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Abstract
Brain imaging analysis is fundamental in neuroscience, pro-
viding valuable insights into brain structure and function.
Traditional workflows follow a sequential pipeline—brain
extraction, registration, segmentation, parcellation, network
generation, and classification—treating each step as an in-
dependent task. These methods rely heavily on task-specific
training data and expert intervention to correct intermedi-
ate errors, making them particularly burdensome for high-
dimensional neuroimaging data, where annotations and qual-
ity control are costly and time-consuming. We introduce Uni-
Brain, a unified end-to-end framework that integrates all pro-
cessing steps into a single optimization process, allowing
tasks to interact and refine each other. Unlike traditional
approaches that require extensive task-specific annotations,
UniBrain operates with minimal supervision, leveraging only
low-cost labels (i.e., classification and extraction) and a single
labeled atlas. By jointly optimizing extraction, registration,
segmentation, parcellation, network generation, and classifi-
cation, UniBrain enhances both accuracy and computational
efficiency while significantly reducing annotation effort. Ex-
perimental results demonstrate its superiority over existing
methods across multiple tasks, offering a more scalable and
reliable solution for neuroimaging analysis.

Introduction
The human brain, with its billions of interconnected neurons
that form the connectome, is the foundation of our cognitive
functions and behaviors. Understanding this intricate con-
nectivity is crucial for decoding the brain’s mechanisms in
development and degeneration. However, accurately map-
ping the connectome remains a significant challenge due
to limitations in current methods. Traditional workflows
rely on structural or functional neuroimaging data processed
through fragmented steps—brain extraction, registration,
segmentation/parcellation, and network generation—often
requiring manual quality control, which is costly and rep-
resents a critical barrier for quantitative brain biomarkers to
enter clinical practice. Furthermore, piecemeal approaches
prevent simultaneous optimization of interdependent stages,
leading to inefficiencies and limiting the discovery of nu-
anced connections. Errors introduced in earlier steps prop-
agate through subsequent analyses, resulting in potentially
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Figure 1: The problem of end-to-end learning for brain imaging
tasks. Given a set of raw images, each with a corresponding extrac-
tion mask and diagnosis label, along with a labeled template brain
(with segmentation and parcellation masks), the goal is to train a
model to simultaneously perform extraction, registration, segmen-
tation, parcellation, network generation, and classification tasks.

misleading interpretations of brain dynamics. Moreover, the
time-intensive nature of these workflows hinders scalability
and efficiency.

Instead of tedious, step-by-step processing for brain imag-
ing data, recent studies support transforming these pipelines
into deep neural networks for joint learning and end-to-end
optimization (Ren et al. 2024; Agarwal et al. 2022). While
several approaches have been proposed—such as joint ex-
traction and registration (Su et al. 2022b), joint registration
and parcellation (Zhao et al. 2021; Lord et al. 2007), and
joint network generation and disease prediction (Campbell
et al. 2022; Mahmood et al. 2021; Kan et al. 2022a)—there
is currently no framework that unifies and simultaneously
optimizes all these processing stages to directly create brain
networks from raw imaging data. Mapping the connectome
of human brain as a brain network (i.e., graph), has be-
come one of the most pervasive paradigms in neuroscience
(Sporns, Tononi, and Kotter 2005; Bargmann and Marder
2013). Representing the brain as a graph of nodes (re-
gions) and edges (structural or functional connections) en-
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ables gaining critical insights into brain organization, iden-
tifying key regions or hubs, and understanding how brain
connectivity changes under different conditions (e.g., dur-
ing development, aging, or neurological disorders) (Kaiser
2011; Crossley et al. 2014; Xu et al. 2015). This need has
intensified with the rapidly advancing imaging technologies
and massive data collection.

In this paper, we propose UniBrain, the first end-to-end
deep learning model that seamlessly integrates brain extrac-
tion, registration, segmentation, parcellation, network gener-
ation, and clinical classification into a unified optimization
process, as illustrated in Figure 1. Our objective is to in-
vestigate the interdependence of these tasks, enabling them
to enhance each other’s performance while relying on min-
imal labeled data. Specifically, we leverage low-cost labels
(i.e., extraction mask, classification label) and a single la-
beled template (a.k.a. atlas) to jointly optimize all tasks.
Notably, our approach eliminates the need for instance-level
ground-truth labels for registration, segmentation, parcella-
tion, and network connectivity during model training. Ex-
tensive experiments on the public ADHD dataset with 3D
brain sMRI demonstrate that our method outperforms state-
of-the-art approaches across all six tasks.

Related Works
In the literature, related tasks in brain imaging analysis have
been extensively studied. Conventional methods primarily
focus on designing methods for brain extraction (Kleesiek
et al. 2016; Lucena et al. 2019), registration (Sokooti
et al. 2017; Su et al. 2022a), segmentation (Akkus et al.
2017; Kamnitsas et al. 2017; Chen et al. 2018), parcella-
tion (Thyreau and Taki 2020; Lim et al. 2022), network
generation (Škoch et al. 2022; Yin et al. 2023) and classi-
fication (Li et al. 2021; Kawahara et al. 2017; Kan et al.
2022b) separately under supervised settings. However, in
brain imaging studies, the collection of voxel-level anno-
tations, transformations between images, and task-specific
brain networks often prove to be expensive, as it demands
extensive expertise, effort, and time to produce accurate
labels, especially for high-dimensional neuroimaging data,
e.g., 3D MRI. To reduce this high demand for annotations,
recent works have utilized automatic extraction tools (Smith
2002; Cox 1996; Shattuck and Leahy 2002; Ségonne et al.
2004), unsupervised registration models (Balakrishnan et al.
2018; Su et al. 2022a), inverse warping (Jaderberg et al.
2015), and correlation-based metrics (Liang et al. 2012) for
performing extraction, registration, segmentation, parcella-
tion and network generation. Nevertheless, these pipeline-
based approaches frequently rely on manual quality con-
trol to correct intermediate results before performing sub-
sequent tasks. Conducting such visual inspections is not
only time-consuming and labor-intensive but also suffers
from intra- and inter-rater variability, thereby impeding the
overall efficiency and performance. More recently, joint ex-
traction and registration (Su et al. 2022b), joint registra-
tion and segmentation (Xu and Niethammer 2019), joint
extraction, registration and segmentation (Su et al. 2023),
and joint network generation and classification (Kan et al.
2022a) have been developed for collective learning. How-

ever, partial joint learning overlooks the potential interre-
lationships among these tasks, which can adversely affect
overall performance and limit generalizability. There is a
pressing need for more integrated, automated and robust
methodologies that can seamlessly integrate and optimize
all stages of raw brain imaging-to-graph analysis within a
unified framework.

Our Approach
UniBrain integrates multiple modules for brain extraction,
registration, segmentation, parcellation, network generation,
and classification, seamlessly connecting them within an
end-to-end framework to enable collective learning. Below,
we provide a detailed description of each module.

Extraction Module
The extraction module aims to extract brain from the raw
image with assistance from two components:
Extraction Network: fe. The extraction network fe(·) acts
as an annotator, intended to identify brain and non-brain tis-
sues in the source image S and delineate their locations,
thus providing the guidance for subsequent non-brain tis-
sue elimination. Specifically, we employ the 3D U-Net as
the base network to learn fe(·). The process can be formally
expressed as:

M̂ = fe (S) , (1)

where M̂ is predicted extraction mask. During inference, M̂
is binarized by a Heaviside step function.
Overlay Layer: OL. The overlay layer serves to eliminate
non-brain tissues by applying the predicted brain mask M̂ to
the source image S. The final extracted image is E = S◦M̂,
where ◦ denotes the element-wise multiplication.

Registration Module
The registration module aims to align the extracted image
with the target image, providing transformations for sub-
sequent segmentation and parcellation tasks. This module
comprises two main components:
Registration Network: fr. The registration network fr(·, ·)
processes the extracted image E and target image T to learn
the affine transformation A, which establishes the coordi-
nate correspondence between source and target image space.
A 3D CNN-based encoder is used to learn fr(·, ·) as:

A = fr (E,T) . (2)

We leverage the multi-stage registration technique (Su et al.
2022a; Zhao et al. 2019) to boost registration performance,
where E is recursively aligned with T though M stages.
Spatial Transformation Layer: STL. A key step in image
registration is reconstructing the warped image W from the
extracted image E using the affine transformation A. This
warping process is facilitated by a spatial transformation
layer (STL), which resamples voxels from the extracted im-
age E to produce the warped image W = T (E,A). Given
the affine transformation operator, we hold

Wxyz = Ex′y′z′ , (3)



where coordinate correspondence [x′, y′, z′, 1]⊤ =
A[x, y, z, 1]⊤. To enable successful gradient propagation,
we use a differentiable transformation based on trilinear
interpolation proposed by (Jaderberg et al. 2015).

Segmentation & Parcellation Module
The segmentation and parcellation module creates segmen-
tation and parcellation masks on the source image. Lever-
aging recent developments in one-shot learning (Wang et al.
2020; Ding, Yu, and Yang 2021; Su et al. 2023), the mod-
ule can generate these masks using a single labeled template
image. The module contains two main components:
Inverse Warping Utilizing a single labeled example (i.e.,
target image T with its corresponding segmentation mask B
and parcellation mask P) and the learned affine transforma-
tion A, we apply the inverse transformation A−1 to generate
warped segmentation mask V = T (B,A−1) and parcella-
tion mask U = T (P,A−1) in the source image space as:

Vcxyz = Bcx′y′z′ ,∀c ∈ {1, . . . , C}, (4)

Ukxyz = Pkx′y′z′ ,∀k ∈ {1, . . . ,K}, (5)

where coordinate correspondence [x′, y′, z′, 1]⊤ =
A−1[x, y, z, 1]⊤, c is the index for tissue class and k is
the index for ROIs. Same as the STL layer in Registration
Module, we then apply a differentiable transformation
based on trilinear interpolation.
Segmentation Network: fs. The segmentation network
fs(·) aims to generate a segmentation mask for the source
image S that matches the synthesized warped segmentation
mask V. We employ the widely-used 3D U-Net as the base
network to learn fs(·). Formally, we have:

R = fs(S). (6)

Brain Network Module
The brain network module generates the brain network using
ROI information from parcellation mask U and the source
image S. The modules include three components:
Overlay Layer: OL. Similar to OL in the Extraction Mod-
ule, this component is responsible for isolating each ROI
from the source image S using parcellation mask U. The
parcellated image F = S ◦ U is generated by applying an
element-wise product ◦ between S and U.
Brain Network Function: fo. The brain network function
aims to learn the representation for each ROI within the par-
cellated image F. A weight-sharing Multilayer Perceptron
(MLP) is employed to learn fo(·), ensuring consistent fea-
ture extraction and generalization, which is expressed as:

Hk = fo(Fk),∀k ∈ {1, . . . ,K}, (7)

where k is the index for the ROIs.
Brain Network Generation. The step generates a brain net-
work based on the similarity between ROI representation
pairs. Without loss of generality, here we use inner-product
to measure the edge weights of the brain network. However,
other differentiable similarity functions (e.g., Mahalanobis
distance and cosine similarity) can be used. To compute the

connectivity matrix C, each ROI representation Hk is first
normalized with the ℓ2-norm, followed by the inner-product:

C = HH⊤. (8)

This normalization scales the values of C to the range of
[−1, 1], ensuring the stabilization of the learning process and
maintaining consistent weight magnitudes in the network.

Classification Module
The classification module makes a final predictive diagnosis.
Classification Network: fg . The classification network
fg(·, ·) aims to make a prediction based on the generated
brain network while feeding task-specific insights to the pre-
ceding module, facilitating the brain network generation. We
leverage the GCN (Kipf and Welling 2017) as the base net-
work. The prediction ŷ is obtained as:

ŷ = fg(C,H), (9)

where H is the initial node features and C is the learnable
connectivity matrix provided by the brain network module.

End-to-End Training
We train UniBrain by minimizing the objective function as:

L = Lcls

(
ŷ, y

)
+ αLext

(
M̂,M

)
+

βLsim

(
W,T

)
+ γLseg

(
R,V

)
,

(10)

where Lcls(·, ·) is classification loss term, Lext(·, ·) is ex-
traction loss term, Lsim(·, ·) is image dissimilarity loss
term , and Lseg(·, ·) is segmentation loss term. This equa-
tion incorporates bidirectional supervision (Lcls(·, ·) and
Lext(·, ·)), which envelops the entire network to ensure pos-
itive forward propagation and controllable feedback across
tasks. Additionally, unsupervised and one-shot guidance
(Lsim(·, ·) and Lseg(·, ·)) within the model reduces reliance
on high-cost annotations. The loss terms are scaled by α, β,
and γ to balance their impacts.

By leveraging the differentiability in each component of
this design, our model achieves joint optimization in an end-
to-end manner. All tasks are unified within a single model
for collective learning, mutually boosting their performance
with limited labels.

Experiments
Experimental Settings
Datasets. We evaluate the effectiveness of our proposed
method on the public real-world ADHD dataset with 3D
brain sMRI (consortium 2012). The dataset contains records
for 776 subjects, labeled as real patients (positive) and nor-
mal controls (negative). The original dataset is unbalanced,
following (Kong et al. 2013), we randomly sampled 100
ADHD patients and 100 normal controls from the dataset for
performance evaluation. Out of the 200 scans, 160 are used
for training, 20 for validation, and 20 for testing. All scans
are cropped and resized to 96×96×96 dimensions. We use
MNI 152 with the AAL atlas (Tzourio-Mazoyer et al. 2002)
as the template image for registration and parcellation.



Table 1: Results on ADHD dataset. The results are reported as (mean ± std ) of each task for each compared method. “+” indicates combining
different baselines for the corresponding tasks.

Methods Extraction Registration Segmentation Parcellation Classification

Dice ↑ Jaccard ↑ MI ↑ CC ↑ Dice ↑ Jaccard ↑ Dice ↑ Jaccard ↑ ACC ↑ AUC-ROC ↑
BET + FLIRT + DW + KNN + GCN 0.830 ± 0.058 0.713 ± 0.079 0.585 ± 0.031 0.882 ± 0.041 0.431 ± 0.058 0.293 ± 0.049 0.510 ± 0.172 0.375 ± 0.142 0.582 ± 0.034 0.546 ± 0.028
Synth + FLIRT + DW + KNN + GCN 0.920 ± 0.012 0.853 ± 0.021 0.621 ± 0.018 0.942 ± 0.006 0.494 ± 0.015 0.347 ± 0.013 0.678 ± 0.040 0.525 ± 0.040 0.595 ± 0.043 0.612 ± 0.024

BET + VM + DW + KNN + GCN 0.830 ± 0.058 0.713 ± 0.079 0.584 ± 0.037 0.874 ± 0.043 0.432 ± 0.029 0.296 ± 0.026 0.599 ± 0.070 0.442 ± 0.066 0.578 ± 0.027 0.568 ± 0.016
Synth + VM + DW + KNN + GCN 0.920 ± 0.012 0.853 ± 0.021 0.632 ± 0.020 0.940 ± 0.007 0.447 ± 0.014 0.309 ± 0.013 0.619 ± 0.041 0.463 ± 0.039 0.582 ± 0.055 0.598 ± 0.015
BET + ABN + DW + KNN + GCN 0.830 ± 0.058 0.713 ± 0.079 0.585 ± 0.036 0.877 ± 0.043 0.446 ± 0.031 0.308 ± 0.027 0.653 ± 0.051 0.497 ± 0.051 0.526 ± 0.036 0.571 ± 0.017
Synth + ABN + DW + KNN + GCN 0.920 ± 0.012 0.853 ± 0.021 0.635 ± 0.021 0.943 ± 0.009 0.455 ± 0.015 0.317 ± 0.013 0.675 ± 0.026 0.521 ± 0.027 0.595 ± 0.039 0.612 ± 0.012

ERNet + DW + KNN + GCN 0.935 ± 0.016 0.879 ± 0.028 0.636 ± 0.014 0.952 ± 0.009 0.498 ± 0.014 0.350 ± 0.014 0.677 ± 0.045 0.523 ± 0.047 0.582 ± 0.070 0.612 ± 0.015
BET + DeepAtlas + DW + KNN + GCN 0.830 ± 0.058 0.713 ± 0.079 0.587 ± 0.037 0.874 ± 0.041 0.478 ± 0.029 0.344 ± 0.028 0.591 ± 0.069 0.434 ± 0.065 0.599 ± 0.017 0.579 ± 0.013
Synth + DeepAtlas + DW + KNN + GCN 0.920 ± 0.012 0.853 ± 0.021 0.632 ± 0.021 0.940 ± 0.007 0.480 ± 0.016 0.348 ± 0.015 0.654 ± 0.030 0.497 ± 0.031 0.621 ± 0.047 0.647 ± 0.012

JERS + DW + KNN + GCN 0.938 ± 0.014 0.883 ± 0.025 0.637 ± 0.014 0.952 ± 0.009 0.504 ± 0.013 0.369 ± 0.013 0.681 ± 0.043 0.527 ± 0.045 0.626 ± 0.039 0.584 ± 0.009
JERS + DW + KNN + BGN 0.938 ± 0.014 0.883 ± 0.025 0.637 ± 0.014 0.952 ± 0.009 0.504 ± 0.013 0.369 ± 0.013 0.681 ± 0.043 0.527 ± 0.045 0.548 ± 0.085 0.582 ± 0.094
JERS + DW + KNN + BNT 0.938 ± 0.014 0.883 ± 0.025 0.637 ± 0.014 0.952 ± 0.009 0.504 ± 0.013 0.369 ± 0.013 0.681 ± 0.043 0.527 ± 0.045 0.535 ± 0.039 0.585 ± 0.034

UniBrain (ours) 0.970 ± 0.003 0.942 ± 0.006 0.652 ± 0.008 0.957 ± 0.008 0.520 ± 0.013 0.381 ± 0.013 0.708 ± 0.019 0.557 ± 0.022 0.652 ± 0.027 0.712 ± 0.030

Table 2: Summary of compared methods.

Methods Extraction Registration Segmentation Parcellation Network ClassificationGeneration
BET ✓ ✗ ✗ ✗ ✗ ✗
SynthStrip ✓ ✗ ✗ ✗ ✗ ✗

FLIRT ✗ ✓ ✗ ✗ ✗ ✗
VM ✗ ✓ ✗ ✗ ✗ ✗
ABN ✗ ✓ ✗ ✗ ✗ ✗

DW ✗ ✗ ✓ ✓ ✗ ✗

DeepAtlas ✗ ✓ ✓ ✗ ✗ ✗
ERNet ✓ ✓ ✗ ✗ ✗ ✗
JERS ✓ ✓ ✓ ✗ ✗ ✗

KNN ✗ ✗ ✗ ✗ ✓ ✗

GCN ✗ ✗ ✗ ✗ ✗ ✓
BGN ✗ ✗ ✗ ✗ ✗ ✓
BNT ✗ ✗ ✗ ✗ ✗ ✓

UniBrain ✓ ✓ ✓ ✓ ✓ ✓

Compared Methods. We compare our UniBrain with sev-
eral representative baselines. 1) Extraction: BET (Smith
2002) and SynthStrip (Hoopes et al. 2022); 2) Registra-
tion: FLIRT (Jenkinson and Smith 2001), VM (Balakr-
ishnan et al. 2018) and ABN (Su et al. 2022a); 3) Seg-
mentation and Parcellation: DW (Jaderberg et al. 2015);
4) Network Generation (Zhou et al. 2022); 5) Classifica-
tion: GCN (Kipf and Welling 2017), BGN (Li et al. 2021)
and BNT (Kan et al. 2022b); 6) Partial Joint: DeepAtlas
(Registration-Segmentation) (Xu and Niethammer 2019),
ERNet (Extraction-Registration) (Su et al. 2022b) and JERS
(Extraction-Registration-Segmentation) (Su et al. 2023).
Notably, there are no existing solutions that can simultane-
ously perform all tasks in an end-to-end framework. Thus,
for comparison, we designed a pipeline-based solution by
combining different state-of-the-art methods for each task.
The summary of baselines is shown in Table 2.
Implementation. Our experiments are conducted on
Ubuntu 20.04 LTS, utilizing an AMD EPYC 7543 CPU and
an NVIDIA Tesla A100-80G GPU. We split the datasets
into training, validation, and test sets as introduced in the
Datasets section. The training set is for learning model pa-
rameters, the validation set evaluates hyperparameter set-
tings (e.g., loss term weights), and the test set is used only
once to report the final evaluation results. The code is im-
plemented in Python 3.7.6, and the neural networks are built
using PyTorch 1.7.1. The source code is available at https:
//github.com/Anonymous7852/UniBrain.

Experimental Results
We compare UniBrain with baseline methods in terms of
extraction, registration, segmentation, parcellation, and clas-
sification accuracy and efficiency. Additionally, we evalu-

Table 3: Running time of compared methods on ADHD dataset.

Methods Time (Sec) ↓
Ext Reg Seg Parc NG Cls

BET + FLIRT + DW + KNN + GCN 1.2 4.1 1.2× 10−1 1.5× 10−1 8.2× 10−1 2.0× 10−5

Synth + FLIRT + DW + KNN + GCN 9.8 5.2 1.3× 10−1 1.6× 10−1 7.9× 10−1 3.6× 10−5

BET + VM + DW + KNN + GCN 1.2 5.7× 10−3 1.0× 10−4 1.1× 10−4 7.9× 10−1 4.0× 10−5

Synth + ABN + DW + KNN + GCN 9.8 9.2× 10−3 1.0× 10−4 1.1× 10−4 8.2× 10−1 3.4× 10−5

ERNet + DW + KNN + GCN 4.0× 10−2 1.0× 10−4 1.1× 10−4 8.0× 10−1 3.1× 10−5

Synth + DeepAtlas + DW + KNN + GCN 9.8 7.5× 10−3 1.1× 10−4 8.1× 10−1 4.4× 10−5

JERS + DW + KNN + GCN 4.9× 10−2 1.1× 10−4 8.1× 10−1 7.4× 10−5

JERS + DW + KNN + BGN 4.9× 10−2 1.1× 10−4 8.1× 10−1 2.4× 10−3

JERS + DW + KNN + BNT 4.9× 10−2 1.1× 10−4 8.0× 10−1 4.2× 10−4

UniBrain (ours) 2.2× 10−1

ate UniBrain against voxel-based end-to-end brain imag-
ing analysis solutions, which bypass brain network genera-
tion and rely solely on voxel-level information from images
for predictions. Experimental results show that: 1) UniBrain
consistently outperforms other methods in extraction, regis-
tration, segmentation, parcellation, and classification, while
also being time-efficient; 2) UniBrain also surpasses voxel-
based end-to-end brain imaging analysis solutions. Similar
results were also observed on the ABIDE (Tyszka et al.
2014) datasets. Due to space constraints, we will present
these findings in detail in a future journal publication.
Overall Results. Table 1 show the results of the com-
pared methods and the proposed UniBrain in extraction,
registration, segmentation, parcellation, and classification
tasks. Based on the comprehensive evaluation on the pub-
lic dataset, UniBrian outperforms existing methods in all
tasks. 1) In extraction, we observed that joint-based ex-
traction methods (ERNet, JERS and UniBrain) outperform
single-stage extraction methods (BET and Synth). Specifi-
cally, UniBrain achieves up to a 5.4% improvement in ex-
traction dice scores over the best single-stage method Synth.
2) For the registration task, methods with strong extraction
results typically yield better registration accuracy, highlight-
ing the dependency of accurate registration on prior extrac-
tion quality. 3) Good registration enhances segmentation and
parcellation performance, as these tasks rely on accurate reg-
istration. 4) Classification task results also reflect this trend,
with higher parcellation accuracy (like Synth-based, JERS-
based, UniBrain) yielding better outcomes due to the classi-
fication network leveraging parcellation masks for brain net-
work construction. Overall, there’s a clear interdependence
among brain imaging analysis tasks, with strengths and er-
rors propagating across them. Partially joint methods like
ERNet, JERS, and DeepAtlas show improved performance
in their joint tasks but are limited when combined with other
separate models. In contrast, UniBrain, benefiting from full
end-to-end joint learning, uniquely excels across all tasks.



Table 4: Voxel-based End-to-End Learning on ADHD dataset

Methods Extraction Registration Classification

Dice ↑ Jaccard ↑ MI ↑ CC ↑ ACC ↑ AUC-ROC ↑
3D-CNN - - - - 0.539 ± 0.048 0.623 ± 0.014

BET + 3D-CNN 0.830 ± 0.058 0.713 ± 0.079 - - 0.539 ± 0.021 0.587 ± 0.019
Synth + 3D-CNN 0.920 ± 0.012 0.853 ± 0.021 - - 0.547 ± 0.034 0.634 ± 0.018

ERNetext + 3D-CNN 0.935 ± 0.016 0.879 ± 0.028 - - 0.582 ± 0.044 0.656 ± 0.025
JERSext + 3D-CNN 0.938 ± 0.014 0.883 ± 0.025 - - 0.573 ± 0.037 0.638 ± 0.020

Synth + FLIRT + 3D-CNN 0.920 ± 0.012 0.853 ± 0.021 0.621 ± 0.018 0.942 ± 0.006 0.647 ± 0.056 0.656 ± 0.051
Synth + VM + 3D-CNN 0.920 ± 0.012 0.853 ± 0.021 0.632 ± 0.020 0.940 ± 0.007 0.617 ± 0.060 0.651 ± 0.029

Synth + ABN + 3D-CNN 0.920 ± 0.012 0.853 ± 0.021 0.635 ± 0.021 0.943 ± 0.009 0.634 ± 0.028 0.622 ± 0.019
Synth + DeepAtlas + 3D-CNN 0.920 ± 0.012 0.853 ± 0.021 0.632 ± 0.021 0.940 ± 0.007 0.645 ± 0.039 0.642 ± 0.031

ERNet + 3D-CNN 0.935 ± 0.016 0.879 ± 0.028 0.636 ± 0.014 0.952 ± 0.009 0.573 ± 0.042 0.570 ± 0.022
JERS + 3D-CNN 0.938 ± 0.014 0.883 ± 0.025 0.637 ± 0.014 0.952 ± 0.009 0.613 ± 0.049 0.596 ± 0.025

UniBrain (ours) 0.970 ± 0.003 0.942 ± 0.006 0.652 ± 0.008 0.957 ± 0.008 0.652 ± 0.027 0.712 ± 0.030

Running Efficiency. We measure the efficiency of UniBrain
by comparing its inference time with other baselines. The
measurement is made on the same device with an AMD
EPYC 7543 CPU and an NVIDIA Tesla A100 GPU. The
running time is reported as the average processing time for
each image in its corresponding task. As indicated in Ta-
ble 3, fully separate methods are the slowest due to the need
for individual optimization of each task. Partially joint learn-
ing methods demonstrate increased speed in their joined
tasks but still require combination with other methods, lim-
iting overall time efficiency. UniBrain is the fastest method,
which efficiently performs all tasks in an end-to-end manner
on the same device, enhancing overall speed.
Voxel-based End-to-End Learning. We compare UniBrain
with voxel-based end-to-end brain imaging analysis solu-
tion. In this experiments, we disregard graph-based models,
relying only on voxel information from images for final clas-
sification predictions. We devised three groups: 1) Direct use
of raw MRI images as input (including non-brain tissues,
images in different coordinate spaces) for label classifica-
tion. 2) Use of extracted brain images as input (still in differ-
ent coordinate spaces) for label classification. 3) Use of the
brain been extracted and registered to a standard space as in-
put for classification. As shown in Table 4, we observed that
the performance is worse when using raw images as input
due to the inclusion of non-brain tissues and spatial trans-
formation noise. Images processed through extraction and
registration yielded higher accuracy. UniBrain, integrating
preprocessing and classification in a joint learning approach,
outperformed all other models.

Conclusion
This paper presents a novel unified framework, UniBrain,
the first end-to-end model to jointly perform a diverse set
of brain imaging analysis tasks, including extraction, regis-
tration, segmentation, parcellation, network generation and
classification. UniBrain integrates heterogeneous informa-
tion into a single system, enabling efficient knowledge trans-
fer across different modules, and avoiding the need for ex-
tensive task-specific labels. Experimental results show that
UniBrain outperforms state-of-the-art methods in all tasks
while also demonstrating robustness and time efficiency.
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