERTa-tuned, which is the
RoBERTa that we fine-tuned using 20% of our data.
RoBERTa is fine-tuned by adding a classification
layer on top of it. Next, the weight of the clas-
sification layer is randomly initialized and then
trained on the GPT2 output and human written text
10. Further, we utilize the 20% of the target data
we collected to fine-tune the RoBERTa classifica-
tion model. Note that GROVER-DETECT used in
our experiment was trained using only 5K training
samples, while its improved version trained with
100K samples is not publicly available. Addition-
ally, GLTR is another state-of-the-art Turing tester
used to distinguish machine-generated texts from
human-generated texts (Gehrmann et al., 2019),
although not used in these experiments.

Furthermore, in this setting, we tested both in-
dividual case (i.e., one neural method at a time)
and collective case (i.e., eight neural methods com-
bined). First, we prepare eight test sets for the
individual case, each of which is the balanced test
set between human (50%) vs. one neural genera-
tor (50%). Table 5 summarizes the performances
in those eight individual test sets. For the collec-
tive case, on the other hand, we prepare two test
sets. In the balanced set, the half of tests are writ-
ten by human and the other eight neural methods
generates the other half. In the imbalanced set,
11% of test texts are written by human, while the
remaining 89% are generated by any of the eight
neural methods (1:8 ratio). Table 6 summarizes
the performances in both balanced and imbalanced
settings.

In Table 5, we find that GPT2 generates texts that
are almost indistinguishable from human-written

8https://github.com/openai/gpt-2-output-
dataset/tree/master/detector

9https://github.com/rowanz/grover/tree/master/discrimination
10https://github.com/openai/gpt-2-output-dataset/



Model
Balanced (1:1) Imbalanced (1:8)

P R F1 P R F1
Embedding 0.9006 0.8683 0.8841 0.5148 0.7531 0.6116

RNN 0.9748 0.9879 0.9813 0.5439 0.8695 0.6692
Stacked CNN 0.9509 0.9747 0.9626 0.6269 0.9269 0.7479
Parallel CNN 0.9545 0.9852 0.9696 0.6004 0.8319 0.6974
CNN-RNN 0.9572 0.9750 0.9660 0.6847 0.9248 0.7869

Table 4: P1: Binary classification performance of “Same Method or Not” on two collective test sets.

Model CTRL GPT GPT2 GROVER XLM XLNET PPLM FAIR AVG
Embedding 0.9768 0.9838 0.4044 0.6628 0.6535 0.6551 0.8449 0.5178 0.7124

RNN 1.0 0.9930 0.6329 0.9977 0.9977 1.0 0.9466 0.8812 0.9311
Stacked CNN 0.9792 0.9815 0.6347 0.9977 0.9907 0.9186 0.6457 0.6316 0.8475
Parallel CNN 1.0 0.9977 0.6075 0.9536 1.0 1.0 0.9513 0.9282 0.9298
CNN-RNN 1.0 0.9861 0.6626 0.9977 0.9699 0.9907 0.7949 0.7018 0.8880
RoBERTa 0.6448 0.6404 0.6407 0.6448 0.6490 0.7185 0.6404 0.6404 0.6524

RoBERTa-tuned 0.9730 0.9881 0.9792 0.8894 0.9921 0.9850 0.9796 0.9753 0.9702
GROVER-DETECT 0.7753 0.7319 0.6976 0.8135 0.6929 0.7536 0.7761 0.7616 0.7503

AVG 0.9186 0.9128 0.6574 0.8696 0.8682 0.8777 0.8236 0.7547

Table 5: P2: Binary classification performance in F1 score of “Human vs. Machine” on eight individual test sets.
Each column name X indicates an individual balanced test set of HUMAN (50%) and X (50%).

texts (having the lowest average F1=0.6574 across
eight models). FAIR is the second (F1=0.7547).
Interestingly, we find that RoBERTa-tuned can
still differentiate human-written texts from GPT2-
generated ones with a high F1 score (0.9792) and
has the highest average F1 (0.9702) across all eight
datasets. This is likely so because RoBERTa-tuned
is fine-tuned on two doses of GPT2 texts (i.e.,
RoBERTa was already fine-tuned on GPT2 dataset
to begin with).

For the performance of collective cases shown in
Table 6, RoBERTa-tuned is again the overall win-
ner. It can differentiate human-written vs. machine-
generated texts with F1=0.9152 for the balanced
setting and F1=0.8489 for the imbalanced setting.
Two existing Turing Test models (i.e. GROVER-
DETECT and RoBERTa) significantly underper-
form, although RoBERTa aces in Recall.

8 P3: Authorship Attribution

The third version of the problem is to single out the
real author of a given text, among many alternatives
(e.g., one human and k neural methods). Therefore,
P3 tests different models’ varying capabilities to ex-
ploit both similarities within and differences across
human and machine writings.

For P3, in addition to five neural models in-
troduced in Section 5, we also tested four clas-
sical machine learning models (i.e., Naive Bayes,

Decision Tree, SVM, and Random Forest) using
psycholinguistic features discussed in Section 4
and four state-of-the-art AA solutions, including
POS+CNN-LSTM and POS+LSTM-LSTM (Jafari-
akinabad et al., 2019), 3-grams + SVM (Sari et al.,
2018) and Character n-gram + SVM (Stamatatos,
2017). Neural methods such as Embedding, RNN,
and CNN-RNN used GloVe word embedding (Pen-
nington et al., 2014), but Stacked CNN and Par-
allel CNN did not use GloVe due to its negative
impact on performance.

Table 7 summarizes the performance results.
Surprisingly, the overall winner is Random For-
est, outperforming all five neural models and four
existing AA methods. As to per-class F1 scores,
Random Forest, a robust non-linear model, accu-
rately solved the AA problem across all nine test
sets (one human and eight neural generators). Most
generated texts were relatively easy to identify their
authorship, giving up high F1 scores (especially
the generators such as CTRL, GPT, XLM, XLNET,
and PPLM).

The most challenging test set turns out to be
both Human and GROVER that yields relatively
low average F1 scores across all of classical, neu-
ral, and existing AA models (0.5423 and 0.5542,
respectively). Also, interestingly, neural classifiers
are able to classify FAIR very accurately unlike
classical or existing AA models, while classical



Model
Balanced (1:1) Imbalanced (1:8)

P R F1 P R F1
Embedding 0.4922 0.4877 0.4899 0.4555 0.5274 0.4770

RNN 0.7625 0.7611 0.7611 0.8242 0.6956 0.7390
Stacked CNN 0.7592 0.7592 0.7592 0.6585 0.7252 0.6816
Parallel CNN 0.9125 0.9118 0.9120 0.8370 0.8458 0.8413
CNN-RNN 0.7314 0.7315 0.7314 0.8198 0.7162 0.7546
RoBERTa 0.4949 0.9540 0.6517 0.1090 0.9540 0.1957

RoBERTa-tuned 0.9196 0.9109 0.9152 0.9229 0.7859 0.8489
GROVER-DETECT 0.8100 0.5590 0.6610 0.3337 0.5591 0.4180

Table 6: P2: Binary classification performance of “Human vs. Machine” on two collective test sets.

Human
Machine

AVG
Model CTRL GPT GPT2 GROVER XLM XLNET PPLM FAIR

Naive Bayes 0.4668 0.9812 0.9835 0.4830 0.1901 0.9858 0.9810 0.9448 0.1812 0.6886
Decision Tree 0.7376 0.9835 0.9696 0.7239 0.6682 0.9837 0.9858 0.9626 0.5770 0.8435

SVM 0.8038 0.9953 0.9953 0.8048 0.7426 0.9953 0.9976 0.9742 0.6792 0.8876
Random Forest 0.8122 1.0 0.9953 0.7850 0.8169 1.0 0.9906 0.9860 0.7465 0.9042

Embedding 0.5727 0.9581 0.9688 0.7785 0.1080 0.9589 0.9026 0.7424 0.9900 0.7756
RNN 0.4190 0.9932 0.9906 0.7659 0.6295 0.9953 0.9929 0.8238 1.0 0.8456

Stacked CNN 0.3415 0.9518 0.9638 0.7511 0.6603 0.9662 0.9104 0.8009 0.9950 0.8157
Parallel CNN 0.5020 0.9790 0.9638 0.7579 0.6499 0.9976 0.9953 0.7582 1.0 0.8448
CNN-RNN 0.6366 0.9730 1.0 0.8038 0.5664 0.9813 0.9739 0.7942 1.0 0.8589

POS+CNN-LSTM 0.5868 0.6777 0.9109 0.7132 0.4798 0.8910 0.6845 0.8467 0.5689 0.7066
POS+LSTM-LSTM 0.2378 0.6746 0.8654 0.6512 0.4628 0.7572 0.6505 0.7520 0.5876 0.6266

3-grams + SVM 0.6992 1.0 1.0 0.6821 0.6579 1.0 0.9929 0.8165 0.6483 0.8330
Character n-gram + SVM 0.7008 1.0 1.0 0.6835 0.6534 1.0 0.9929 0.8114 0.6410 0.8314

AVG 0.5423 0.9360 0.9698 0.7218 0.5542 0.9633 0.9270 0.8366 0.7396

Table 7: P3: multi-class classification performance with per-class macro F1 (for each column) and overall average
F1 scores of models (for each row).

models, especially Random Forest and SVM, per-
form better for tough test sets such as GROVER
and Human.

9 Discussion

9.1 P1: Same Method or Not

As expected, we find that the balanced setting
yields significantly higher F1 scores across five
neural models than the imbalanced setting. How-
ever, P1 is still nontrivial to solve, especially in
the imbalanced setting, as can be seen in Figure 1,
where many machine-generated texts are shown to
be linearly inseparable. Furthermore, from Table
3 and Section 4, we can see that while some gen-
erators generate similar texts, all generated texts
still possess distinct qualities that are leveraged in
P1, achieving F1=0.9813 in the balanced setting.
It is harder to grasp these distinct characteristics
when looking at a single piece of text. As such, the
comparison of two texts in the setting of P1 offers
an advantage to the task.

9.2 P2: Human vs. Machine

We find that RoBERTa-tuned often outperforms
neural classifiers in the individual human vs. ma-
chine setting, except for the case of GROVER (Ta-
ble 5). RoBERTa-tuned outperforms all competing
models in distinguishing machine texts from hu-
man texts, incredibly well on GPT2 texts (achiev-
ing F1=0.9792), probably due to sufficient train-
ing on GPT2 data. Next, we find that GROVER-
DETECT underperforms in classifying the other
machine-generated texts in Table 5, but performs
well on Human vs. GROVER achieving the F1
score of 0.8135. This is because it was trained to
detect GROVER-generated texts. For the collec-
tive settings, however, both RoBERTa and Paral-
lel CNN have similar F1 scores, while outperform-
ing the rest by significant margins.

9.3 P3: Authorship Attribution

For this setting, in Table 7, we compare different
settings, including (1) the use of GloVe word em-
bedding with Embedding, RNN, and CNN-RNN;
(2) no word embedding with Parallel CNN and
Stacked CNN; (3) the use of linguistic features



with classical learning algorithms; and (4) n-grams
and POS-tags with state-of-the-art AA methods.
In this task, we learn that the more accessible
generators to classify are CTRL, XLM, and XL-
NET, while the harder ones are Human, GROVER,
FAIR, and GPT2. This can be seen in Tables 5 and
3, where the more demanding generators under-
perform, and score highly in LIWC-Analytic and
LIWC-Article, respectively. This is vice versa for
the more accessible generator. We also find that
the linguistic features effectively solve P3, slightly
better than state-of-the-art AA solutions, and (sim-
ple) neural classifiers. The top stylistic features
are word count, article, period, word-per-sentence
count, auxiliary verb, preposition, comma. We
expect this result will change in the future when:
(1) the quality of machine-generated texts improve,
losing revealing linguistic cues, and (2) neural mod-
els are trained better with an enormous amount of
data and more powerful architectures.

One may wonder if some results with high F1
scores to solve P3 in Table 7 are simply due to the
fact that different generators tend to generate texts
on different topics (with non-overlapping word us-
age, thereby affecting embedding to neural mod-
els). In addition, while we only attempt to collect
our articles from the domain of “politics,” some
other domains may have been added unintention-
ally. However, when we solve P3 using the combi-
nation of bigram and trigram models with top-20
LDA-extracted topics, we achieve only 0.38 as the
overall average F1 score. Therefore, we believe
that simple topical analysis of generated texts can-
not solve P3 well.

10 Conclusion

We have conducted comprehensive experiments on
three versions of the Authorship Attribution (AA)
problem: (1) the same method or not, (2) human vs.
machine (Turing Test), and (3) who is the author.
Notable findings from our empirical evaluation in-
clude: (1) not all neural text generation methods
generate high-quality human-mimicking texts–in
particular, GPT2, GROVER, and FAIR generated
better-quality texts and (2) using specific linguistic
features and simple neural architectures, we can
solve three problems reasonably well, except GPT2
and FAIR in P2 and GROVER in P3.
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Balanced #train #valid #test
P1 68,896 7,656 19,139
P2 2,985 426 853
P3 6,825 881 1,888

Imbalanced #train #valid #test
P1 62,157 6,907 17,266
P2 6,825 881 1,888

Table 8: Details on Train, Validation and Test Set Splits

A Reproducibility

A.1 Implementation, Infrastructure,
Software, and Data

We run all experiments using either P100 or Titan
Xp GPU card on a standard server machine with
16GB of RAM. We utilize deep learning platform
Ludwig (v.0.2.1) with Tensorflow (v.1.15.0) back-
end to develop and evaluate all text classification
models in the paper. For classical ML, we utilize
scikit-learn (v.0.22.1) library. All implementations
are done using python language (v.3.0). For gener-
ating text, we adopt various models implementation
provided by huggingface11, PPLM12, grover13, and
Fairseq14 Github repo. To extract LIWC features,
we utilize the LIWC2015 software (v.1.6.0)15.

A.2 Data and Preprocessing

We generate all the text following the description
in Section 3. Since the generated text of some ma-
chine algorithms includes artificial tokens such as
<eos> and <sos>, we remove these tokens from
the results. We also ensure that the prompts (i.e.,
article titles) are appended to every generated ar-
ticle. For P3, we use all the generated text by 9
methods (human and eight machine algorithms),
resulted in a dataset with balanced label distribu-
tion. For P1, creating datasets generators’ pairs is
a combinatorial problem, which will create a very
large dataset. Instead, we sample from each possi-
ble pairs of generators K samples while maintain-
ing the relative distribution among them, resulting
in the imbalanced dataset. Then, we adjust K and
under-sample negative samples with 1:8 ratio to cre-
ate the balanced dataset for P1. For P2, we curated
the imbalanced dataset from P3, with 1 human and
8 machine generators. Then, we under-sample neg-
ative sample with 1:8 ratio to create a balanced

11https://github.com/huggingface
12https://github.com/uber-research/PPLM
13https://github.com/rowanz/grover
14https://github.com/pytorch/fairseq
15https://liwc.wpengine.com

dataset for P2. For each task P1, P2 and P3, we
then split to train, validation and test set with 7:1:2
ratio. Table 8 summarizes statistics of datasets used
for each task in balanced and imbalanced scenario,
respectively. Also, using language check, a python
package for detecting and correcting grammatical
errors, we found that most generators had less than
a 3% grammatical error rate, except for XLM that
had a 14% error rate.

A.3 Running Time
All experiments take an average running time of
around 2 minutes for each training epoch. Depend-
ing on the text encoders being utilized, and one
training epoch can take as low as 10 seconds (Em-
bedding model) to as long as 8 minutes (CNN-RNN
model).

A.4 Training and Model’s Parameters
For each of neural network models tested in the
paper, we use various text encoders to learn vector
representations of input texts (Section 5), results
of which are then input into a fully connected net-
work (FCN) with Dropout followed by a softmax
layer to make prediction. Table 9 describes the
training hyper-parameters and various models’ ar-
chitectures. We train all neural network models
using Adam optimizer (Kingma and Ba, 2014) with
default parameters.

Parameter Value
Max Words 500

Vocabulary Size 20,000
Early Stop 2
Batch Size 256

Learning Rate 0.01
Adam Optimizer β1: 0.9, β2: 0.999, ε: 1e-08
Embedding Size 300

Stacked CNN Kernel Sizes 7, 7, 3, 3, 3 and 3
Stacked CNN Pool Sizes 3, 3, 3, 3, 3, and 3

Parallel CNN Kernel Sizes 2, 3, 4 and 5
RNN Hidden Size 256

FCN Layers (before Softmax) 256 - 256
Dropout 0.5

Table 9: Model’s Parameters and Training’s Hyper-
Parameters

A.5 Evaluation Metrics
We use standard Precision (P), Recall (R), and F1
score as the main evaluation metrics throughout the
paper. We first construct a confusion matrix and
calculate those scores as follows.

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2

P ∗R
P +R

where TP is True Positive, FP is False Positive, FP
is False Positive and FN is False Negative predic-
tions.
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