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A B S T R A C T

The proliferation of fake news on social media has the probability to bring an unfavorable
impact on public opinion and social development. Many efforts have been paid to develop
effective detection and intervention algorithms in recent years. Most of the existing propagation-
based fake news detection methods focus on static networks and assume the whole information
propagation network structure is accessible before performing learning algorithms. However, in
real-world information diffusion networks, new nodes and edges constantly emerge. Therefore,
in this paper, we introduce a novel temporal propagation-based fake news detection framework,
which could fuse structure, content semantics, and temporal information. In particular, our
model can model temporal evolution patterns of real-world news as the graph evolving under
the setting of continuous-time dynamic diffusion networks. We conduct extensive experiments
on large-scale real-world datasets and the experimental results demonstrate that our proposed
model outperforms state-of-the-art fake news detection methods.

. Introduction

In recent years, people increasingly tend to consume news from social media platforms rather than from traditional news
ources (Shu, Sliva, Wang, Tang, & Liu, 2017). The online social media platforms such as Twitter,1 Facebook,2 and Sina Weibo3

ave increased the ease of information propagation. However, social media platforms offer the probability for the rapid spread of
isinformation and disinformation by expediting the speed and scope (Sharma et al., 2019). Compared to traditional news media,

he absence of effective regulatory and fact-checking measures over posts makes fake news can be created and published online
or primary motives of influencing opinions and seeking tempting profits at low cost (Bondielli & Marcelloni, 2019; Kumar & Shah,
018). As a result, the platforms become a fertile ground for the spread of fake news (Zhang & Ghorbani, 2020).

The wide propagation of fake news will confuse and manipulate public opinions, change the way people respond to facts, and
ven pose a serious threat to society (Guo, Ding, Yao, Liang, & Yu, 2020). Studies in social psychology have shown that humans
re irrational and vulnerable in discerning between true and false news (Zhou, Zafarani, Shu, & Liu, 2019). Thus, to increase the
rustworthiness of online social networks and mitigate negative impacts caused by fake news, fake news detection and proactive
ntervention strategies for social media, especially after 2016 U.S. presidential election, have received lots of attention from both
ocial network platforms and academic communities (Li, Zhang, Du, Ma, & Wang, 2021; Meel & Vishwakarma, 2020). The users
f Sina Weibo can report possible fake posts to a special microblog community management center, and then the posts will be
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Fig. 1. Left: temporal propagation network of a piece of social media news. Each Twitter bird icon denotes a tweet. Each arrow represents a share or retweet
with an associated timestamp. Right: static propagation network of a piece of social media news. Each arrow represents a share or retweet without an associated
timestamp.

manually checked by professionals (Cao et al., 2018). On Facebook, users are encouraged to flag false content or news that are
potentially suspicious and anomalous (Del Vicario et al., 2016). Some well-known fact-checking websites such as FactCheck.org4

and PolitiFact.com5 solely depend on manual identification by a small group of highly credible fact-checkers and can provide
highly accurate results. However, manual fact-checking is labor-intensive and has difficulty in scaling with the volume of emerging
fake news (Zhao, Da, & Yan, 2021; Zhou, & Zafarani et al., 2019). Therefore, it is important to detect fake news effectively with
computational approaches.

Many existing content-based models utilize deep neural networks to learn latent textual or visual feature representation of
fake news, and heavily rely on semantic information (Goldani, Momtazi, & Safabakhsh, 2021; Zhang, Fang, Qian, & Xu, 2019).
However, currently content-based approaches face several challenges. First, as fake news is intentionally written to mislead readers
by mimicking true news, it is difficult to efficiently detect and contrast them solely from news content (Shu, Mahudeswaran, Wang,
& Liu, 2020). Second, the interpretation of the news usually lacks the necessary background knowledge such as social context,
common sense (Monti, Frasca, Eynard, Mannion, & Bronstein, 2019). The currently most advanced natural language processing
algorithms still fail to capture that. Previous studies have observed that fake news presents different propagation patterns from
true news, which means that the propagation network of news on social networks can be leveraged to verify the given news (Shu,
Mahudeswaran, Wang, Lee, & Liu, 2020; Si et al., 2020; Vosoughi, Roy, & Aral, 2018). Moreover, it is difficult for the individual
users to control the spread patterns of news on social networks, which implies that propagation-based approaches may have better
robustness (Monti et al., 2019). Hence, an increasing number of researchers have begun to investigated that the network of tweets
and retweets relationships for each news article on social media and how it can help to infer which articles are fake in the past few
years (Lu & Li, 2020; Tu et al., 2021; Vu & Jung, 2021; Wei, Xu, & Mao, 2019; Wu, Pi, Chen, Xie, & Cao, 2020). They have gained
great success in the task of online fake news detection.

Despite some early promising results, most of the propagation-based fake news detection methods focus on static networks and
assume the whole underlying information propagation network structure is accessible before performing learning algorithms (Jian,
Li, & Liu, 2018). However, in real-world information diffusion networks, new nodes and edges constantly emerge over time. Fig. 1
illustrates the difference between temporal and static news propagation networks. As shown in Fig. 1 (left), we see that news
issemination graph is evolving in the temporal graph over time, and users spreading behaviors happening at time point t1, t2, t3,
nd t4. But, in Fig. 1 (right), a static graph only captures the graph structure without continuous temporal dynamic process. Recently
tudies have shown that temporal engagement features of users can boost the accuracy of fake news detection model (Lukasik,
ohn, & Bontcheva, 2015; Ma, Gao, Wei, Lu, & Wong, 2015; Nguyen, Sugiyama, Nakov, & Kan, 2020; Ruchansky, Seo, & Liu,
017; Zhang, Cook, & Yilmaz, 2021; Zhou, Shu, Li, & Lau, 2019). Fig. 2 displays the average number of and cumulative average
umber of tweets on three real-world datasets used in this paper. Obviously, fake news and real news show differences in temporal
ropagation patterns. However, if applying existing fake news detection methods directly to the temporal news propagation graphs,
e have to treat them as static networks by neglecting dynamic and continuously evolving nature of real-life news propagation
etworks (Kleinberg, 2006; Ma, Guo, Ren, Tang, & Yin, 2020; Tang, 2012). Therefore, it is necessary to develop time-aware models
hat help to capture the missing temporal information in static networks, and may provide unique opportunities to understand how
o discriminate between fake and real news.

In this paper, a novel temporal propagation-based fake news detection framework, Temporally Evolving Graph Neural Network
or Fake News Detection (TGNF), is proposed. First, to model temporal propagation patterns of news, we leverage the temporal graph
ttention neural networks (TGAT) (Rossi et al., 2020; Xu, Ruan, Korpeoglu, Kumar, & Achan, 2020) to capture its dynamic structure,
ontent semantics, and temporal information in the process of news dissemination. Specifically, we model news propagation using
he continuous-time dynamic graphs (CTDG) rather than discrete-time dynamic graphs (DTDG) (i.e., static graph snapshots), the
eason of which is that the news propagation graph in social networks are naturally continuous and evolving over time as new
odes and edges are introduced to the graph continuously (Chow, Ye, Zha, & Zhou, 2018; Gomez-Rodriguez & Schölkopf, 2012;
aito, Kimura, Ohara, & Motoda, 2009; Xu, & Ruan et al., 2020). Second, inspired by adversarial learning (Goodfellow et al., 2014),

4 http://factcheck.org/.
5 https://www.politifact.com/.
2

http://factcheck.org/
https://www.politifact.com/


Information Processing and Management 58 (2021) 102712C. Song et al.

T
c

Fig. 2. (a) The average number of tweets for Weibo dataset at different timestamps; (b) The cumulative average number of tweets for Weibo dataset at different
timestamps; (c) The average number of tweets for FakeNewsNet dataset at different timestamps; (d) The cumulative average number of tweets for FakeNewsNet
dataset at different timestamps; (e) The average number of tweets for Twitter dataset at different timestamps; (f) The cumulative average number of tweets for
Twitter dataset at different timestamps.

we designed the temporal difference network (TDN) to enable the model to concentrate on and capture the variational information
between interactions rather than similar. In summary, the contributions of this paper include the following several aspects:

• In this paper, we study a novel problem of temporal propagation-based fake news detection task, which aims to fuse topological
structure, content semantics, and temporal information from the perspective of continuous time.

• We propose a replacednovelnew fake news detection framework using temporal graph neural network with adversarial learning
to jointly capture the temporal evolution patterns of the news diffusion, and the variational information between interactions.

• We conduct extensive experiments on three real-world datasets and experimental results show that the proposed model
outperforms state-of-the-art methods.

2. Related work

2.1. Fake news detection

Though fake news is not a new phenomenon, it has been attracting increasingly public attention (Allcott & Gentzkow, 2017).
he literature on fake news detection is extensive. In this section, we briefly review the existing work from the following categories:
ontent-based and network-based and fake news detection.
3
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Content-based Fake News Detection. For a news event, its tweets generally include a piece of text to describe it, and several
attached images or videos sometimes (Guo et al., 2020). News content-based features are the most explicit clues for fake news
detection, given that the social media news evaluated are primarily textual in nature (Agichtein, Castillo, Donato, Gionis, & Mishne,
2008; Bondielli & Marcelloni, 2019; Song et al., 2019). The prerequisite of news content-based fake news detection is that the
content of fake news should be somewhat different from truth in some quantifiable way (Sharma et al., 2019; Zhou, & Zafarani
et al., 2019). Some early studies investigated the linguistic features of news content such as lexical features, syntactic features, and
topic features, then designed a set of manual linguistic cues to determine the authenticity of the given news (Castillo, Mendoza,
& Poblete, 2013; Rubin, Chen, & Conroy, 2015; Sejeong, Meeyoung, Kyomin, Wei, & Yajun, 2013). However, these methods have
difficulty not only in generalizing hand-crafted linguistic features across topics, languages, and domains but also in utilizing the rich
semantic and contextual information (Sharma et al., 2019).

To address the drawbacks of linguistics-based methods, the deep neural networks-based methods such as recurrent neural
network (RNN) (Alkhodair, Ding, Fung, & Liu, 2020; Chen, Li, Yin, & Zhang, 2018; Liu & Wu, 2018), convolutional neural networks
(CNN) (Ajao, Bhowmik, & Zargari, 2018; Goldani, Safabakhsh, & Momtazi, 2021; Yu, Liu, Wu, Wang, & Tan, 2017), variational
autoencoders (VAEs) (Cheng, Nazarian, & Bogdan, 2020; Khattar, Goud, Gupta, & Varma, 2019), and attention mechanism (Chen,
Sui, Hu, & Gong, 2019; Guo, Cao, Zhang, Guo, & Li, 2018) have been widely explored in recent years, because these methods can
automatically learn latent textual representation and capture complex contextual patterns of news content. Ma et al. presented the
first work that suggests the use of deep learning techniques for identifying fake news (Ma et al., 2016). The input of their method is
tf-idf feature but it shows better performance than the methods leveraging hand-crafted features. Wang et al. proposed a CNN-based
model to classify fake news (Wang, 2017). Specifically, it obtains the word vector from pre-trained word2vec embeddings (Mikolov,
Sutskever, Chen, Corrado, & Dean, 2013) and experimental results show that the method achieves better detection accuracy
than traditional machine learning-based methods. Several studies attempt to leverage the conflicting viewpoints to facilitate the
detection (Tian et al., 2020; Zubiaga et al., 2018). Inspired by adversarial learning (Goodfellow et al., 2014), Ma et al. proposed a
generative adversarial networks (GAN)-style method, which use an additional text generator to pressurize the discriminator to learn
strong indicative representations (Ma, Gao, & Wong, 2019). By exploiting the user responses to a target claim, stance information
is proved to be a strong indicator for fake news detection (Dungs, Aker, Fuhr, & Bontcheva, 2018; Kochkina, Liakata, & Zubiaga,
2018; Ma, Gao, & Wong, 2018a). Recently, scholars also explored news content-based fake news detection in various way such as
domain adaption (Silva, Luo, Karunasekera, & Leckie, 2021), knowledge enhance (Cui et al., 2020; Dun, Tu, Chen, Hou, & Yuan,
2021), temporal pattern analysis (Ruchansky et al., 2017), and weak supervision learning (Liu & Wu, 2020; Shu, & Zheng et al.,
2020).

A group of recent approaches utilizes visual cues extracted from the attached images or videos (Cui, Wang, & Lee, 2019;
Vishwakarma, Varshney, & Yadav, 2019; Xu, Zeng, & Mao, 2020). News with visual information is likely to attract much more
attention from social media users and thus gains a greater range of information dissemination (Qi, Cao, Yang, Guo, & Li, 2019).
Jin et al. first proposed a RNN-based automatic multimodal fake news detection model to fuse the visual and textual information
of the post using an attention mechanism (Jin, Cao, Guo, Zhang, & Luo, 2017). Wang et al. proposed a multi-task learning model
to learn textual and visual transferable feature representations among all the posts with the goal of doing with non-transferable
event-specific features (Wang et al., 2018). Zhou et al. presented a novel fake news method considering the correlations across the
modalities (Zhou, Wu, & Zafarani, 2020).
Network-based Fake News Detection. Network-based fake news detection utilizes lots of interactions among users or content such
as commenting, retweeting, and following in news propagation (Huang, Zhou, Wu, Wang, & Wang, 2019; Liu, Jin, & Shen, 2019;
Yuan, Ma, Zhou, Han, & Hu, 2020). Understanding the propagation patterns of fake news is of paramount importance as it provides
useful insights for identification of fake news (Silva, Han, Luo, Karunasekera, & Leckie, 2020; Zannettou, Sirivianos, Blackburn, &
Kourtellis, 2019; Zhou, Xiu, Wang, & Yu, 2021). Both homogeneous networks and heterogeneous networks can be constructed to
model the propagation of news (Shu et al., 2017).

Homogeneous networks consist of a single type of nodes and edges (Zhou & Zafarani, 2019). By analyzing the diffusion of false
and true news in Twitter in eleven years from the perspective of homogeneous graph, Vosoughi et al. find that false news propagates
faster, farther, and more broadly when compared to truth (Vosoughi et al., 2018). Ma et al. adopted top-down and bottom-up tree-
structured RNN to incorporate textual features and propagation structure features (Ma, Gao, & Wong, 2018b). Similarly, Bian et al.
proposed a novel bi-directional graph convolutional network model to learn the representation of content semantics and diffusion
graph of news (Bian et al., 2020).

Heterogeneous networks contain multiple types of nodes or edges (Zhou & Zafarani, 2019). Yuan et al. jointly encodes the local
semantic and global structure of the diffusion graph based on a heterogeneous graph constructed posts, comments, and users (Yuan,
Ma, Zhou, Han, & Hu, 2019). Huang et al. proposed a meta-path-based heterogeneous graph attention network framework to capture
global semantic relations of text contents (Huang, Yu, Wu, & Wang, 2020). To improve robustness of graph-based detector, Yang et al.
first model the rich information of entities through a heterogeneous information network, and then use a special graph adversarial
learning framework to force their model to learn more distinctive structure features (Yang et al., 2020). Nguyen et al. proposed an
inductive heterogeneous graph representation framework, Factual News Graph (FANG), which can effectively exploit social structure
and engagement patterns of users for fake news detection (Nguyen et al., 2020).

In general, our research falls into the homogeneous network-based fake news detection. Different from all the aforementioned
work based on static networks, our study aims to classify social media news from the perspective of temporal diffusion networks
i.e., dynamic networks).
4
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2.2. Dynamic Graph Neural Networks

In recent years, we have witnessed many successful deep graph learning techniques (i.e., Graph Neural Networks (GNN)) as their
bility to model complex relationships and inter-dependencies on graphs (Han et al., 2021). The nodes in the network represent
ntities, and the edges indicate relationships among those entities (Holme, 2015). Many real-life complex systems, such as social
etworks, recommender systems, can be characterized by complex dynamic networks (Gergely, Albert-László, & Tamás, 2007; Holme
Saramäki, 2012). However, most of the prevalent GNN-based models have assumed that the underlying graph is static while

gnored its temporal evolution (Rossi et al., 2020). Hence, it would be of special advantages to perform inference on graphs in a
emporal dynamic manner.

The dynamic graphs generally include discrete-time dynamic graphs (DTDG) and continuous-time dynamic graphs (CTDG)
Kazemi et al., 2020). In particular, DTDG are usually represented as a sequence of static graph snapshots at different time steps.
he basic idea of the DTDG-based deep graph representation learning algorithms is to learn node embedding by aggregating the

nformation of graph snapshots (Lu, Wang, Shi, Yu, & Ye, 2019; Manessi, Rozza, & Manzo, 2020; Sankar, Wu, Gou, Zhang, & Yang,
020). The CTDG-based approaches aim at capturing the temporal evolution pattern of the network and dynamically learning node
mbedding in continuous time (Kumar, Zhang, & Leskovec, 2019; Trivedi, Farajtabar, Biswal, & Zha, 2019; Zhang et al., 2020).

Most of the existing CTDG-based neural network models are more suitable for the task of temporal node classification on a
ingle dynamic graph. However, the propagation-based fake news detection task is usually formulated as the task of temporal graph
lassification on different dynamic graphs. Considering the differences between them, we proposed our method by introducing a
pecial TDN and graph convolutional network to improve the existing continuous graph neural network models.

. Problem formulation

Let  = ( , ) be an unweighted static graph representing a news propagation network.  = {𝑣1, 𝑣2,… , 𝑣 } is the set of nodes
and  = {𝑒1, 𝑒2,… , 𝑒} is the set of edges, where 𝑣𝑖 represents a tweet,  represents the number of relevant tweets in , and 
denotes the number of the observed interaction events. 𝐡𝑖 ∈ R𝑑 is the feature representation of tweet 𝑣𝑖. Each edge 𝑒𝑖𝑗 ∈  denotes
ode 𝑣𝑖 has a response to 𝑣𝑗 , and also can be formulated as an unweighted adjacency matrix  = (𝑎𝑖𝑗 )× , where

𝑎𝑖𝑗=
{

1 𝑖𝑓 𝑒𝑖𝑗 ∈ 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

imilar to static graph, a continuous dynamic news propagation network (𝑡) = ((𝑡), (𝑡)) consists of nodes set (𝑡) =
𝑣(𝑡1)1 , 𝑣(𝑡2)2 ,… , 𝑣

(𝑡 (𝑡))
 (𝑡)

} and edges set (𝑡) = {𝑒(𝑡1)1 , 𝑒(𝑡2)2 ,… , 𝑒
(𝑡(𝑡))
(𝑡) } at time 𝑡. Each node 𝑣(𝑡𝑖)𝑖 ∈ (𝑡) indicates that the tweet 𝑣𝑖 is

ublished as time 𝑡𝑖. Each edge 𝑒(𝑡𝑥)𝑖𝑗 ∈  means that node 𝑣𝑖 has a response to 𝑣𝑗 at time point 𝑡𝑥. Specifically, to learn the temporal
epresentation of each node, the response behavior (i.e., 𝑒(𝑡𝑥)𝑖𝑗 ) is modeled as an interaction event between node 𝑣𝑖 and node 𝑣𝑗 .
(𝑡) = |(𝑡)| is the total number of tweets at time 𝑡. (𝑡) = |(𝑡)| is the total number of interaction events (i.e., reply or retweet)

t time point 𝑡. 𝐡𝑖(𝑡) ∈ R𝑑 is the feature representation of tweet 𝑣𝑖 at time 𝑡. (𝑡) = (𝑎𝑖𝑗 (𝑡)) (𝑡)× (𝑡) is the adjacency matrix of (𝑡) at
ime point 𝑡, where

𝑎𝑖𝑗 (𝑡)=
{

1 𝑖𝑓 𝑒𝑖𝑗 ∈ (𝑡)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

hen 𝑡 = 𝑡𝑚𝑎𝑥,  = (𝑡𝑚𝑎𝑥),  = (𝑡𝑚𝑎𝑥),  = (𝑡𝑚𝑎𝑥), and  =  (𝑡𝑚𝑎𝑥). (𝑡) is associated with a ground-truth label 𝑦 ∈ {0, 1}
escribing its veracity, where 𝑦 = 0 indicates 𝐺(𝑡) is true news, and 𝑦 = 1 means 𝐺(𝑡) is fake news. We formulate the fake news
etection problem in this paper as follows.
roblem Definition: Given a temporal news propagation graph (𝑡) = ((𝑡), (𝑡)), the goal is to learn a mapping function
∶  ((𝑡)) → 𝑦̂ to classify the veracity labels of (𝑡) by tracking the corresponding chronological interaction events.

. Model

.1. Model framework

In this subsection, we provide a brief model framework help readers to understand the proposed method easily. Fig. 3 shows
ow the model works in three different time points (i.e., 𝑡1, 𝑡2, 𝑡3). The models at different time points are connected in series, for
xample, the model at time point 𝑡2 is obtained by continuing to train on the basis of the model at time point 𝑡1. The main goal
f this study is to build a temporal or streaming fake news detection model. More exactly, we aim to model dynamic propagation
atterns of social media news along with new nodes join the network continuously and new edges being created at any time.
herefore, the model should be able to output the prediction results at any time point. For each time point, the model first produces
he raw feature representation (i.e., (𝑡) = [𝐡𝑖(𝑡),… ,𝐡 (𝑡)(𝑡)]) of each node of (𝑡) using input embeddings. Then, the sum of (𝑡)
nd (𝑡) = {𝐬1(𝑡),… , 𝐬 (𝑡)(𝑡)} is fed into the temporal graph attention network to obtain the nodes’ temporal feature representation
f (𝑡) at time point 𝑡 (i.e., ̃(𝑡) = [𝐡̃𝑖(𝑡),… , 𝐡̃ (𝑡)(𝑡)]), where (𝑡) represents the memory vectors of nodes, and ⨁ means additive
peration. The temporal memory module store temporal interaction information between different nodes and update the memory
ectors of these nodes. Next, ̃(𝑡) is piped to the graph convolutional layer (GCL) to update the information of the neighbor nodes.
t last, we average the embeddings of the nodes with the mean pooling operation, followed by a feed-forward neural network (FFN)

ayer and a softmax layer for prediction. Specifically, we design the TDN to help temporal graph attention network to focus on the
ariational information between interactions.  is the loss of the TDN.
5
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Fig. 3. The proposed model framework.

4.2. Temporal embedding network

Recently, there has been growing interest in generalizing representation learning techniques to temporal graphs. Among them,
TGAT is an effective general inductive representation learning framework for dynamic graphs. TGAT is first proposed by Xu, and
Ruan et al. (2020), and then further improved by Rossi et al. (2020). In this subsection, we describe the single-layer TGAT network
architecture without considering edge features. In particular, to improve the training efficiency, TGAT is trained with batches of
interaction data rather than learn node representation from a sequence of interactions by processing one interaction after the
other, which follows previous work (Kumar et al., 2019). If you are interested in the full model, especially batch training, we
refer the reader to Kumar et al. (2019), Rossi et al. (2020) and Xu, and Ruan et al. (2020) for a more detailed explanation of the
model. The input and output of the Temporal Embedding Network are a temporal news diffusion graph (𝑡) and corresponding time-aware
representation ̃𝑖(𝑡), respectively.
Input Embeddings. The input embedding layer aims to produce a raw feature representation for a given tweet (i.e., node 𝑣(𝑡𝑖)𝑖 ).
First, we convert each word of 𝑣(𝑡𝑖)𝑖 to a sequence of pretrained word vectors:

[𝝎1,… , 𝜔𝑗 ,…] ← WordEmbed(𝑣(𝑡𝑖)𝑖 ) (3)

where 𝜔𝑗 ∈ R𝑑 . Second, we average the embeddings of the word vectors to obtain the raw node feature representation 𝐡𝑖(𝑡) ∈ R𝑑

of node 𝑣(𝑡𝑖)𝑖 .
Time Encoding Function. The functional time encoding is an important theoretical basis of temporal graph attention. Inspired by
the classic harmonic analysis, Xu et al. convert the challenge of learning functional time encoding to the kernel and distributional
learning problems (Xu, & Ruan et al., 2020). It can map time from the time domain to the 𝑑𝑡 dimensional vector space (Kazemi
et al., 2019; Li et al., 2020; Rossi et al., 2020), and learn representations on temporal graphs by combining with self-attention
mechanism (Vaswani et al., 2017). Same to (Rossi et al., 2020; Xu, & Ruan et al., 2020), the time encoding function of given time
𝑡 can be defined as follows.

𝝋 (𝑡) = cos
(

𝐰𝑡 × 𝑡 + 𝐛𝑡
)

(4)

where 𝐰𝑡 ∈ R𝑑𝑡 and bias term 𝐛𝑡 are learned parameters, and 𝝋 (𝑡) ∈ R𝑑𝑡 .
emporal Graph Attention. We provide a brief introduction to TGAT used in this paper. Similar to GraphSAGE (Hamilton, Ying, &
eskovec, 2017) and GAT (Veličković et al., 2018), the TGAT layer can be considered to be a local aggregation operator. The input
f TGAT layer is features and timestamps of a node and its temporal neighborhood, and its output is the time-aware representation
or the node at time 𝑡. Given a target node 𝑣(𝑡𝑖)𝑖 , its temporal neighbor nodes is defined as follows.

Neigh
(

𝑣(𝑡𝑖)𝑖 ; 𝑡
)

=
{

𝑣(𝑡𝑖1)𝑖1 , 𝑣(𝑡𝑖2)𝑖2 ,… , 𝑣(𝑡𝑖𝑏)𝑖𝑏

}

(5)

where, 𝑏 is the number of its temporal neighbor nodes. Here, 𝐡𝑖(𝑡) ∈ R𝑑 is the features of node 𝑣(𝑡𝑖)𝑖 at time 𝑡, and
{

𝐡𝑖1
(

𝑡1
)

,𝐡𝑖2
(

𝑡2
)

,
… ,𝐡𝑖𝑏

(

𝑡𝑏
)}

∈ R𝑑 (𝑡𝑁 ≤ 𝑡) is the features of its neighbor nodes at time 𝑡. As the TGAT only pays attention to the timespan (i.e., relative
time difference), according to Eq. (4), the time encodings of node 𝑣(𝑡𝑖)𝑖 and its neighbor nodes are denoted by 𝝋 (0) ∈ R𝑑𝑡 , and
𝜑
(

𝑡 − 𝑡1
)

, 𝜑
(

𝑡 − 𝑡2
)

,… , 𝜑
(

𝑡 − 𝑡𝑏
)}

∈ R𝑑𝑡 , respectively. Different from the graph attention network (GAT) proposed by Veličković
t al. (2018), TGAT adopt the scaled dot-product attention. The Queries, Keys and Values can be defined as follows.

⎧

⎪

⎨

⎪

𝐐(𝑡) = [𝐡𝑖(𝑡) ∥ 𝝋 (0)]𝐖𝑄
𝐊(𝑡) = [𝐡𝑖1

(

𝑡1
)

∥ 𝜑
(

𝑡 − 𝑡1
)

,𝐡𝑖2
(

𝑡2
)

∥ 𝜑
(

𝑡 − 𝑡2
)

,… ,𝐡𝑖𝑏
(

𝑡𝑏
)

∥ 𝜑
(

𝑡 − 𝑡𝑏
)

]𝐖𝐾
𝐕(𝑡) = [𝐡

(

𝑡
)

∥ 𝜑
(

𝑡 − 𝑡
)

,𝐡
(

𝑡
)

∥ 𝜑
(

𝑡 − 𝑡
)

,… ,𝐡
(

𝑡
)

∥ 𝜑
(

𝑡 − 𝑡
)

]𝐖
(6)
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where ∥ is concatenate operation, 𝐖𝑄 ∈ R(𝑑𝑡+𝑑)×𝑑ℎ , 𝐖𝐾 ∈ R(𝑑𝑡+𝑑)×𝑑ℎ and 𝐖𝑉 ∈ R(𝑑𝑡+𝑑)×𝑑ℎ are trainable weight matrices, which are
esigned to capture the interactions between time encoding and node features. According to self-attention mechanism proposed
y Vaswani et al. (2017), the self-attention function of TGAT is defined as follows.

Attention(𝐐(𝑡),𝐊(𝑡),𝐕(𝑡)) = sof tmax(𝐐(𝑡) ×𝐊(𝑡)⊤∕
√

𝑑𝑡 + 𝑑) × 𝐕(𝑡) (7)

The output of above self-attention function is the hidden neighborhood representations 𝐡̂𝑖(𝑡) ∈ R𝑑ℎ . To combine the aggregated
information with the target node representation, the target node features and the neighborhood representation are fed into an FFN
layer to obtain the final time-aware representation 𝐡̃𝑖(𝑡) of the target node 𝑣(𝑡𝑖)𝑖 at time 𝑡:

𝐡̃𝑖(𝑡) = FFN(𝐡̂𝑖(𝑡) ∥ (𝐡𝑖(𝑡) ∥ 𝝋 (0)))

= ReLU([𝐡̂𝑖(𝑡) ∥ (𝐡𝑖(𝑡) ∥ 𝝋 (0))]𝐖𝑖 + 𝐛𝑖)𝐖́𝑖 + 𝐛́𝑖
(8)

where 𝐖𝑖 ∈ R(𝑑𝑡+𝑑+𝑑ℎ)×𝑑𝑓 , 𝐖́𝑖 ∈ R𝑑𝑓×𝑑ℎ , 𝐛𝑖 and 𝐛́𝑖 are bias term, and 𝐡̃𝑖(𝑡) ∈ R𝑑ℎ . Note that 𝑑𝑓 = 𝑑𝑡 = 𝑑ℎ = 𝑑 in this paper and Eq. (7)
can extended to the multi-head setting. Hence, the self-attention function of 𝑗th head is:

𝐡̂(𝑗)𝑖 (𝑡) = Attention(𝑗)(𝐐(𝑡),𝐊(𝑡),𝐕(𝑡)) 𝑗 = 1, 2,… , 𝑘 (9)

Then, under the setting of the multi-head attention, Eq. (8) is also changed to:

𝐡̃𝑖(𝑡) = FFN(𝐡̂𝑖(𝑡) ∥ (𝐡𝑖(𝑡) ∥ 𝝋 (0)))

= FFN[(𝐡̂(1)𝑖 (𝑡) ∥ ⋯ ∥ 𝐡̂(𝑘)𝑖 (𝑡)) ∥ (𝐡𝑖(𝑡) ∥ 𝝋 (0))]
(10)

Temporal Memory Module. We introduce the details of temporal memory module (TMM) proposed by Rossi et al. (2020). TMM
assumes that, for each node 𝑣(𝑡𝑖)𝑖 , there exists a memory vector 𝐬𝑖(𝑡) to store history interactive memory in a compressed format. It
should be noted that memory of each node is initialized as a zero vector. The memory vector 𝐬𝑖(𝑡) is updated after node 𝑣(𝑡𝑖)𝑖 interact
with another node. For example, an interaction event 𝑒𝑖𝑗 (𝑡) between node 𝑣(𝑡𝑖)𝑖 and node 𝑣(𝑡𝑗 )𝑗 at time 𝑡 can be saved as a message
vector:

𝐦𝑖(𝑡) = [𝐬𝑖(𝑡−) ∥ 𝐬𝑗 (𝑡−) ∥ 𝜑(𝛥𝑡)] ∈ R(2𝑑+𝑑𝑡) (11)

where ∥ is concatenate operation, 𝐬𝑖(𝑡−) ∈ R𝑑 and 𝐬𝑗 (𝑡−) ∈ R𝑑 are the memory vector of node 𝑖 and node 𝑗 before time 𝑡, 𝛥𝑡 is the
timespan between node 𝑣(𝑡𝑖)𝑖 and node 𝑣(𝑡𝑗 )𝑗 (i.e., 𝛥𝑡 = |𝑡𝑗 − 𝑡𝑖|). Then, the memory vector of node 𝑣(𝑡𝑖)𝑖 at time 𝑡 can be updated by a
memory update function:

𝐬𝑖(𝑡) = GRU(𝐦𝑖(𝑡), 𝐬𝑖(𝑡−)) ∈ R𝑑 (12)

In order to improve computational efficiency, TMM uses batch processing to capture memory vectors of 𝑏 previous interaction events
at the same time, which can be defined as an aggregation function:

𝐦̄𝑖(𝑡) = Agg(𝐦𝑖(𝑡1),… ,𝐦𝑖(𝑡𝑏)) ∈ R(2𝑑+𝑑𝑡) (13)

where 𝑡1,… , 𝑡𝑏 ≤ 𝑡. In particular, aggregation operation can keep only most recent message vectors or average all message vectors
for a given node 𝑣(𝑡𝑖)𝑖 . In fact, experimental results of the above two ways are similar, which is consistent with the findings of Rossi
et al. (2020). Therefore, under the setting of batch processing, the memory update function is changed to:

𝐬𝑖(𝑡) = GRU(𝐦̄𝑖(𝑡), 𝐬𝑖(𝑡−)) ∈ R𝑑 (14)

The memory vectors the nodes in (𝑡) can be represented as (𝑡) = {𝐬1(𝑡),… ,
𝐬 (𝑡)(𝑡)}. We have pointed out that the memory vectors of each node is initialized as a zero vector. For example, when a node 𝑣(𝑡𝑖)𝑖
appears for the first time, the feature of 𝑣(𝑡𝑖)𝑖 input to TGAT layer is its raw features (i.e., 𝐡𝑖(𝑡) ∈ R𝑑), and for all the nodes of (𝑡),
it can be denoted as:

(𝑡) ← (𝑡) + (𝑡) (15)

When node 𝑣(𝑡𝑖)𝑖 appears in next batch at time point 𝑡, the features are:

𝐡̃𝑖(𝑡) ← 𝐡̃𝑖(𝑡) + 𝐬𝑖(𝑡) (16)

Therefore, for all the nodes of (𝑡), it can be denoted as:

̃(𝑡) ← ̃(𝑡) + (𝑡) (17)

As previously discussed, TGAT is trained with batches of interaction data, as opposed to individual interaction. For each batch,
TGAT will produce or update the node embeddings of the temporal graph (𝑡), which can be denoted as:

̃𝑖(𝑡) = (𝐡̃1(𝑡), 𝐡̃2(𝑡),… , 𝐡̃ (𝑡)(𝑡)) (18)

where ̃𝑖(𝑡) represents the node embeddings of temporal graph (𝑡) after processed by the 𝑖th batch. Noticeably, the same node may
7
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Fig. 4. The flow of operations of temporal embedding network.

batch simultaneously, we just need to choose the output of the latest one as node embeddings. In this paper, batch size equals the
number of temporal neighbor nodes 𝑏. Note that the batch size of TGAT indicates the number of the interactions in a batch for a
piece of news, instead of the number of news. Assuming that there exist 𝑛 batches for each news, the final node embeddings of (𝑡𝑚𝑎𝑥)
s ̃𝑛(𝑡𝑚𝑎𝑥). Fig. 4 shows the computations performed by temporal embedding network on a bath of training examples. For each
nteraction at some time point 𝑡𝑖, the network first produces the feature representation of each node (𝐡̃𝑗 (𝑡𝑖)) using input embeddings
via Eq. (3)) and just updated memory (via Eq. (16)). Since node 1 and node 2 appear in the same batch twice, 𝐬1(𝑡1) = 𝐬1(𝑡2) and
2(𝑡1) = 𝐬2(𝑡3), and 𝐡̃1(𝑡1) = 𝐡̃1(𝑡2) and 𝐡̃2(𝑡1) = 𝐡̃2(𝑡3). Then, 𝐡̃∗(𝑡∗) are fed into TGAT, which outputs an embedding for each node by
ncoding temporal interaction events. At last, each interaction between nodes is used to update the corresponding nodes’ memory.

.3. Temporal difference network

As the training of TGAT network using batches of data, intuitively, we hope TGAT to pay close attention to variational information
etween batches rather than similar. Inspired by adversarial learning (Goodfellow et al., 2014), we designed the TDN to force TGAT
o focus on the information. First, after the temporal embedding network embed node representation of (𝑡) for batch 𝑖, we employ
ean-pooling operators to aggregate information from ̃𝑖(𝑡), which can be formulated as follows.

𝐒𝑖 = MeanPooling(̃𝑖(𝑡)) (19)

here MeanPooling indicates mean-pooling operation. The temporal difference loss between batch 𝑖 and 𝑖 + 1 is defined as:

𝑖 = 𝜓(𝐒𝑖,𝐒(𝑖+1)) (20)

here 𝜓(⋅) denotes cosine similarity measure, and 1 ≤ 𝑖 ≤ 𝑛 − 1. Thus, the loss of the TDN can be denoted as:

𝑑 = 1
𝑛 − 1

∑

1≤𝑖≤𝑛−1
𝑖 (21)

4.4. News predictor

We have introduced the main modules of this paper in the previous section. Next, we first average the nodes’ embeddings
̃𝑛(𝑡𝑚𝑎𝑥):

𝐒𝑚𝑎𝑥 = MeanPooling(̃𝑛(𝑡𝑚𝑎𝑥)) ∈ R𝑑 (22)

where MeanPooling indicates the mean-pooling operation. Then, 𝐒𝑚𝑎𝑥 is fed into an FFN layer and a softmax layer to make a
prediction. Therefore, the news predictor is defined as:

𝑦̂ = sof tmax
(

𝜎[𝐒𝑚𝑎𝑥𝐖𝑚𝑎𝑥 + 𝐛𝑚𝑎𝑥]
)

(23)

where 𝐖𝑚𝑎𝑥 ∈ R𝑑×2 is trainable weight matrices, 𝐛𝑚𝑎𝑥 is a bias term, and 𝜎(⋅) is the TanH activation function. 𝑦̂ =
[

𝑦̂0, 𝑦̂1
]

denotes
he probability of given a piece of news is true (i.e., 𝑦̂0 = 0) or fake (i.e., 𝑦̂1 = 1). For each news, we adopt binary cross-entropy loss
unction to define the loss function 𝑐

(

𝛩𝑐
)

as follows.

𝑐
(

𝛩𝑐
)

= −𝑦 log
(

𝑦̂1
)

− (1 − 𝑦) log
(

𝑦̂0
)

(24)

here 𝛩 is the learned parameters of the model.
8
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4.5. Graph convolutional layer

In our model, a node usually represents a tweet, retweet, or reply, and the interaction between each pair of nodes only happens
nce. Accordingly, the newly emerging interaction could change the topological structure of the graph and influence their neighbor
odes. However, it is undesirable to update the information of the neighbor nodes for each interaction, which will largely increase
he computational complexity of the model and contrary to the purpose of batch processing (Kumar et al., 2019). In order to alleviate
he drawbacks, we have adopted a trade-off strategy that the information diffusion graphs of news could be fed into a two layer of
CL (see Appendix A) to update the information of the influenced nodes when the temporal embedding network has already converged

in the training procedure. It can be formulated as:
{

̃𝑛(𝑡𝑚𝑎𝑥) = GCL(1)((𝑡𝑚𝑎𝑥), ̃𝑛(𝑡𝑚𝑎𝑥)) ∈ R𝑑
̃𝑛(𝑡𝑚𝑎𝑥) = GCL(2)((𝑡𝑚𝑎𝑥), ̃𝑛(𝑡𝑚𝑎𝑥)) ∈ R𝑑𝑔 (25)

In fact, GAT is also acceptable, and their performance is very similar. The reason why we set the layer of GCL as 2 is that it shows
better and stable performance. Then, the news predictor can be defined as:

𝑦̂ = log sof tmax
(

̃𝑛(𝑡𝑚𝑎𝑥)𝐖𝑔𝑐𝑙 + 𝐛𝑔𝑐𝑙
)

(26)

where 𝐖𝑔𝑐𝑙 ∈ R𝑑𝑔×2 is the learned transformation matrix, and 𝐛𝑔𝑐𝑙 is bias vector. Its binary cross-entropy loss function is defined as
follows.

𝑔
(

𝛩𝑔
)

= −𝑦 log
(

𝑦̂1
)

− (1 − 𝑦) log
(

𝑦̂0
)

(27)

where 𝛩𝑔 is the parameters of the GCL layers, and 𝑦̂ =
[

𝑦̂0, 𝑦̂1
]

denotes the probability of given a piece of news is true (i.e., 𝑦̂0 = 0)
or fake (i.e., 𝑦̂1 = 1).

4.6. Model integration

In this work, we adopt two-stage training strategy to learn the proposed model’s parameters. The first step is to minimize the
following loss function:

(𝛩𝑐 ) = 𝑐 (𝛩𝑐 ) + 𝜆 × 𝑑 (28)

where 𝜆 is a hyper-parameter and used to balance the importance between 𝑐 and 𝑑 . When the temporal embedding network has
already converged, we freeze the parameters of temporal embedding network and remove TDN, and then feed the output of temporal
embedding network to GCL layer. Next, by minimizing the loss of Eq. (27), we can get the final prediction results for each news.
In this paper, we adopt the stochastic gradient algorithm and choose Adam as the optimizer to train and to optimize the proposed
framework.

5. Experiments

In the following subsections, we first provide a brief introduction of the datasets used in the experiments. Second, we describe
the model settings. Third, we introduce a series of state-of-the-art baseline fake news detection approaches. Finally, we make
comparisons between the model and baseline methods on three datasets, and then bring an detail analysis for experimental results.

5.1. Datasets

We conduct extensive experiments on three representative real-world and publicly available datasets constructed from Twitter
and Sina Weibo. These datasets contain the temporal information, propagation path, and text content. Some important statistics of
three datasets are summarized in Table 1.

• Weibo: This dataset is first presented in Ma et al. (2016) for rumor classification, and crawled from Sina Weibo, the most
popular social media site in China. The raw dataset consists of 2351 ture news and 2312 fake news. Due to limited GPU
resource, we removed some news with nodes more than 2000. After removing these news, the number of news actually used
in the experiments is shown in Table 1.

• FakeNewsNet: The dataset is developed by Shu, and Mahudeswaran et al. (2020). The news content is crawled from two
fact-checking platforms: GossipCop6 and PolitiFact.7 The tweets related to a news are collected from Twitter API. We removed
the news with missing text and timestamp. After preprocessing the dataset, the number of news actually used in this work is
shown in Table 1.

• Twitter: The Twitter dataset is released by Ma, Gao, and Wong (2017). In fact, it includes two datasets (i.e., twitter15 and
twitter 16). We selected non-rumors and true rumors of twitter15 and twitter16 as real news and fake news, respectively. We
preprocessed Twitter dataset with the way same to Weibo and FakeNewsNet datasets.

For the three datasets, we treat the source tweet, retweets, and replies as nodes, and the interactions between them as edges.
The creation time of edges is associated with the time of retweets or replies.

6 https://www.politifact.com/.
7 https://www.gossipcop.com/.
9
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Table 1
The statistics of datasets.

Statistic Weibo FakeNewsNet Twitter

# of fake news 2,131 2,079 578
# of real news 2,207 2,089 569
# of users 1,309,645 45,109 29,858
Avg. time length 1577 h 1951 h 158 h
Avg. # of tweets 378 42 30
Max. # of tweets 1999 1315 323
Min. # of tweets 10 3 2

5.2. Experimental setup

As in previous research (Bian et al., 2020; Huang, Zhou, Wu, Liu, & Bin, 2020), we split the entire data randomly into 5 equal
ubsamples, and then conduct 5-fold cross-validation to evaluate the model performance. We consider using a pretrained Google
ERT model to get word vectors (i.e., 𝑑 = 𝑑𝑡 = 𝑑ℎ = 768) (Devlin, Chang, Lee, & Toutanova, 2019). We set 𝑑𝑔 as 64. The head
umber of self-attention function in TGAT is set as 2, which follows the default settings of Rossi et al. (2020) and Xu, and Ruan
t al. (2020). The hyper-parameter 𝜆 is set as 5𝑒−4. We set the number of temporal neighbor nodes and epochs as 𝑏 = 10 and 200,
espectively. The learning rate is set to 1𝑒−5. We choose accuracy, precision, recall, and the 𝐹1 score as evaluation metrics, which
re widely adopted in related areas (Shu, Cui, Wang, Lee, & Liu, 2019; Shu et al., 2017; Song, Ning, Zhang, & Wu, 2021).

.3. Baseline approaches

We make comparisons with a series of baseline fake news detection methods:

• DTC (Castillo, Mendoza, & Poblete, 2011): A decision-tree-based method that employs various handcrafted features to classify
fake news.

• SVM-RBF (Yang, Liu, Yu, & Yang, 2012): A support vector machine (SVM)-based method with radial basis function (RBF)
kernel, which employs a series of statistics features from the tweets to identify fake news.

• SVM-TS (Ma et al., 2015): A linear SVM-based classifier that leverages time series modeling techniques to capture the temporal
characteristics.

• RvNN (Ma et al., 2018b): A rumor classification method based on tree-structured recursive neural networks integrate the text
content and propagation structure features using GRU units.

• StA-HiTPLAN (Khoo, Chieu, Qian, & Jiang, 2020): A transformer-networks-based fake news detection methods that incorpo-
rates time delay and propagation structure information to model long distance interactions between tweets.

• GAT (Veličković et al., 2018): It is a state-of-the-art representation learning framework but cannot utilize temporal information.
The layer of GAT is set to 2, and the dimension of hidden state and output features are 768 and 64. Its output is fed into an
FFN layer and a softmax layer to make the final prediction.

• GCN (Kipf & Welling, 2017): is similar to GAT. The parameter settings are same to GAT.
• VAE-GCN (Lin, Zhang, & Fu, 2020): A Variational Graph Autoencoder (VGAE)-style fake news detection methods based on

GCN.
• BiGCN (Bian et al., 2020): A static graph-based fake news detection model that utilizes top-down and bottom-up GCN to learn

the patterns and structures of news diffusion.
• STS-NN (Huang, & Zhou et al., 2020): A propagation-based fake news detection framework based on deep spatial temporal

neural network.

DTC, SVM-TS, and SVM-RBF are content-based methods, and they feed the hand-engineered features to a traditional machine
earning model to verify the given news. The others are propagation-based methods integrating both network structure and content
emantics information. To make fair comparisons, the baseline methods use pre-trained Bert word vectors (Devlin et al., 2019),
ather than TF-IDF values. The reason why we did not choose TF-IDF features are that the goal of this paper is to build a streaming
ake news detection model, thus taking TF-IDF features may limit the ability of the model to scale with the volume of newly emerged
vents.

.4. Results and analysis

In this subsection, we present comparisons against several state-of-art fake news detection methods to demonstrate the
ffectiveness of the proposed method. The news classification results of different methods on three datasets are shown in Tables 2–4.
rom these tables, we can yield several insights as follows.

• Generally, we can observe that the TGNF outperforms all baselines in terms of accuracy and F1 score across various benchmark
datasets with statistical significance, which shows the importance of temporal propagation information in verifying the
authenticity of news.
10



Information Processing and Management 58 (2021) 102712C. Song et al.
Table 2
News classification results on Weibo dataset.

Method Accuracy Fake news Real news

Precision Recall F1 Score Precision Recall F1 Score

DTCa 0.809 0.806 0.813 0.810 0.812 0.806 0.809
SVM-RBFa 0.823 0.824 0.820 0.822 0.821 0.825 0.823
SVM-TSa 0.859 0.825 0.891 0.850 0.871 0.818 0.836
RvNNb 0.896 0.904 0.883 0.893 0.889 0.909 0.899
StA-HiTPLANb 0.870 0.869 0.866 0.867 0.871 0.874 0.872
GATb 0.931 0.924 0.937 0.931 0.939 0.926 0.932
GCNb 0.932 0.923 0.940 0.931 0.941 0.924 0.933
VAE-GCNb 0.906 0.907 0.902 0.904 0.906 0.911 0.908
BiGCNb 0.933 0.928 0.939 0.930 0.940 0.929 0.930
STS-NNb 0.912 0.912 0.908 0.910 0.911 0.915 0.913

TGNFb 0.968c 0.962c 0.975c 0.969c 0.974c 0.960c 0.967c

aAre content-based methods.
bAre propagation-based methods.
cDenotes the test of statistical significance 𝑝 < 0.01.

Table 3
News classification results on FakeNewsNet dataset.

Method Accuracy Fake news Real news

Precision Recall F1 Score Precision Recall F1 Score

DTCa 0.782 0.780 0.783 0.782 0.783 0.780 0.781
SVM-RBFa 0.788 0.786 0.789 0.787 0.789 0.786 0.788
SVM-TSa 0.811 0.808 0.796 0.791 0.828 0.820 0.809
RvNNb 0.828 0.827 0.796 0.801 0.818 0.857 0.829
StA-HiTPLANb 0.800 0.802 0.794 0.798 0.797 0.805 0.801
GATb 0.885 0.886 0.883 0.884 0.884 0.887 0.885
GCNb 0.873 0.872 0.874 0.873 0.874 0.873 0.873
VAE-GCNb 0.865 0.865 0.863 0.864 0.864 0.866 0.865
BiGCNb 0.889 0.890 0.888 0.889 0.888 0.891 0.890
STS-NNb 0.858 0.867 0.847 0.857 0.848 0.868 0.858

TGNFb 0.935c 0.937c 0.932c 0.935c 0.933c 0.928c 0.931c

aAre content-based methods.
bAre propagation-based methods.
cDenotes the test of statistical significance 𝑝 < 0.01.

• Deep learning based methods perform better than those methods based traditional machine learning. This is due to the fact
that, deep learning algorithms can capture more complex patterns automatically than the methods using hand-craft features,
and then can contribute to the prediction.

• Noticeably, though BiGCN shows better performance in three datasets, there is no clear winner among all the baseline
approaches. However, one thing is certain is that these models based on GNN often achieve competitive results to traditional
deep learning algorithms across three datasets, despite being unknown to temporal information. This is an indication that the
propagation-based models have better robustness.

• We see that a slight decay in performance for all the models on Twitter dataset. One possible reason is that there are a large
number of retweets in the Twitter dataset, and their node representation is the same as the source node. Strikingly, as our
model can capture the temporal propagation information, it still outperforms baseline approaches by a significant margin,
and achieve relative improvement of 5.8%, 5.7% in terms of Accuracy and F1 on Twitter dataset, comparing with GAT. These
results further demonstrate the necessity of modeling the temporal interaction information to discern between true and fake
news.

5.5. Ablation study

In this subsection, we conduct experiments to comprehend the effect of the key modules on TGNF. More specifically, we make
comparisons with the following variants of the TGNF by removing some modules in the model:

• TGNF w/o TDN: In this variant, we remove the TDN module from the model in the model training stage.
• TGNF w/o GCL+TDN: In this variant, we do not use the GCL module and TDN module in the learning phase of the model,

and only consider news predictor in section 4.4.

The performance of these variants are summarized in Tables 5–7. We can make the following observations:
11
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Table 4
News classification results on Twitter dataset.

Method Accuracy Fake news Real news

Precision Recall F1 Score Precision Recall F1 Score

DTCa 0.704 0.717 0.683 0.699 0.693 0.726 0.709
SVM-RBFa 0.732 0.740 0.724 0.731 0.725 0.741 0.733
SVM-TSa 0.707 0.715 0.698 0.706 0.700 0.717 0.709
RvNNb 0.805 0.818 0.788 0.803 0.793 0.822 0.807
StA-HiTPLANb 0.780 0.777 0.783 0.780 0.782 0.776 0.779
GATb 0.865 0.879 0.849 0.864 0.852 0.882 0.866
GCNb 0.858 0.860 0.855 0.858 0.857 0.861 0.859
VAE-GCNb 0.841 0.847 0.836 0.841 0.836 0.847 0.841
BiGCNb 0.864 0.867 0.862 0.865 0.861 0.866 0.863
STS-NNb 0.834 0.838 0.829 0.834 0.829 0.838 0.833

TGNFb 0.923c 0.932c 0.914c 0.923c 0.914c 0.932c 0.923c

aAre content-based methods.
bAre propagation-based methods.
cDenotes the test of statistical significance 𝑝 < 0.01.

Table 5
Ablation study results on Weibo dataset.

Method Accuracy Fake news Real news

Precision Recall F1 Score Precision Recall F1 Score

w/o TDN 0.959 0.954 0.963 0.958 0.963 0.955 0.959
w/o GCL+TDN 0.947 0.936 0.958 0.947 0.958 0.937 0.947

TGNF 0.968 0.962 0.975 0.969 0.974 0.960 0.967

Table 6
Ablation study results on FakeNewsNet dataset.

Method Accuracy Fake news Real news

Precision Recall F1 Score Precision Recall F1 Score

w/o TDN 0.930 0.928 0.932 0.930 0.933 0.928 0.931
w/o GCL+TDN 0.917 0.918 0.916 0.917 0.916 0.919 0.917

TGNF 0.935 0.937 0.932 0.935 0.933 0.928 0.931

Table 7
Ablation study results on Twitter dataset.

Method Accuracy Fake news Real news

Precision Recall F1 Score Precision Recall F1 Score

w/o TDN 0.916 0.916 0.918 0.917 0.917 0.915 0.916
w/o GCL+TDN 0.908 0.911 0.905 0.908 0.904 0.910 0.907

TGNF 0.923 0.932 0.914 0.923 0.914 0.932 0.923

• As we can see from the results, TGNF outperforms its variants without the GCL module and TDN module, and removing them
will reduce the performance of news classification.

• By comparing the results of the TGNF and w/o TDN, we find that paying attention to the variational information between
interactions can benefit the model’s performance.

• TGNF outperforms w/o GCL+TDN across three datasets, which shows that it is necessary to update the information of the
influenced nodes.

In addition, We conduct experiments on the three datasets to analyze the impact of loss balancing parameter 𝜆 in Eq. (28)
on accuracy. We choose various 𝜆 from the range [5𝑒−1, 5𝑒−2, 5𝑒−3, 5𝑒−4, 5𝑒−5]. In Fig. 5, we reported accuracy results of the TGNF

ithout considering GCL. From Fig. 5, we can see that TDN is parameter sensitive, and can benefit prediction accuracy only if taking
he appropriate parameters settings.

.6. Early fake news detection

In this section, we evaluate the performance of our method and baseline approaches on early fake news detection. Identifying
ake news at the early stage of diffusion can prevent further spreading of fake news, and help to mitigate its negative effect on
12
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Fig. 5. Impact of 𝜆 on accuracy.

hich means that the tweets published after the deadline are invisible. In this experiment, we compare different detection models
y varying check time stamps in the range {0, 10, 20, 30, 40, 50, 60, 70, 80} minutes. Fig. 6 depicts all methods’ Accuracy per time point

on three datasets. From Fig. 6, we can see that TGNF consistently outperforms other baselines in detecting fake news at early stage
across all datasets. In all cases, their early detection Accuracy grows quickly at the early stage of propagation. However, we find
that the performance of our model demonstrates obvious advantage as time goes on.

6. Conclusions

We study the problem of temporal propagation-based fake news detection task. To solve this problem, we introduce a novel
fake news detection architecture named TGNF for temporal news propagation graphs in this paper. Specifically, by modeling the
node’s temporal interaction events, our model can capture dynamic evolution patterns of news propagation from the perspective
of continuous time. We conduct extensive experiments on three real-world datasets and the experimental results demonstrate
the effectiveness of the proposed framework. Our results also show that modeling and incorporating the temporal propagation
information of online social media news can benefit the fake news detection task. However, there are several drawbacks to our
model. First, it is difficult to propagate information to the neighbor nodes per interaction in time. Second, TGNF can only process
several tweets for a piece of news each time, which means that TGNF takes a longer running time than baseline approaches (see
Appendix B). In future work, we will investigate reasonable solutions to these problems. Another interesting future direction is
exploring temporal heterogeneous graphs to incorporate the information social media users.
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Appendix A. Graph convolutional networks

In recent years, deep learning techniques for non-Euclidean domain have gained great progress. Graph convolutional networks
(GCN) are an extension of CNN on graph data, and play a representative role in combining deep learning techniques with graph
data (Defferrard, Bresson, & Vandergheynst, 2016). The emergence of GCN has greatly promoted the development of the task
of applying deep neural networks to graph data. For a multi-layer GCN, the layer-wise propagation rule can be formulated as
follows (Kipf & Welling, 2017).

𝐇𝑙+1 = 𝜎(𝐃̃
1
2 ̃𝐃̃

1
2 𝐇(𝑙)𝐖(𝑙)) (A.1)

where  is the adjacency matrix of the graph , 𝐈 is the identity matrix, ̃ =  + 𝐈 is the adjacency matrix of the graph 
with self-connections,  is the number of nodes in the graph , 𝐃̃𝑖𝑖 =

∑

𝑗 ̃𝑖𝑗 is the laplacian matrix of , 𝐇(𝑙) ∈ R×𝑑𝑙 denotes the
hidden feature matrix output by the (𝑙 − 1)th graph convolutional layer, 𝐖(𝑙) ∈ R𝑑𝑙×𝑑(𝑙+1) is a trainable parameter matrix, and 𝜎(⋅) is
13

the ReLU activation function.
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Fig. 6. (a) Results of early fake news detection on Weibo dataset; (b) Results of early fake news detection on FakeNewsNet dataset; (c) Results of early fake
ews detection on Twitter dataset.

able B.8
omparison of average running time each epoch among some baselines (min).
Method Weibo FakeNewsNet Twitter

GAT 1.1 0.7 0.3
GCN 0.7 0.6 0.2
BiGCN 2.9 1.5 0.8

TGNF 54.2 5.4 12.4

Appendix B. Comparison of the execution time

The static graph-based methods only need to process one completed news propagation graph each time. However, because TGNF
s a temporal evolving graph-based method, temporal embedding network have to read one or a limited number of tweets once time
or a piece of news, and undoubtedly spend more execution time in model running. Table B.8 compares the average running time
f some models on three real world datasets in one epoch.
14
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The reason why we choose these methods is that they are all GNN-based methods and show better performance. All experiments
re conducted on GeForce RTX 2080Ti GPU. From the comparison, we observe that TGNF consistently shows a longer running
ime for each epoch across all the datasets. This is indeed a major drawback of the TGNF. Improving temporal update function in
emporal embedding network is a feasible way to mitigate this problem.
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