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ABSTRACT
Patient risk prediction models are crucial as they enable health-
care providers to proactively identify and address potential health
risks. Large pre-trained foundation models offer remarkable per-
formance in risk prediction tasks by analyzing multimodal patient
data. However, a notable limitation of pre-trained foundation mod-
els lies in their deterministic predictions (i.e., lacking the ability
to acknowledge uncertainty). We propose Gaussian Process-based
foundation models to enable the generation of accurate predictions
with instance-level uncertainty quantification, thus allowing health-
care professionals to make more informed and cautious decisions.
Our proposed approach is principled and architecture-agnostic.
Experimental results show that our proposed approach achieves
competitive performance on classical classification metrics. More-
over, we observe that the accuracy of certain predictions is much
higher than that of the uncertain ones, which validates the uncer-
tainty awareness of our proposed method. Therefore, healthcare
providers can trust low-uncertainty predictions and conduct more
comprehensive investigations on high-uncertainty predictions, ul-
timately enhancing patient outcomes with less expert intervention.
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1 INTRODUCTION
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Figure 1: Pre-trained foundation models fine-tuned for pa-
tient risk prediction tasks. (Top) The conventional fully con-
nected layer only supports deterministic prediction. (Bottom)
Our Gaussian Process layer enables uncertainty-aware pre-
diction. Therefore, healthcare professionals can investigate
uncertain predictions and make cautious decisions.

Risk prediction models assist care providers in identifying pa-
tients at higher risks of future health-related events [24]. These
events could include diseases, medical conditions, complications,
or adverse health outcomes. Accurate risk prediction enables the
implementation of preventative or early intervention measures to
mitigate such risks. With the recent advancement of deep learn-
ing techniques, domain-specialized pre-trained foundation models
(PFMs) [3, 25, 26] offer remarkable performance in risk prediction
tasks by effectively utilizing scarce real-world clinical supervision
signals. Moreover, PFMs can handle a variety of patient data modal-
ities (e.g. textual clinical notes, visual histopathological images).

Pre-trained foundation models refer to large Transformer-based
models [1, 14] that have become the de-facto standard for predictive
and generative tasks with textual, visual, and other modality data.
The successful paradigm is to pre-train PFMs with massive unla-
beled data in pretext tasks and then fine-tune PFMs on a smaller
task-specific dataset [4]. Originally proposed by natural language
processing researchers, the Transformer architecture can effectively
represent input tokens into latent dense vectors (embeddings) via
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the multi-head self-attention mechanism [22]. More modalities are
further expanded by conducting various tokenization procedures in
the input data (e.g. Vision Transformers [6] split each image into a
sequence of patches) with minimum architecture modifications [15].
Therefore, large-scale PFMs with billions of parameters [12] can be
trained with the support of the parallelization of their self-attention
mechanism and powerful hardware accelerators.

Although achieving impressive accuracy in a wide range of pa-
tient risk prediction tasks recently, a notable limitation of PFMs lies
in their deterministic predictions (i.e., lacking the ability to express
its own predictive uncertainty) [5, 19]. Providing uncertainty esti-
mates alongside predictions helps healthcare professionals make
more informed and cautious decisions. It allows them to gauge
the reliability of the model’s predictions and consider the uncer-
tainty when deciding on a course of action for a patient. Conven-
tional statistical models such as Bayesian models [7, 21] provide
uncertainty-aware risk predictions, supported by robust theoretical
bases. However, the drawbacks of these statistical models include
hand-crafted feature engineering and ad-hoc technical designs,
which impose significant challenges when adapting them to new
applications with limited prior knowledge or training samples.

In this work, we propose uncertainty-aware PFMs to improve
trust between predictive models and healthcare professionals. Our
proposed approach is principled and architecture-agnostic. A key
technical contribution is to utilize Gaussian Process Classification
(GPC) [17, 27] as the prediction layer. The original prediction layer
of PFMs is mainly the fully connected layer that assigns determin-
istic probabilities to candidate class labels, which can not provide
uncertainty quantification. A GPC layer is a Bayesian approach that
inherently tackles the quantification of uncertainty. We follow the
dominant learning paradigm to freeze the parameters of PFMs and
only fine-tune our GPC layer on downstream patient risk prediction
tasks. The frozen PFMs serve as the automated feature extractors
based on rich domain-specific prior knowledge. Then the GPC layer
is responsible for learning the mapping from the input embedding
space to the output class space, providing uncertainty quantifica-
tion based on Bayesian inference. To evaluate the performance of
our uncertainty-aware PFM models, we conduct experiments on (a)
one clinical note-based clinical outcome prediction dataset [18] and
(b) one histopathological image-based breast cancer classification
dataset [20]. Each dataset contains thousands of training instances
for fine-tuning the PFMs. Four popular foundation models spanning
text Transformers [16, 23] and vision transformers [6, 13] are tested.
Empirical results demonstrate our uncertainty-aware PFMs achieve
competitive performance to deterministic PFMs on classical classifi-
cation metrics. Moreover, our uncertainty-aware PFMs are capable
of generating stochastic predictions for each test instance, which
naturally reflect the uncertainty levels of predictions. Empirically,
we find the accuracy of certain predictions to be much higher than
that of the uncertain ones, thus validating the uncertainty-aware
property and real-world utility of our proposed approach.

2 PROPOSED APPROACH
2.1 Preliminaries
We focus on the classification setting for patient risk prediction.

Definition 2.1 (Patient Risk Prediction (Classification)). Given a set
of 𝑁 training instances X = {𝑥1, . . . , 𝑥𝑁 } and their corresponding
labels Y = {𝑦1, . . . , 𝑦𝑁 }, a classifier produces a predicted label
𝑦∗ = F(𝑥∗) as the function of any new test instance 𝑥∗.

Empirically, pre-trained foundation models 𝑃𝐹𝑀Θ contain:
(1) A Transformer𝜙𝜃 that represents each input instance 𝑥 in latent

dense vector by h = 𝜙𝜃 (𝑥). Here, h ∈ R1×𝑑 , where 𝑑 denotes
the dimension of Transformer embedding space.

(2) A fully-connected layer 𝑓𝜔 that maps ℎ into the unnormalized
classification output (i.e. logits) by z = 𝑓𝜔 (h). Here, z ∈ R1×𝐶 ,
where 𝐶 denotes number of target classes. A common imple-
mentation for the fully-connected layer is 𝑓𝜔 (h) = hW + b,
where𝑊 ∈ R𝑑×𝐶 and 𝑏 ∈ R1×𝐶 denote learnable parameters 𝜔
of 𝑓𝜔 . Moreover, 𝑓𝜔 can be extended to more complicated forms
when non-linearity is necessary.

The final classification prediction can be expressed as

𝑦 = argmax
𝑐

(Pr(𝑦 = 𝑐 |𝑥)) = argmax
𝑐

( 𝑒z(𝑐 )∑𝐶
𝑐′=1 𝑒

z(𝑐′ )
) . (1)

z(𝑐 ) denotes the 𝑐𝑡ℎ element of the high-dimensional vector z,
which refers to the logits of predicting 𝑥 ’s label as 𝑐𝑡ℎ class. The
cross-entropy loss is employed to fine-tune 𝑃𝐹𝑀Θ:

L(Θ) = −
𝑁∑︁
𝑛=1

1(𝑦𝑛) · log(𝑃𝑟 (𝑦𝑛 |𝑥𝑛)), (2)

where 1(·) is an indicator function that returns the one-hot encod-
ing for the true class label 𝑦𝑛 . Practically, only the parameters 𝜔 of
the fully-connected layer 𝑔𝜔 are updated, while the parameters 𝜃
of the Transformer 𝜙𝜃 are frozen. Fine-tuning only the last layer
allows the PFMs to adapt specifically to the downstream task at
hand without disrupting the general knowledge encoded in the
lower layers. It is also parameter efficient considering the PFMs
often have a large number of parameters. Moreover, it can prevent
overfitting when the scale of the training dataset is limited.

2.2 Gaussian Process Classification Layer to
Enable Uncertainty-Aware Prediction

The fully-connected layer can only generate deterministic point
estimation. Our insight is to employ a Gaussian Process-based [17]
uncertainty-aware layer (GPC layer) g𝛽 to augment PFMs. For GPC
layer capable of generating stochastic distribution estimation, it
still implies Eq.(1). However, z(𝑐 ) now is a random variable, thus
capable of generating stochastic predictions that naturally reflect
instance-level uncertainty through the variance of z𝑐 . Following
the noise case Gaussian Process property,

z(𝑐 ) ∼ 𝐺𝑃𝑐 (𝑚𝑐 (H),K𝑐 (H,H) + 𝛿2𝑐 I), (3)

where H = 𝜙𝜃 (X) ∈ R𝑁×𝑑 denotes embeddings of all training
instances,𝑚𝑐 (·) : R𝑁×𝑑 ↦→ R𝑁×1 and K𝑐 (·, ·) : R𝑁×𝑑 × R𝑁 ′×𝑑 ↦→
R𝑁×𝑁 ′

are the mean function and kernel function of one GP that
corresponds to the logits for 𝑐𝑡ℎ class, 𝛿2 denotes the observation
noise variance, I ∈ R𝑁×𝑁 denotes an identity matrix. According to
Bayes’ theorem, the Gaussian posterior of z(c),∗ for one new test
instance 𝑥∗ can be expressed as

𝑃𝑟 (z(c),∗ |H,Y, h∗) ∼ N (𝜇𝑐,∗, 𝜎𝑐,∗), (4)
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where N(𝜇𝑐,∗, 𝜎𝑐,∗) denotes a Gaussian distribution with mean
prediction 𝜇𝑐,∗ and variance 𝜎𝑐,∗. Thanks to the great mathematical
properties of Gaussian Process, we can get closed-form expression

𝜇𝑐,∗ =𝑚𝑐 (h∗) + K⊺𝑐 (H, h∗)K−1
𝑐 (H, h∗) (Y −𝑚𝑐 (h∗)); (5)

𝜎𝑐,∗ = K𝑐 (h∗, h∗) − K⊺𝑐 (H, h∗) (K𝑐 (H,H) + 𝛿2𝑐 I)−1K𝑐 (H, h∗) . (6)

In the general multi-class classification setting, our proposed
GPC layer g𝛽 utilizes 𝐶 independent GPs to transform the instance
embedding into the class logits, denoted as g𝛽 = [𝐺𝑃1, . . . ,𝐺𝑃𝐶 ].
Therefore, we can use the expectation to express predicted proba-
bility for a test instance 𝑥∗ (as compared to Eq.(1)):

Pr(𝑦∗ = 𝑐 |𝑥∗) =
∫

𝑒z(𝑐 ),∗∑𝐶
𝑐′=1 𝑒

z(𝑐′ ),∗
𝑃𝑟 (z(𝑐 ),∗ |H,Y, h∗)𝑑z∗ . (7)

Unfortunately, we can’t get closed-form estimates of the probabili-
ties in Eq.(7). An approximation using 𝐽 samples can be used:

Pr(𝑦∗ = 𝑐 |𝑥∗) ≈
1
𝐽

𝐽∑︁
𝑗=1

𝑒z(𝑐 ),∗, 𝑗∑𝐶
𝑐′=1 𝑒

z(𝑐′ ),∗, 𝑗
, (8)

where z(𝑐′ ),∗, 𝑗 denotes the 𝑗-th sampling of z(𝑐′ ),∗ following Eq.(4).
As can be seen from Eq.(8), our GPC layer is capable of generat-
ing stochastic classification predictions with regard to each test
instance, which inherently reflects the uncertainty quantification
through the variance over the predicted samples. Instead of manu-
ally setting a hard threshold to determine whether a prediction is
uncertain or not, we propose utilizing the 𝑡-test for that purpose to
maximize the easy utility of our uncertainty-aware PFMs (please
refer to Sec.3.3 for a detailed discussion).

In our GPC implementation, we further add a linear projector to
the Transformer output embedding h before applying Gaussian Pro-
cess, because Gaussian Process is more effective in input vectors
with small dimensionality and modern Transformer embedding
dimension 𝑑 is typically 768 or 1024. The linear projector can be
denoted as h′ = tanh(hW′ + b′), thus h′ ∈ R𝑑 ′

, where 𝑑′ ≪ 𝑑 .
Moreover, We select zero mean function for 𝑚(·), and radial ba-
sis function kernel with learnable lengthscale for K(·, ·), for effi-
cient implementation. We follow the Dirchlet-based Gaussian Pro-
cess [17] that transforms the classification targets into regression
ones using an approximate Dirichlet classification likelihood [9].

3 EXPERIMENTS
3.1 Experimental Settings
Risk Prediction Datasets.We use the following datasets to eval-
uate our proposed method, with statistics presented in Tab.1.
(1) MedNLI [18]: a natural language inference dataset, which fo-

cuses on identifying potential clinical outcome (hypotheses)
based on past medical history (the premise), extracted from
MIMIC-III clinical notes annotated by care providers.

(2) BreakHis [20]: an image classification dataset, which focuses on
distinguishing benign tumors and malignant tumors in breast
cancer histopathological images, collected from multiple pa-
tients using various magnifying factors.

Backbone Pre-Trained Foundation Models. For text-modality
backbone foundation models, we test on: (a.1) the bi-directional
BERT-based architecture ClinicalBERT [23]; (a.2) the uni-directional

Table 1: Statistics of the used datasets.

Dataset Modality #Category #Train #Test

MedNLI Text 3 11,232 1,422
BreakHis Image 2 5,005 2,904

auto-regressive GPT-based architecture BioGPT [16]. Both PFMs
have been extensively pre-trained on the healthcare corpus. For
image-modality backbone foundation models, we test on: (b.1) vi-
sion transformer-based architecture ViT [6]; (b.2) hierarchical vision
transformer-based architecture SwinV2 [13]. Both PFMs have been
extensively pre-trained on general-domain high-resolution images.
Compared Approaches. The following approaches are compared:
(1) Fully-connected layer-based PFM which is the classical deter-
ministic classification approach. (2) Monte Carlo Dropout-based
PFM [8] which is a stochastic classification approach casting the
dropout as approximate Bayesian inference.

3.2 Classification Results
Table 2: Results of various uncertainty-aware PFMs.

(a) Textual patient risk prediction results.

Method NLL Brier Acc

ClinicalBERT
Fully Connected 0.85 0.51 60.34%

MC Droput 0.87 0.52 59.42%
GPC (Ours) 0.81 0.47 65.26%

BioGPT
Fully Connected 0.80 0.50 63.78%

MC Droput 0.81 0.47 63.29%
GPC (Ours) 0.86 0.51 67.65%

(b) Visual patient risk prediction results.

Method NLL Brier Acc

ViT
Fully Connected 0.37 0.23 84.47%

MC Droput 0.37 0.23 84.37%
GPC (Ours) 0.34 0.20 86.47%

SwinV2
Fully Connected 0.31 0.19 87.29%

MC Droput 0.33 0.20 86.26%
GPC (Ours) 0.63 0.24 87.74%

We first examine the performance of all methods using conven-
tional classification metrics, including negative log-loss (NLL), Brier
Score [2], and accuracy, which are reasonable and widely used in
previous studies. Among these metrics, both NLL and Brier Score
are the less the better, and accuracy is the more the better. As can
be seen from Tab.2, our GPC-based PFMs achieve competitive per-
formance in NLL and Brier Score across all four foundation models
over two datasets. Moreover, our method consistently outperforms
baselines in accuracy for all two risk prediction tasks.

3.3 Uncertainty Quantification
Other than the conventional classification metrics, we are inter-
ested in the uncertainty quantification of the proposed method.
Existing uncertainty quantification works [10, 17] have been fo-
cusing on confidence calibration (i.e., the predicted probabilities
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Figure 2: Uncertainty quantification results in accuracy (%).

by a classification model should be aligned with the actual like-
lihood of the corresponding outcomes), which mainly provides a
group-level uncertainty. In this work, we adopt an instance-level
uncertainty quantification metric to reflect how sure the model
is about each of its predictions. The uncertainty quantification is
conducted on the stochastic outputs from non-deterministic clas-
sification models. Specifically, we apply paired two-sample 𝑡-test
on model predictions [11]: we obtain the most and second-most
predicted probabilities for each instance, and test whether the dif-
ference is statistically significant. The rejection status (𝛼 = 0.01)
reflects whether the predictive model is certain about its predic-
tion for a specific test instance. As shown in Fig.2, we obtain the
average accuracy over predictions with low-uncertainty (denoted
as “[method]-certain”) v.s. ones with high-uncertainty (denoted as
“[method]-uncertain”). The accuracy of certain predictions made
by our GPC-based PFMs is always the highest among all back-
bone foundation models and all datasets. Moreover, clear accuracy
gaps can be consistently observed between GPC-certain predic-
tions and GPC-uncertain predictions, while such gaps are vague
for the baseline method MC Dropout. This outcome validates the
uncertainty-awareness property of our proposed method. There-
fore, by trusting low-uncertainty predictions and requesting care
providers’ further investigation on high-uncertainty predictions,
the proposed GPC-based PFMs can achieve trustworthy patient risk
prediction with minimum manual intervention.

4 CONCLUSION
Our innovative Gaussian Process-based approach enables pre-trained
foundation models to output accurate predictions with instance-
level uncertainty quantification. The uncertainty-aware PFMs ac-
knowledge the inherent complexity of medical conditions and re-
spect the uncertainties involved in predicting individual patient
outcomes. In the future, we aim to (1) extend our uncertainty-aware
PFMs into more modalities such as waveforms (human physiolog-
ical data) and tabular (electronic health records); (2) explore the
mini-batch stochastic gradient descent technique of Gaussian Pro-
cess to reduce the computational burden.

REFERENCES
[1] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,

Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. 2021. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258 (2021).

[2] Glenn W Brier. 1950. Verification of forecasts expressed in terms of probability.
Monthly weather review 78, 1 (1950), 1–3.

[3] Zhaoliang Chen, Cheng Ding, Nirbhay Modhe, Jiaying Lu, Carl Yang, and Xiao
Hu. 2024. Adapting a Generative Pretrained Transformer Achieves SOTA Perfor-
mance in Assessing Diverse Physiological Functions Using Only Photoplethys-
mography Signals: A GPT-PPG Approach. In AAAI-Clinical Foundation Models.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[5] James M Dolezal, Andrew Srisuwananukorn, Dmitry Karpeyev, Siddhi Ramesh,
Sara Kochanny, Brittany Cody, Aaron S Mansfield, Sagar Rakshit, Radhika Bansal,
Melanie C Bois, et al. 2022. Uncertainty-informed deep learning models enable
high-confidence predictions for digital histopathology. Nature communications
13, 1 (2022), 6572.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An Image is Worth 16x16Words: Transformers
for Image Recognition at Scale. In ICLR.

[7] Robert Dürichen,MarcoAF Pimentel, Lei Clifton, Achim Schweikard, andDavid A
Clifton. 2014. Multitask Gaussian processes for multivariate physiological time-
series analysis. IEEE Transactions on Biomedical Engineering 62, 1 (2014), 314–322.

[8] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In ICML. 1050–1059.

[9] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and An-
drew GordonWilson. 2018. GPyTorch: Blackbox Matrix-Matrix Gaussian Process
Inference with GPU Acceleration. In NeurIPS.

[10] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration
of modern neural networks. In ICML. 1321–1330.

[11] Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. 2022. Card: Classification
and regression diffusion models. NeurIPS 35 (2022), 18100–18115.

[12] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[13] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning,
Yue Cao, Zheng Zhang, Li Dong, et al. 2022. Swin transformer v2: Scaling up
capacity and resolution. In CVPR. 12009–12019.

[14] Jiaying Lu, Yongchen Qian, Shifan Zhao, Yuanzhe Xi, and Carl Yang. 2023. MuG:
A Multimodal Classification Benchmark on Game Data with Tabular, Textual,
and Visual Fields. In Findings-EMNLP’23.

[15] Jiaying Lu, Jinmeng Rao, Kezhen Chen, Xiaoyuan Guo, Yawen Zhang, Baochen
Sun, Carl Yang, and Jie Yang. 2024. Evaluation and Enhancement of Semantic
Grounding in Large Vision-Language Models. In AAAI-ReLM Workshop.

[16] Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and
Tie-Yan Liu. 2022. BioGPT: generative pre-trained transformer for biomedical
text generation and mining. Briefings in Bioinformatics 23, 6 (2022), bbac409.

[17] Dimitrios Milios, Raffaello Camoriano, Pietro Michiardi, Lorenzo Rosasco, and
Maurizio Filippone. 2018. Dirichlet-based gaussian processes for large-scale
calibrated classification. NeurIPS 31 (2018).

[18] Alexey Romanov and Chaitanya Shivade. 2018. Lessons from Natural Language
Inference in the Clinical Domain. In EMNLP. 1586–1596.

[19] Jonas Schuett, Noemi Dreksler, Markus Anderljung, David McCaffary, Lennart
Heim, Emma Bluemke, and Ben Garfinkel. 2023. Towards best practices
in AGI safety and governance: A survey of expert opinion. arXiv preprint
arXiv:2305.07153 (2023).

[20] Fabio A Spanhol, Luiz S Oliveira, Caroline Petitjean, and Laurent Heutte. 2015. A
dataset for breast cancer histopathological image classification. Ieee transactions
on biomedical engineering 63, 7 (2015), 1455–1462.

[21] Marcel AJ Van Gerven, Babs G Taal, and Peter JF Lucas. 2008. Dynamic Bayesian
networks as prognostic models for clinical patient management. Journal of
biomedical informatics 41, 4 (2008), 515–529.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NeurIPS 30 (2017).

[23] Guangyu Wang, Xiaohong Liu, Zhen Ying, Guoxing Yang, Zhiwei Chen, Zhiwen
Liu, Min Zhang, Hongmei Yan, Yuxing Lu, Yuanxu Gao, et al. 2023. Optimized
glycemic control of type 2 diabetes with reinforcement learning: a proof-of-
concept trial. Nature Medicine 29, 10 (2023), 2633–2642.

[24] Ran Xiao, Cheng Ding, Xiao Hu, Gari D Clifford, David W Wright, Amit J Shah,
Salah Al-Zaiti, and Jessica K Zègre-Hemsey. 2023. Integrating multimodal infor-
mation in machine learning for classifying acute myocardial infarction. Physio-
logical Measurement 44, 4 (2023), 044002.

[25] Jiayi Yuan, Ruixiang Tang, Xiaoqian Jiang, and Xia Hu. 2023. Large language
models for healthcare data augmentation: An example on patient-trial matching.
In AMIA Annual Symposium Proceedings. 1324.

[26] Yunkun Zhang, Jin Gao, Zheling Tan, Lingfeng Zhou, Kexin Ding, Mu Zhou,
Shaoting Zhang, and Dequan Wang. 2024. Data-Centric Foundation Models in
Computational Healthcare: A Survey. arXiv preprint arXiv:2401.02458 (2024).

[27] Shifan Zhao, Tianshi Xu, Edmond Chow, and Yuanzhe Xi. 2023. An Adaptive
Factorized Nystr\" om Preconditioner for Regularized Kernel Matrices. arXiv
preprint arXiv:2304.05460 (2023).


	Abstract
	1 Introduction
	2 Proposed Approach
	2.1 Preliminaries
	2.2 Gaussian Process Classification Layer to Enable Uncertainty-Aware Prediction

	3 Experiments
	3.1 Experimental Settings
	3.2 Classification Results
	3.3 Uncertainty Quantification

	4 Conclusion
	References

