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ABSTRACT

The goal of my doctoral research is to develop a new generation of graph mining tech-

niques, centered around my proposed idea of multi-facet contextualized projections, for more

systematic, flexible, and scalable knowledge discovery around massive, complex, and noisy

real-world context-rich networks across various domains. Traditional graph theories largely

overlook network contexts, whereas state-of-the-art graph mining algorithms simply regard

them as associative attributes and brutally employ machine learning models developed in

individual domains (e.g., convolutional neural networks in computer vision, recurrent neural

networks in natural language processing) to handle them jointly. As such, essentially differ-

ent contexts (e.g., temporal, spatial, textual, visual) are mixed up in a messy, unstable, and

uninterpretable way, while the correlations between graph topologies and contexts remain a

mystery, which further renders the development of real-world mining systems less principled

and ineffective. To overcome such barriers, my research harnesses the power of multi-facet

context modeling and focuses on the principle of contextualized projections, which provides

generic but subtle solutions to knowledge discovery over graphs with the mixtures of various

semantic contexts.

To consolidate the power of contextualized projections, my research systematically studies

the multi-facet graph organization, modeling and applications in depth– NEP [1] and SetE-

volve [2] enable the construction of multi-facet graphs from heterogeneous networks and

free text corpora (among other works [3, 4, 5, 6, 7]); TaxoGAN [8] and CondGen [9] study

unique graph mining techniques under contextualized projections by learning the embedding

of contextualized graph proximities and the generation of contextualized graph structures

(among other works [10, 11, 12, 13]); MultiSage [14] and ClusChurn [15] demonstrate

the applications of contextualized projections to real-world web recommendation and user

modeling systems (among other works [16, 17, 18, 19, 20]). In contrast to existing works on

network and graph mining, the pieces of my doctoral research together constitute a general

and integral pipeline for comprehensive and systematic leverage of rich contexts in networks.

Therefore, the development of contextualized projection is distinct from, but also comple-

mentary to various network mining paradigms, which has been broadly recognized by the

research community and readily applied to industrial platforms across various domains.
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CHAPTER 1: INTRODUCTION

Born in an era of information explosion, we are inevitably inundated with vast amounts

of data. Among them, network or graph data are ubiquitous and indispensable in a variety

of high-impact data mining scenarios, due to its unique and generic modeling of intercon-

nected objects. For example, users on social platforms are generating tons of profiles and

links every day, gene-protein interactions are being recorded in increasing volumes enabled

by modern biomedical devices, and sensor networks are growing rapidly as a derivation of

the gigantic network of things. Unfortunately, networks generated in the real world are often

massive (ranging from thousands to billions of nodes and links), complex (containing infor-

mative units with various contents and structures), and noisy (suffering from inaccurate or

missing objects, attributes and relations), challenging the design and deployment of both ef-

fective and efficient knowledge discovery systems. While there exist various network models

(e.g., attributed networks, heterogeneous networks, multi-view networks, hyper-networks)

and abundant mining algorithms (e.g., spectral analysis, message passing systems, embed-

ding methods), none of them systematically explores the rich correlations between relational

topologies and semantical contexts, which as I demonstrate in my research, can be a key to

the successful organization, modeling and application of real-world network data nowadays.

Among various types of skyrocketed data, networks or graphs are important but arguably

the most difficult to handle, due to their lack of fixed structures (in comparison to grid-like

images and sequence-based texts) and the well-known property of small world (which ulti-

mately requires everything in memory for real-time access to even small local neighborhoods).

Can real-world networks be organized and stored in a multi-facet context-aware fashion so

that subsequent data mining models can be learned specifically in the most relevant and nec-

essary context without wasteful global computations? Can we learn the semantic-topology

mappings on context-rich networks to capture (and then predict or infer) the changing graph

proximities or persisting graph structures under different semantic contexts? Can our net-

work computational systems be robust, flexible and scalable to support various real-world

industry-level applications? To answer these questions, my dissertation research outlines a

systematic pipeline of multi-facet graph mining towards knowledge discovery over context-

rich real-world networks, which consists of the following three steps.
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1.1 MULTI-FACET GRAPH ORGANIZATION

Organizing massive networks with complex contexts into a multi-facet structure.

Nowadays network data are skyrocketing in volume (e.g., a publication network like DBLP

has 4 million paper nodes, a single network like Facebook has 2 billion user nodes), mak-

ing the execution of any single network model extremely hard, if not impossible (e.g., to

deploy a typical graph convolutional network for one billion nodes requires weeks of effort

by teams of experienced research engineers). Moreover, nodes, links, and subnetworks can

all be associated with complex multi-facet contexts (e.g., user profiles can include numer-

ical and categorical attributes as well as personalized free texts, commercial products are

characterized by images, textual descriptions and reviews, entities in knowledge graphs can

have various relations, gene-protein subnetworks can correspond to pathways of different

diseases). How to properly organize the massive network data w.r.t. complex contexts to

facilitate subsequent data mining algorithms and applications?

Organizing heterogeneous networks into multi-facet graphs. NEP [1] extends exist-

ing research on hierarchical topic modeling and assumes well-designed textual facets based

on computable topic taxonomies. It focuses on the task of assigning nodes in heterogeneous

networks with the correct topic labels, based on limited weak links between a small set

of nodes on the networks and topics. Unlike existing network classification or embedding

models, NEP generalizes linear label propagation on single-typed networks to nonlinear em-

bedding propagation on heterogeneous networks, and further breaks free the requirements

of domain-specific pre-defined semantic units called meta-paths. By leveraging a novel dy-

namically composed modular neural network trained with an efficient two-step uniform path

sampling strategy, it achieves 5%-12% improvements on six datasets across various domains

over the strongest baselines from the state-of-the-art on semi-supervised classification of net-

work nodes with multi-facet labels with extremely scarce label data. Moreover, the training

time of NEP is much less than most of the state-of-the-art baselines.

Organizing free texts into multi-facet graphs. Different from NEP, SetEvolve [2]

studies the construction of networks from scratch from free text corpora. Moreover, besides

the topic facet, it further considers the incorporation of various ordinal facets such as time,

age and rating. Particularly, SetEvolve leverages a unified two-step framework based

on nonparanomal graphical models to firstly identify entity sets from documents relevant

to each topic, and then construct series of evolutionary networks along the ordinal facet.

For example, on a CS literature corpus, SetEvolve flexibly generates series of concept

networks evolving along the year dimension centered around topics like data mining and
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computer vision, which can be used for subsequent tasks like knowledge summarization and

pattern mining. The nonparanomal graphical model is leveraged for theoretically guaran-

teeing the accuracy of constructed networks when entities are modeled as variables in a

complex dynamic system with ordinal discrete observations (i.e., occurrence in documents),

and empirically achieves 9%-21% improvements over baselines on synthetic data.

Other works on multi-facet graph organization. Besides NEP and SetEvolve,

doc2graph [3] studies the end-to-end generation of concept maps from free texts under

the weak supervision of document classification; ARP [4] studies the relation contexts on

links, AutoPath [5] studies the long-range contexts on paths, whereas Nest [6] and Hinse

[7] study the higher-order contexts on motifs and meta-graphs (i.e., substructures in ho-

mogeneous and heterogeneous networks, respectively). Together, these pieces systematically

pave the way towards the organization of high-quality and comprehensive multi-facet graphs,

while still leaving many potentially interesting questions open, such as the joint learning of

facet structure and graph projections.

1.2 MULTI-FACET GRAPH MODELING

Learning the correspondence between graph topology and semantic context.

The successful organization of multi-facet graphs essentially leads to the context-aware de-

composition of massive complex real-world networks into controllable smaller subnetworks

with clear structures and semantics, which allows us to further design series of dedicated

and simplified local models for the joint knowledge discovery in multiple correlated fine-

grained subspaces. Subsequent to multi-facet graph organization, my research addresses the

question: How to effectively model and mine the the series of subnetworks organized with

multi-facet contexts?

Contextualized proximity embedding. Recent research on network mining has been

largely propelled by the rapid development of embedding algorithms, which aims at transfer-

ring node proximity on networks into distributional vectors and useful to various downstream

machine learning tasks. Through the unique modeling of multi-facet graphs, TaxoGAN [8]

is proposed to model two novel but important properties, i.e., contextualized node proximity

and hierarchical label proximity, for the co-embedding of networks and associative context

taxonomies. Particularly, TaxoGAN models subnetwork nodes and labels in each facet in

an individual embedding space via a series of graph generative adversarial networks (GAN),

and then relates and transfers proximities among the hierarchical label specific spaces by

3



stacking the GANs with learnable graph encoders. In this way, the abstract-to-fine network

generation process is aligned with the context hierarchies, which significantly improves the

overall network embedding (e.g., 11%-38% gain on hierarchical node classification), and at

the meantime enables novel insightful tasks like conditional network proximity search and

fine-grained taxonomy label visualization.

Contextualized structure generation. Although recent theoretical analyses and em-

pirical studies on network embedding have largely pushed forward the translation of dis-

crete network structures into distributed representation vectors, they seldom consider the

reverse direction of generating graphs with given semantic contexts. Consider the example of

biomedical gene networks, CondGen [9] is proposed to leverage multi-facet graphs by learn-

ing the latent context-to-network correspondence from data-rich subgraphs of closely related

diseases where observations are broadly available, and flexibly generating insightful novel

graph structures where observations are scarce or totally missing, so as to improve the com-

prehensive understanding and prediction of disease development. Technically, CondGen

addresses the inherent challenges of flexible context-structure conditioning and permutation-

invariant graph generation faced by such contextualized graph generation through a powerful

graph variational generative adversarial network model, and is validated on two deliberately

created benchmark datasets of real-world contextualized TCGA gene networks and DBLP

author networks.

Query-specific network construction. While networks are ubiquitously used to model

real-world interconnected objects, typical network mining tasks are often done on particular

query sets of objects, which does not require full access to and computation over the whole

massive networks including all objects and interactions in the datasets. By leveraging net-

work contexts such as object attributes that characterize the essential properties of objects,

cube2net [10] is proposed to dynamically construct small and complete subnetworks that

are the most relevant to the particular queries based on the multi-facet graph organization.

A light-weight reinforcement learning algorithm is developed to efficiently search over the

context embedding space and find the near optimal combination subnetworks correspond-

ing to the query-specific semantics that can support various downstream mining tasks (e.g.,

author classification on DBLP, place recommendation on Yelp) with empirically validated

effectiveness (i.e., 3%-13% improvements over baselines) and efficiency (i.e., 63%-75% im-

provements over baselines).
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1.3 MULTI-FACET GRAPH APPLICATION

Advancing real-world downstream tasks with multi-facet graph mining. The pro-

posed multi-facet graph mining framework jointly organizes network topology and context

and models their inherent correspondence, which is beneficial in various real-world network

application scenarios. By leveraging the powerful multi-facet graph mining framework to

conduct large-scale collective analysis, prediction and intervention over multiple mainstream

industrial platforms, my research demonstrates a rich set of success examples to answer the

question of what real impacts can multi-facet graph mining bring to real-world industry-level

applications.

Web-scale recommendation with explicit graph contexts. Graph convolutional neu-

ral networks (GCN) have been intensively studied and shown effective in real-world recom-

mender systems, but they ignore the various contexts under which objects interact, and are

thus incapable of capturing the multi-facet object interaction patterns. MultiSage [14] is

designed in Pinterest to model the interactions of pins given the explicit context provided

by the boards which collect the pins. As a result, proper modeling of pin interactions under

board contexts yields 9%-26% improvements over the existing production pipeline on general

pin recommendation and enables novel contextualized pin recommendation. A distributed

Hadoop2-based training pipeline is further developed to scale up MultiSage to the Pinter-

est production graph with 1.3B pins, 1.2B boards and 23B pin-board links (compared with

most existing GCN models that only run on networks with thousands of nodes and links).

New user churn prediction with implicit graph contexts. Users quit the usage

of online services (i.e., churn) due to different reasons. Towards the rapid prediction and

reaction to different types of user churn, ClusChurn [15] models the implicit context of user

types by clustering users into interpretable groups based on their multi-facet daily activities

(e.g., chatting, content consumption, link formation) and then predicts users’ churn rate

based on their limited initial behavior data jointly with their latent user types through a

scalable parallel LSTM with attention framework. Extensive data analysis and experiments

on the Snapchat social networks show that ClusChurn provides valuable insight into user

behaviors and achieves state-of-the-art churn prediction performance. The whole framework

is deployed as a data analysis pipeline, delivering real-time analytical and prediction results

to multiple relevant teams for business intelligence uses. The work has also been patented

and covered by the official ACM Morning Papers on social media.

Other works on real-world applications of multi-facet graph mining. Through

continuous collaboration with multiple industrial research labs, my research centered around
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multi-facet graph mining has led to several other successful knowledge discovery engines

that utilize the power of big data in a diverse spectrum of important real-world applications.

ReLearn [16] (joint work with LinkedIn Economic Graph Research) infers the relationships

underlying uniform friend connections in social networks; DeDup [17] (joint work with

Facebook AI Research) de-duplicates place pages on the Facebook place network, Phine

[18] (joint work with DiDi Big Data Lab) predicts user ratings on the DiDi transportation

network, BLA [19] (joint work with Snap Research) infers user attributes and links on

the Snapchat social network, and Pace [20] (towards the Yelp Data Challenge) performs

location recommendation on the Yelp bipartite network. Framed in the flavor of principled

integration of research advances and practical systems, many of them have been deployed in

the collaborating corporations and attracted wide attention from both academic researchers

and industrial practitioners.

Organization The remainder of this proposal is organized as follows.

• In Chapter 2, I provide a survey on network data mining, especially around context-rich

heterogeneous networks that are close to the setting of my thesis.

• In Chapter 3, I present the overall overall framework of contextualized projections,

based on a real-world demo system with a series of unique functions it enables.

• In Chapter 4 and Chapter 5, using real-world datasets, I give concrete in-depth exam-

ples of my doctoral research around the techniques and applications of contextualized

projections.

• In Chapter 6, I conclude my doctoral thesis with a brief summarization of current

accomplishments and future directions.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, I survey existing studies that are closely related to the novel multi-facet

graph mining framework.

2.1 GRAPH MINING

Graph Embedding Earlier studies on graph (network) embedding are focused around the

graph spectrum, which have genial theoretical supports but are hard to scale up due to the

heavy computation of eigen decomposition [21, 22, 23, 24]. Recently, the successful Skip-

gram model for word embedding [25] has motivated many proximity-based neural network

embedding methods, which directly optimizes towards link and neighborhood preserving

objectives [26, 27, 28] or random walk based proximities [29, 30, 31]. These methods are

often unsupervised and only capture network link structures. As a natural integration of

network node contents and link structures, graph convolutional neural networks (GCN) have

been proposed and intensively studied nowadays [32]. Trained in a semi-supervised fashion,

convolution-based models learn to jointly capture node contents, link structures, and la-

bels in an end-to-end fashion, and is shown to yield state-of-the-art performance in various

graph mining tasks [33, 34, 35]. Developed on simple homogeneous network settings, both

proximity-preserving and convolution-based methods have attracted various follow-up works

in more complex network settings such as multi-view networks, heterogeneous networks, and

hyper-networks [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

56, 57, 58, 59, 60, 61, 62, 63, 64, 65].

On the other hand, knowledge bases (KB) are a special type of graphs where nodes

are connected by different relational links. Unlike both proximity-preserving methods and

GCNs which are essentially enforcing the smoothness assumption on graphs by requiring

nodes close in the graphs to have similar embedding vectors, in KB, node embeddings are

optimized towards the translation consistency [66]. In particular, node and links are jointly

embedded in the shared embedding space, where the facts in terms of triplets are preserved

by requiring the two head nodes and the one connecting link to form a certain relation

(e.g., addition [67, 68, 69, 70, 71, 72, 73, 74], projection [75, 76, 77, 78, 79, 80, 81, 82, 83],

learnable neural combination [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94]). In real graphs,

sticking to either smoothness-based or translation-based method may not be guaranteed to

achieve the best task performance. Instead, they should be preferred or combined based on

the recognition of the nature of links in general graphs and KBs.
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Graph Generation Graph generation models have been studied for decades and widely

used to generate synthetic graph (network) data with certain intrinsic structural properties,

which are used towards the development and evaluation of various collective data analytical

and mining assumptions and models [95, 96]. Earlier works on graph generation mainly

use probabilistic graph models to generate graphs with particular properties such as random

links [97], small diameters [98], power-law distribution [99] and preferential attachment [100].

They are manually designed based on sheer observations and prior assumptions.

Thanks to the surge of deep learning, many new graph generation models have been

developed recently, which leverage different powerful neural network schemes in a learn-

and-generate manner [101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111]. For example,

GraphVAE [101] leverages a variational autoencode framework to learn the graph structures

via graph convolutional neural networks (GCN) and generate new graphs by reconstructing

the adjacency matrices from random samples; NetGAN [102] firstly converts graphs into

biased random walks, then learns the generation of walks instead of graphs with generative

adversarial networks (GAN), and finally assemble the generated walks into generated graphs;

GraphRNN [107] regards the generation of graphs as node-and-edge addition sequences, and

models it with a heuristic breadth-first-search node-ordering scheme and a hierarchical node-

and-edge recurrent neural network (RNN). These neural network based models can often

generate graphs with much richer properties and flexible structures learned on real-world

graphs.

2.2 CONTEXT MINING

Heterogeneous Content Integration Nowadays real-world networks are ubiquitously as-

sociated with rich contents (e.g., images in web networks [112], texts in publication networks

[113], attributes in social networks [114, 115], etc.). Existing works on network embedding

usually integrate such heterogeneous contents by employing domain-specific deep content en-

coders [116, 117]. For example, HNE [118] and SHNE [56] both devise various encoders for

image and text contents on the web networks, which are used as the input of a first-order bi-

linear interaction function to further capture network structures; HetGNN [65] and GATNE

[62] both leverage multiple type-aware GCN frameworks that naturally take different con-

tents as inputs and project them into a shared embedding space. However, such integrations

do not explicitly model the correlations between network contents and structures, and they

do not consider the different interaction patterns among different contents.

8



Textual Content Mining Take textual contents as an example. Although domain-specific

models like RNN [117] can be directly applied to convert text data into numerical vectors

that can be further integrated with network mining models, text data themselves are rather

complicated, and if studied in details, can provide much richer contexts than just numerical

vectors.

Enriching networks with entity recognition and relation extraction. Recent re-

search on text data mining has made great progress on turning unstructured texts into

structured knowledge, through techniques like entity recognition [119, 120, 121] and rela-

tion extraction [122, 123, 124]. Particularly, entity recognition allows the retrieval of named

semantic objects from unstructured free texts, whereas relation extraction studies the identi-

fication of pre-defined relations. Earlier methods for both tasks rely a lot on human defined

patterns [125, 126, 127] and human annotated data [128, 129, 130], while recent advance

on deep learning has shifted the research attention to weak supervision from distant label

sources like knowledge base [131, 132, 133, 134] as well as powerful neural network language

models [135, 136, 137]. The extracted objects and relations can then be naturally integrated

into the existing networks as additional nodes and links [11].

Improving cube structures with automatic taxonomy construction. Besides nodes

and links, in-depth text data mining also allows the automatic construction of taxonomies,

which can naturally help flexible and data-driven selection of the cube structures, as the cube

structures essentially consist of multi-facet taxonomies. Traditional methods mainly rely on

lexical patterns to construct hypernym-hyponym taxonomies [138, 139, 140, 141], whereas

recent ones leverage semantic word embedding and hierarchical clustering techniques to learn

more flexible taxonomies [142, 143, 144, 145]. Depending on the taxonomy quality and end

task, automatically constructed taxonomies from text mining can be directly applied as cube

dimensions, or further tuned by supervised learning algorithms [146, 147] as well as human

curation.

2.3 APPLICATION

My proposed CubeNet framework essentially adds a layer to the existing network data

models. Therefore, the studies over it are mostly orthogonal and complementary to existing

research on network data mining, and it potentially supports various network applications

such as node classification, recommendation, and knowledge bases.

Node Classification One of the most representative tasks in traditional network data min-
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ing is semi-supervised node classification, due to its wide applications in various domains

[148, 149, 150, 151, 152, 114, 153]. Demonstrated in many recent works on network em-

bedding, utility in node classification also highly reflects utility in other important tasks

like graph classification, community detection, and link prediction [29, 26, 33, 154]. There-

fore, we focus our discussion on node classification as the major traditional network mining

application.

In the application perspective, as networks can be constructed in various ways, more

accurate classification of nodes results in better performance of various tasks. For example,

on the real-world social networks, homophily based smoothness regularization improves the

classification of users [114, 115]; on the heterogeneous publication networks, meta-path based

proximity improves the classification of papers [155, 156]; on the synthetic data adjacency

networks, label propagation improves the classification of images [149, 152]. In CubeNet,

node classification as well as other traditional network mining tasks can be modeled as they

are in drilled-down subnetworks, where the mining algorithms largely remain the same but

on specific small networks, so as to produce accurate results with minimum computations

[11].

Recommendation Recommendation is essentially a link prediction task on the bipartite

user-item networks. Recent research has shown the potential power of more complex con-

text networks as supplementary sources for improving recommendation, especially in the

cold start scenarios [157, 158]. For example, [159, 160] explore user interactions on social

networks to improve item recommendation; [161, 162] leverage location proximities on ge-

ographical networks to improve place recommendation; [94, 163] leverage entity relations

on knowledge graphs to jointly improve knowledge representation and item recommenda-

tion. However, their leverage of network information in recommendation is still limited,

because they seldomly consider the different interaction contexts of nodes on the networks.

CubeNet is proposed to fill this gap by subtly modeling the semantic contexts of node inter-

actions, which provides an edge in general recommendation, and enables novel but important

flexible contextualized recommendation.
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CHAPTER 3: OVERVIEW

Nowadays, due to the advances in digital devices, we have witnessed an explosion of

network data, which are massive, complex and noisy. Traditional network models based on

spectral graph theory focus on network structures while overlooking network contexts. Based

on them, later general message passing systems uniformly incorporate network contexts as

node features propagating among local neighborhoods, which are often linear and shallow.

Recent popular graph embedding methods insert additional layers of domain-specific feature

transformers (e.g., deep neural networks) into the message passing systems to model more

complex network contexts. However, contexts in real-world networks are often not only com-

plex, but also multi-facet (e.g., temporal, spatial, topical, visual) and multi-granular (i.e.,

bearing hierarchical structures). Moreover, they constantly influence the corresponding net-

work structures through complicated interactions among themselves. Without the realization

and subtle modeling of the correspondence between graph topology and multi-facet semantic

contexts, existing network models are incapable of discovering accurate, flexible and insight-

ful knowledge. For example, consider the following context-specific questions like: Where

and when will a user make a link to another on a social platform? Which references will a

data mining paper make on a machine learning problem? How does a gene-protein pathway

look like for males at the age of 30-34 with a heart disease? Such questions are common and

important across various applications and domains. However, being simply the multi-facet

contextualized version of the extensively studied network mining tasks like link prediction

and structure learning, questions like them can hardly be systematically answered by existing

network mining paradigms.

3.1 MAIN DESIGNS AND INNOVATIONS

To answer the questions above, my dissertation focuses on principled knowledge discovery

over context-rich real-world networks. Particularly, I propose to project massive networks

into controllable small subnetworks with clear semantics and structures, then in parallel

mine the semantically correlated subnetworks with a series of properly regularized simplified

local models, and finally output fine-grained knowledge optimized towards the information

need of specific queries. I attempt to make the whole process systematic (i.e., captures

comprehensive multi-facet contexts), intelligent (i.e., understands the essential correlations

among contexts and structures), flexible (i.e., focuses on query-specific substructures) and

scalable (i.e., works for web-scale network data).
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Figure 3.1: Toy example of a real-world context-rich network.

3.1.1 Context-Rich Networks: An Illustrative Example

Real-world networks nowadays are ubiquitously associated with various contexts. The

contexts can originate from different data sources, and exist in different formats, such as

temporal, textual, visual, and spatial. Take Figure 3.1 as an example, which is a toy yet

realistic context-rich network constructed from DBLP. In particular, the network itself is

heterogeneous [155], consisting of nodes with types such as authors, papers, and venues, as

well as links with types such as write and published in. However, beyond types, both nodes

and links are further associated with more detailed and semantic-rich contexts. For exam-

ple, the author nodes can be described with research interest, generation, and productivity,

whereas the write links have attributes such as leadership (differentiating leading authors

and collaborative coauthors). We call such attributes and descriptors contexts, and networks

with such contexts context-rich networks. We formally define the two concepts as follows.

Definition 1 A network context is a map c : x→ Rk∗, where x can be a node, a link, or a

subgraph. k∗ =
∑d

i=1 ki, where d is the number of facet, and ki is the dimension of the i-th

facet. Naturally, in any particular network, d and ki’s are decided by T (x), which denotes

whether x is a node, a link, or a subgraph. and what type of node (link, subgraph) x is.

Continue with the example in Figure 3.1. When x is an author node, i.e., T (x) =n author,

the number of facets is three, i.e., d = 3. Subsequently, k1 and k2 are the dimensions of

the corresponding categorical attributes research interest and generation, both represented

as one-hot vectors. k3 = 1 is the dimension of a single value, i.e., number of publications.
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Likewise, when x is a write link, i.e., T (x) =l write, the number of facets is one, i.e., d = 1.

Subsequently, k1 = 1 is the dimension of a single binary value, i.e., leadership or not.

Definition 2 A context-rich network is a network G = {V,E, T, C}, where V is the set of

nodes, E the set of links, T the typing function, and C the set of network contexts. Note

that, the contexts can be presented either partially only on nodes, links or subgraphs, or fully

on all of them, and when the contexts are presented on any of them, e.g., nodes, they can be

partially presented only on one type of nodes or fully on all types of nodes.

Our definition of context-rich network is a natural extension of existing network data

models like dynamic networks, attributed networks, heterogeneous networks, multi-view

networks, and hypernetworks. It is rigorously defined, yet general and flexible towards the

modeling of various real-world network data. In the following, we will demonstrate a unique

powerful operation that fully leverages the design of context-rich networks.

3.1.2 Multi-Facet Network Mining with Contextualized Projections

Now we define the contextualized projection on context-rich networks. The idea is to

filter the massive, complex, and noisy networks w.r.t. particular contexts in a multi-facet

manner, so as to get sets of smaller networks supposedly with simple and clear semantics

and structures, which are easier to model and more useful towards particular downstream

data analysis and mining tasks/queries.

Definition 3 A contextualized projection of a context-rich network is map p : G → G, which

computes the intersection of all subsets selected by a set of rules Θp = {ci(x) ∈ c̄i|ci ∈ C}rpi=1,

where each rp is the number of rules specified by p, each ci is a network context associated

with the original context-rich network G, and c̄i is a set of constant values of ci (can be

infinite when ci(x) is continuous).

For each rule ci(x) ∈ c̄i, p first identifies the type of objects ti that are associated with ci,

and then selects a subset {x|ci(x) ∈ c̄i} from the set {x|T (x) = ti}. Therefore, each rules

selects a subset of nodes, links or subgraphs. According to the commutation property of

intersection, the results are unique given a fixed set of rules. Finally, post-processing like

the removal of isolated nodes, incomplete links and small unconnected subgraphs can be

further applied based on the need of downstream tasks. Note that, by default we claim a

contextualized projection as valid, as long as the resulting projected network is nonempty,

while in real-world applications, we may also define validation rules based on certain graph

properties of the resulting projected network to refuse useless projections.
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Continue with the example in Figure 3.1. We can apply a contextualized projection on

the author node with rule research interest=network mining, which effectively filters out

certain authors that do not study network mining. Since no rules are enforced on links,

subgraphs or other types of nodes, most of them remain the same, while some of them can

be removed like the write links with no authors. This particular projection allows us to focus

on the network mining community, which is clearly specified by the context semantics and

has rather simplified structures, where downstream tasks relevant only to this community

are expected to be performed with better accuracy and efficiency.

Besides the above rule, the general operation of contextualized projection allows one to

further compile rules to project on other types of nodes, links, and subgraphs, as well as

flexibly combine multiple rules to generate subnetworks based on the need of real tasks.

Some examples of the real-world use cases may include interest-based communities in social

networks, disease-related pathways in protein networks, temporal-dynamic interactions in

physical networks, privacy-constrained clusters in decentralized networks and so on.

As we motivated in the example already, real-world applications often encourage or re-

quire us to perform local computations on the precisely projected subnetworks due to their

preferred structure simplicity and close semantic relevance. However, in the following, we

propose to further study and model the relations among different local subnetworks and

the global original network, so as to improve the capture and leverage of the two types of

essential information underlying network data, i.e., proximity and structure, under our novel

framework of contextualized projections.

We now introduce the two types of essential information in network data, i.e., proximity

and structure. The uniqueness of network data, in comparison to other types of data, is

to serve as a model of interactions or relations among individual nodes. Insightfully, we

highlight that such interactions and relations captured by networks characterize the objects

in them by two orthogonal properties, that are proximities and structures.

3.1.3 Contextualized Graph Proximities

Proximity information. Intuitively, the proximity between two nodes u and v in the net-

work G is transductive and always relative to other nodes V/(u, v) in G. There is no absolute

proximity, and thus there is no way to compare the proximities among nodes in different

networks. Now we give some examples of existing network models or algorithms that aim

to capture such proximity information of nodes in a network, which we categorize into two

groups.
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Path-counting proximity models. Traditional proximity models are essentially based on

counting the paths between each pair of nodes, thus capturing their relative proximities.

Famous models include PPR [164], SimRank [165], and PathSim [155]. Among them, PPR

implicitly counts the (normalized) number of paths between the source v and target u, and

the more important paths between v and u, the higher proximity score is assigned to (u, v).

SimRank computes a similar proximity score by paying more attention to the pairwise notion,

and counts the paths from two nodes u and v to all intermediate nodes. Thus, the more

paths connecting u and v to the same nodes, the higher proximity score is assigned to (u, v).

PathSim extends the path computation onto heterogeneous networks with different types of

nodes and links, and counts the normalized number of paths constrained by priorly defined

meta-paths. Similarly, the more constrained paths connecting u and v, the higher proximity

score is assigned to (u, v).

Note that, by computing the pair-wise path-counting proximities, all such methods are

focusing on the relative proximities of nodes in a network, and they care less about the actual

structures of local neighborhoods of individual nodes, which we will stress in the following

when elaborating on structure information. Moreover, all path-counting proximities can

be computed by iteratively multiplying a specifically designed commuting matrix, which is

equivalent to the inversion of a corresponding stationary matrix [164, 165, 155].

Embedding-based proximity models. Recent research on network data has been focused

on representation (embedding) learning. One popular group of node embedding models

represented by [29, 30, 26, 31] are developed under the very similar intuition of path-counting

proximity models. Particularly, they apply the Skipgram model [25] from word embedding to

optimize an embedding space where nodes observed more in the same truncated random walk

sequences [29, 30] or connected more to the same neighboring nodes [26, 31] are drawn closer

in the embedding space. In fact, these models are implicitly factorizing a specifically designed

commuting matrix [166, 167], which essentially captures the same relative proximities of

nodes in a network as the path-counting models, but with the additional product of an

explicitly optimized embedding space that arranges nodes w.r.t. their relative proximities

captured by the paths. Note that, the proximities among nodes captured in the embedding

space, although are absolutely fixed in a network, are transductive in their essence as not

comparable across different networks.

Another line of recent research on network representation learning is represented by the

work of GCN [32]. In general, these network models are called graph neural networks

(GNN) [33, 34, 35], which perform message passing on networks with learnable nonlinear

feature projections at each step. There have been several research studies showing the
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Figure 3.2: Networks projected regarding different paper-year contexts.

Context Jure Leskovec Christos Faloutsos Yizhou Sun Xiang Ren Heng Ji Ralph Grishman
venue-field: data 0.2928 0.9093 0.2253 0.0751 0.0587 0.0084
venue-field: ml 0.3235 0.0417 0.2474 0 0.2062 0.1875
venue-field: nlp 0.5926 0.1000 0.5217 0.1000 0.2880 0.2805
venue-field: ir 0.1381 0.8957 0.3975 0.0693 0.2266 0.1381

venue-field: bio 0 0 0.5714 0 0 0
paper-year: <2000 0 0.6342 0 0 0 0.0630

paper-year: 2000-2010 0.1799 0.8683 0.0849 0 0.0037 0.0036
paper-year: >2010 0.5123 0.9099 0.3972 0.1776 0.1643 0.0217

paper-cite: <5 0.2778 0.6330 0.2424 0.4231 0.1062 0
paper-cite: 5-20 0.2670 0.7544 0.3019 0.2541 0.2517 0.0531
paper:cite >20 0.2694 0.9008 0.2217 0.0397 0.0513 0.0187

Table 3.1: PathSim proximity (regarding meta-path A-P-V-P-A) between Jiawei
Han and other authors on DBLP under different contextualized projections.

universal representation power of GNNs, which, as we will also stress in the following when

elaborating on structure information, have shown GNNs to be mainly designed to capture the

absolute structure of networks by approximating the WL network isomorphism test, since

the multi-layers of nonlinear projections plus proper aggregation and readout mechanisms

can universally approximate any functions in the spectral domain [168, 169, 170]. However,

here we highlight that GNNs also implicitly capture proximity information. As reasoned in

[20], when passing features in the network, GNNs implicitly ensure the smoothness among

neighbors, i.e., nodes closely connected in the network thus positionally close will have similar

representations. Such smoothness is ensured by the aggregation mechanisms of GNNs, which

usually combines the average representations of direct neighbors to that of the center node

before any further projections. Therefore, no matter what projection functions are learned,

the smoothness is ensured to some extent, so as the capturing of relative node proximities.

Contextualized graph proximity. Under different contexts, the relative proximities among

nodes in networks can change. Continue with our toy example on DBLP. Figure 3.2 shows
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the projections of the network in Figure 3.1 under different projections regarding paper-year.

Clearly, the distances among authors change when different contextualized projections are

applied. For example, some senior authors are weakly connected in the earlier years through

few long paths, and they become more densely connected by many short paths as time goes

by and their research interests converge.

In Table 3.1, we compute the PathSim similarity between Jiawei Han and the several other

authors regarding meta-path A-P-V-P-A in the real-world DBLP dataset with a total of 26K

authors, 177K papers, 45 venues and 529K links from 10 fields under several contextualized

projections. In particular, this metric quantifies the peer-similarity between authors [155],

which we present as an example from the many other metrics we have experimented with, to

showcase the possibly different node proximity computed under different network contexts.

The results are intuitive yet insightful. For example, regarding venue-field contexts, Jiawei

Han is evaluated as a close peer to Christos Faloutsos in fields like data mining and information

retrieval, because they are both the most well known researchers in those fields. However,

although Jiawei Han and Yizhou Sun publishes a lot of papers together in data mining, they

are not that similar because Jiawei Han is much more senior than Yizhou Sun. The two are

more similar in fields like NLP and Bioinformatics, because they do also publish there, both

with limited numbers of papers. Regarding paper-year contexts, Jiawei Han is significantly

more similar to senior authors like Christos Faloutsos when papers in the earlier years are

considered, and becomes more similar to junior authors like Jure Leskovec and Yizhou Sun

as more recent papers are considered. Regarding paper-cite contexts, the similarity between

Jiawei Han and other authors differs when papers with different numbers of citations are

considered: most of the papers between Jiawei Han and Christos Faloutsos are better cited,

while most of those between Jiawei Han and other authors are neither too unknown or too

popular.

With the examples and analyses above, it is clear that context is important for accurate

positional proximity and embedding in real-world networks. However, it is cumbersome to

compute a single global model for the whole network or one local model for each projected

network. Moreover, a single global model cannot highlight the contextualized proximity,

while individual local models suffer from incomplete structural data and scarce labels with

downstream tasks. Therefore, we study the joint and transfer learning of network embedding

models, leading to successful models like TaxoGAN (Section 4.1-4.3).
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3.1.4 Contextualized graph structure

Structural information. In contrast to proximity information which is always relatively

measured in one network (thus transductive in nature), structure information is absolute

and can be compared across different networks (thus inductive in nature). However, the

term structure is still meaningless without the consideration of particular networks, because

one node has no interesting structure by itself. Thus, the structure information of a node

is always specified by its surrounding subnetwork, such as its direct or higher-order ego

networks. The structure of a node v is absolutely fixed once its surrounding subnetwork

S(v) is specified, no matter what ambient network G the node v belongs to. Now we give

some examples of existing network models or algorithms that are designed to capture such

structural information of nodes, which we also categorize into two groups.

Motif-counting structure models. Traditional structure models essentially compares the

structures of each pair of networks by counting the numbers of shared motifs in the two net-

works, which basically characterize the pair-wise similarity in an m-dimensional reproducing

kernel Hilbert space. Each dimension of the space is often the (exact or approximated) count

of a particular motif. Such a computation, although does not always specify an absolute

structure representation, the comparison is inductive and valid across networks from a pure

structural perspective. Popular motif-counting structure models include the shortest-path

kernel [171], random walk kernel [172], Weisfeiler-Lehman subtree kernel [173] and graphlet

kernel [174, 175]. The main difference among these methods lies in the way they define and

count the motifs in networks.

Note that, when we use the motif-counting models to compute the structure of a node v,

they only care about the absolute structures of the surrounding subnetwork S(v). By their

definitions, the motif-counting models do not care about the identities of nodes in S(v), which

means when the structures of two nodes v and u are compared, it does not matter how many

(direct or indirect) neighbors v and u share. In other words, the relative proximity among v

and u does not directly influence their absolute structures, and thus the structure information

is orthogonal with the proximity information. However, although characterizing nodes from

different perspectives, the two types of information can still correlate, as positionally close

nodes often tend to share similar structures, while the opposite statement may not be true.

Embedding-based structure models. Intuitively, we conclude that the group of trans-

ductive path- and neighborhood-based network embedding models are ineffective in captur-

ing structure information, since they only model the overlaps of paths including two nodes
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Figure 3.3: Networks projected regarding different venue-field contexts.

v and u or neighborhoods of v and u to compute the relative proximity between v and u.

As for GNNs, following our arguments about their universal representation power in the

graph spectral domain, they are essentially designed to capture the absolute structures of

networks. This ability has been increasingly recognized by recent theoretical studies and

testified through extensive graph-level classification tasks [168, 169, 170]. To really capture

the absolute and inductive structure information, it is noted that one should not include any

node features that are non-transferrable across compared networks, such as random initial-

izations, one-hot initializations, network specific node features, and transductive proximity

embeddings such as spectral embedding and DeepWalk [29]. Instead, pure structural fea-

tures like node degrees or informationless features like constant vectors are recommended.

Also note that, unlike motif-counting models, when using GNNs, ones does not always need

to explicitly specify the surrounding subnetwork S(v) of a node v. GNNs can be directly

computed on the ambient network G, and the resulting representation of each node can be

already regarded as a structural representation of its surrounding neighborhood, with the

order of the neighborhood approximately defined by the architecture of the particular GNN

model.

Contextualized structure. Under different contexts, the subnetwork structures can per-

sist. Continue with our toy example on DBLP. Figure 3.3 shows the projections of the

network in Figure 3.1 under different projections regarding venue-field. The exact networks

are different when different contextualized projections are applied (i.e., comprised of differ-

ent nodes and links). However, some common structures might be persisting and shared

across different subnetworks, which motivates proper communications and joint training of

different local models.

In Table 3.2, we compute the PathStruct similarity between Jiawei Han and the same other
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Context Jure Leskovec Christos Faloutsos Yizhou Sun Xiang Ren Heng Ji Ralph Grishman
venue-field: data 0.9997 0.9999 0.9939 0.9760 0.9466 0.7192
venue-field: ml 0.9982 0.8087 0.8087 0 0.8087 0.8087
venue-field: nlp 0.9939 0.9080 0.9932 0.9080 0.9614 0.9584
venue-field: ir 0.9154 0.9999 0.9933 0.7411 0.9457 0.9154

venue-field: bio 0 0.9806 0.9806 0 0 0
paper-year: <2000 0 0.9986 0 0 0 0.9999

paper-year: 2000-2010 0.9878 0.9996 0.8445 0.7351 0.9814 0.9919
paper-year: >2010 0.9999 0.9999 0.9906 0.9687 0.9965 0.9901

paper-cite: <5 0.9958 0.9991 0.8601 0.9581 0.9625 0.9915
paper-cite: 5-20 0.9279 0.9960 0.8952 0.9442 0.9979 0.9538
paper:cite >20 0.9990 0.9999 0.9905 0.8912 0.9923 0.9984

Table 3.2: PathStruct similarity (A-P-A and A-P-V-P-A) between Jiawei Han
and other authors on DBLP under different contextualized projections.

authors in the same real-world DBLP dataset as used in Table 3.1. Note that, the similarity

measure is different, as we now care about the structures of authors’ ego-networks regarding

the meta-paths A-P-A and A-P-V-P-A, i.e., the cosine similarity between the two-dim vectors

of numbers of meta-paths directly connected to the authors. Thus the PathStruct similarity

is higher if two authors have similar collaboration styles (number of co-authors in each paper)

and venue preference (size of venues). We use this metric as a simplification of the various

existing kernel based structure measures mentioned before, to simply showcase the possibly

different structures of subnetworks under different contexts. Being different from the results

in Table 3.1, the results here are again intuitive yet insightful. In particular, most of the

scores are high (> 0.9), because the set of authors all have pretty similar collaboration

styles and venue preferences. Nonetheless, the similarities between same pairs of authors

are slightly different across different contexts. For example, Christos Faloutsos is closest to

Jiawei Han under the fields of data mining and IR, and their styles become closer and closer

in recent years; Yizhou Sun is closest to Jiawei Han in data mining, and the most popular

papers they publish have similar styles (regarding collaboration and venue); Heng Ji and

Ralph Grishman are further to Jiawei Han compared with the other authors, and most close

to him in NLP, because they are both NLP researchers.

With the examples and analyses above, it is clear that context is important for the mod-

eling of network structures in real-world networks. The key question here is, can we find a

mapping between contexts and structures, so as to infer the contexts from structures, and

generate structures from contexts? To this end, we study the novel problem of contextual-

ized and controllable network generation, leading to successful models like CondGen (Section

4.4-4.6).
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Figure 3.4: The CubeNet system demonstrated at KDD’19 [11].

3.2 A REAL-WORLD SYSTEM

My dissertation research has also led to the implementation of a novel data mining system

called Cube Networks (CubeNet in short), which joins the power of data cubes and networks

to model the multi-facet contexts and network structures in a principled way.

CubeNet: A principled multi-facet contextualized network mining system. Data

cube provides an efficient and systematic way of organizing data w.r.t. multi-facet properties

and is widely used in traditional data mining over large sets of isolated objects (e.g., records

in relational databases, documents in text collections). With context-aware cube structure

designs and objects assigned into the multi-facet cells, it largely boosts various downstream

data analysis and mining tasks. On the other hand, network serves as a generic and flexible

model for object interactions (e.g., document references, gene interactions). By properly

integrating the two worlds, I propose the novel data model of CubeNet, which immedi-

ately enables various insightful unique functions such as multi-facet multi-granular network

exploration (e.g., visualize and compare user connection structures in hierarchical commu-

nities formed due to different reasons), contrastive network pattern mining (e.g., finding

abnormal gene-protein pathways along the develop of a cancer), cell-based network context

backtracking (e.g., given a set of interconnected sensors, retrieve the top-k conditions as

context combinations under which the sensors are likely to be correlated in the same way),

and so on. A prototype system implementing these functions, as outlined in Figure 3.4,

has been demonstrated in KDD’19 [11] and attracted a large audience. Moreover, the de-

sign of CubeNet further sets up a novel graph mining paradigm, which poses various new

challenges and opportunities around the principled construction, mining and application of

CubeNet.
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In the example of Figure 3.4, a large multi-facet heterogeneous network is organized w.r.t. a

topic-location-year data cube structure, which leverages the particular construction steps and

enables the unique data analysis and mining functions as follows.

3.2.1 Construction

Heterogeneous network enrichment. Without clear semantics, real-world networks are

less informative. For more insightful data analysis and mining, we enrich the heterogeneity

of networks by incorporating nodes from massive free texts. In this system, we leverage

our recent research on text mining, i.e., AutoPhrase [176] for phrasal node extraction and

AutoNER [136] for typed link generation.

Multi-facet taxonomy generation. In this system, we leverage both existing metadata

and our recent research on automatic taxonomy generation, i.e., TaxoGen [177], to create

multiple taxonomies for each network, essentially leading to a data cube structure [178].

Weakly-supervised network organization. To organize networks into the data cube

structure, i.e., allocate nodes to proper cells, we leverage our recent research on hetero-

geneous network classification based on AutoPath [5], which assigns similar labels in the

taxonomy to nodes close in the network based on small sets of nodes weakly labeled via

surface name matching.

3.2.2 Analysis

Contrastive network summarization. Various traditional network statistical measures

such as clustering coefficient, character path length and triangle count become hard to

compute and meaningless in massive universal networks. However, in CubeNet where

each cell holds a relatively small network, the structures can be efficiently summarized and

contrasted across relevant cells by aggregating network statistics, which provides insight into

network evolution along different semantic dimensions (Ex. 2 in Figure 3.4).

Cell-based semantic backtracking. While text cube supports the retrieval of most rele-

vant cells w.r.t. unary queries, CubeNet further allows semantic backtracking w.r.t. network

queries, such as pairs of nodes and small sub-networks. The idea is to combine the graph

coverage [179] and top-k cell search [180] algorithms to find the k cells that mostly cover the

network query from all cells with an optimized search order (Ex. 3 in Figure 3.4).
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Multi-granularity structure exploration. By allocating nodes into hierarchically orga-

nized cells, CubeNet supports network roll-up and drill-down, which essentially merges

nodes and edges into super-nodes and super-edges (or the other way around), to allow the

exploration of network structures in preferred granularities. To make the process efficient,

we implement the techniques developed in our previous research on graphcube [181] (Ex. 4

in Figure 3.4).

3.2.3 Mining

Contextual network pattern mining. Traditional graph pattern mining does not con-

sider the contexts of networks. To find more semantically related patterns, we extend [182]

to CubeNet by computing a mixture score of popularity, integrity and distinctiveness. Pop-

ularity is computed as the normalized frequency, integrity is the ratio of frequency between

the pattern and its corresponding close pattern, and distinctiveness is the ratio between the

frequency in a cell and the average of all cells. They are combined using customized weights

to highlight user preference (Ex. 5 in Figure 3.4).

Query-specific network localization. Given data mining queries over particular sets of

nodes, computation over the universal massive network is wasteful and hard to handle.

Since CubeNet organizes networks by grouping semantically relevant nodes, it is possible

to find a set of cells that mostly cover the queried nodes. To this end, we apply our on-

going research on query-specific network construction, which leverages a light reinforcement

learning algorithm to find the optimal combination of cells, from which a relevant and

complete network can be constructed to support downstream data mining on queried set of

nodes (Ex. 6 in Figure 3.4).

Conditional proximity search. Recent research on network embedding often does not

easily scale to massive networks and fail to model proximity under different conditions. To

deal with both challenges, we apply our on-going research on the co-embedding of network

nodes and cube cells, which jointly learns node embedding in each sub-network and a set

of embedding transformation functions that align relevant sub-networks. The embedding

of sub-networks thus facilitates proximity search conditioned on cell semantics, while the

alignment functions enable proximity transfer among similar cells (Ex. 7 in Figure 3.4).
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CHAPTER 4: TECHNIQUES

In this Chapter, I present two representative graph mining techniques under the framework

of contextualized projections, i.e., graph embedding based on contextualized proximities

(Section 4.1-4.3) and graph generation based on contextualized structures (Section 4.4-4.6).

4.1 GRAPH EMBEDDING BASED ON CONTEXTUALIZED PROXIMITIES

Representation learning has become the backbone of various tasks in artificial intelligence

[183]. Unsupervised learning is often the default setting due to the desired generalizability.

However, many recent works in various fields have demonstrated the profit of leveraging

limited label data to learn representations that are not only powerful for the corresponding

predictive objectives, but also transferrable to other related tasks [43, 32, 184, 185, 186].

Among them, hierarchical labels residing in given taxonomies have been widely used for

natural language processing and bioinformatics, which are especially useful for the tasks

of hypernym modeling and hierarchical classification [187, 188, 189, 143, 190, 191, 192].

In their essence, these methods jointly learn the representations of objects and labels in

a shared latent space. The objects they model often have rich features, but they do not

directly interact with each other.

As for representation learning on networks of interconnected objects (nodes), intensive

research has been done on the modeling of both plain networks without node features

[29, 26, 31, 41, 193, 194] and content-rich networks with node attributes and/or labels

[195, 196, 32, 197, 198]. Recently, the notion of taxonomy has been explored by pioneering

research [199, 200], which assume and seek for the latent hierarchical structure underlying

the seemingly flatly connected nodes. However, without proper reference to a particular un-

derlying taxonomy, the learned network embedding is still limited to global network mining

tasks and uninterpretable without further analysis [201].

Thanks to the vast effort in taxonomy construction from both the research community

[177, 202] and industry, increasing amount of network data nowadays can be readily associ-

ated with existing taxonomies (Sec. 4.3.1), which provides great opportunities for enhancing

network embedding (Sec. 4.3.2) and enabling novel network mining tasks (Sec. 4.3.3). Mean-

while, the rich relational data in networks may also help in better modeling and interpreting

the existing taxonomies (Sec. 4.3.4).

Consider a toy example in Figure 4.1, which consists of an author network (e.g., given
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Figure 4.1: Toy example of TaxoGAN: Authors in a publication network are naturally
connected to a research topic taxonomy. Through proper modeling of conditional node
proximity (on the left side) and hierarchical label proximity (on the right side), we
aim to leverage author node proximity in the network to capture topic label proximity
in the taxonomy, which in turn can benefit the learning of both author and topic
representations in a closed loop.

by DBLP1) and a research topic taxonomy (e.g., given by ACM2). Author-author links can

be generated w.r.t. co-authorships, while author-label links can be generated by keyword

matching between the topic names in the taxonomy and the published papers of the authors.

In this work, we stress the importance of two novelly observed properties, i.e., conditional

node proximity and hierarchical label proximity.

Conditional node proximity. While existing works on network embedding mostly con-

sider network proximity within the same set of nodes, we argue that node proximity should

be conditionally measured within the proper context. For example, on the left side of Figure

4.1, consider the proximity between C. Faloutsos and J. Kleinberg (particularly, in comparison

to that between C. Faloutsos and J. Han). When working on Graph Mining (Graph) problems,

C. Faloutsos and J. Kleinberg share more important coauthors like J. Leskovec, thus resulting

in a smaller distance. However, when working on broader problems in Data Mining (DM),

they find their own coauthors like S. Mullainathan and J. Han from different fields, hence

resulting in a larger distance. As such, under different conditions, node proximity can be

rather different and even contradictory.

As we will show in more details in Sec. 4.2, although a given taxonomy naturally allows

for the construction of various conditional subnetworks, the modeling of conditional node

proximity is non-trivial. This is because modeling all conditional subnetworks separately

will prohibit the leverage of node interactions across different subnetworks and suffer from

data sparsity, but modeling all conditional subnetworks together in a flat way will lead to a

cluttered embedding space violating the hierarchical label relations.

1https://dblp.uni-trier.de/
2https://dl.acm.org/ccs/ccs.cfm
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Hierarchical label proximity. Although we assume the existence of given taxonomies

for particular networks, where node labels are organized in tree-structured hierarchies, the

actual distribution and relative distance of these labels in the embedding space is unknown.

For example, consider the four labels CV, NLP, Rbt. and DM on the right side of Figure 4.1.

Although they are all child labels of the parent label AI, the distances among these siblings

as well as their distances to AI might be rather different, which is impossible to understand

by solely looking at the taxonomy structure itself. In this work, we propose to leverage the

rich relational information from the networks to model the fine-grained proximity among the

hierarchical labels. Continue with our example. Since authors working on Rbt. may overlap

or collaborate more with those working on CV than DM, the distance between Rbt. and

CV should be smaller than that between Rbt. and DM. Moreover, compared with authors

working on DM, authors working on CV might more often study the core problems of AI. As

a consequence, the distance between AI and CV should be smaller than that between AI and

DM.

As we will discuss more in Sec. 4.2, proper modeling of the hierarchical label proximity

can further help in regularizing the network embedding of all nodes. However, the task is

again non-trivial, as the embedding distances in different hierarchical levels should not be

modeled in the same space, but how proximity information can be transferred across the

different spaces is unclear.

Present work. We propose TaxoGAN to co-embed network nodes and hierarchical labels,

which leverages stacked generative adversarial nets to model the conditional node proximity

and hierarchical label proximity in networks associated with label taxonomies. Specifically,

TaxoGAN models a hierarchical network generation process, where a network generator is

devised at each parent label in the taxonomy to model the children network induced by the

corresponding child labels and labeled nodes in the original network. Moreover, a learnable

network encoder is devised at each child label to enable the learning of proximity transfer

from the embedding spaces of children to parents in a fine-to-abstract manner along the

actual label paths in the taxonomy. Finally, we device hierarchical adversarial learning to

achieve efficient and robust model inference.

The main contributions of this work are summarized as follows.

1. We propose and formulate the novel problem of co-embedding network nodes and hi-

erarchical labels, where we particularly model the two novel important properties of

conditional node proximity and hierarchical label proximity (Sec. 4.2.1).

2. We develop TaxoGAN to model hierarchical network generation under given taxonomy.

TaxoGAN simultaneously improves network node embedding and enables hierarchical
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label embedding by leveraging induced label networks and proximity transfer in the tax-

onomy (Sec. 4.2.2-3).

3. We prepare four real-world datasets by linking networks with given taxonomies and con-

duct thorough experiments regarding the tasks of hierarchical node classification and

link prediction. Significant improvements on both tasks compared with popular and

state-of-the-art network embedding algorithms demonstrate the power of TaxoGAN on

improving the quality of network embedding (Sec. 4.3.1-2).

4. We design two novel tasks of conditional proximity search and taxonomy visualization,

and conduct insightful case studies to demonstrate the unique utility and interpretability

of TaxoGAN (Sec. 4.3.3-4).

4.2 MODEL: TAXONOMY-GUIDED GRAPH ADVERSARIAL EMBEDDING
(TAXOGAN)

4.2.1 Problem Formulation

Input. We take the input of a network N = {V , E ,Y} and a taxonomy T = {L,H}, where

V = {vi}Ni=1 is the set of nodes, E is the set of node-node links, Y is the set of label-node

assignments, L = {lj}Mj=1 is the set of labels, and H is the set of label-label links. For

simplicity, we consider uniform undirected node-node links in E , while our model easily

generalizes to networks with weighted directed links. By the definition of taxonomy, label-

label links in H are uniform and directed, pointing from parent labels to child labels. Our

model works for taxonomies both in tree and DAG structures.

Y serves as the bridge between N and T , where for each node vi ∈ V , yi is the set of

labels assigned to vi. In this work, we require all labels in yi to also appear in L, but yi can

be empty or include any combination of multiple labels. In other words, we only consider

node labels organized in a given taxonomy, while we allow the links between the network

and the taxonomy to be flexible (likely also weak and noisy). Due to the rapid development

of taxonomy construction methods and the growing availability of real-world taxonomies,

many networks can be naturally connected with existing taxonomies, which leads to an urge

in developing proper models for the joint modeling of both worlds.

Output. To effectively capture the interactions among nodes in the network and labels in the

taxonomy, we propose to co-embed V and L. Therefore, the output of TaxoGAN consists

of an (N×K)-dim embedding matrix U for V and an (M×K)-dim embedding matrix Q for
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L. As we will show later, although we embed V and L as the same dimension, their proximity

is preserved in different projected spaces, which is necessary for capturing the conditional

node proximity under different contexts. Moreover, the projected spaces are connected via

learnable transformation functions, which effectively learns to transfer proximities along

parent-child label links and captures the hierarchical label proximity.

4.2.2 Preliminaries

Heterogeneous graph embedding. A näıve way to jointly model N and T is to use a

heterogeneous graph, where labels are flattened in the taxonomy. PTE [43] provides a vanilla

formula to embed such graphs. In our case, consider nodes V in N as words with undirected

co-occurrence links and labels L in T as documents connected by directed citation links. A

heterogeneous graph of V and L can be embedded according to the following objective

JPTE = Jvv + Jvl + Jll, (4.1)

where

Jvv = −
∑
eij∈E

wij log G(vi, vj),

with G(vi, vj) =
exp(u′Ti · uj)∑
vk∈V exp(u′Tk · uj)

; (4.2)

Jvl = −
∑
yij∈Y

wij log G(vi, lj),

with G(vi, lj) =
exp(u′Ti · qj)∑
vk∈V exp(u′Tk · qj)

; (4.3)

Jll = −
∑
hij∈H

wij log G(li, lj),

with G(li, lj) =
exp(q′Ti · qj)∑
lk∈L exp(q′Tk · qj)

. (4.4)

Each G(oi, oj) models the probability of generating a linked from object (node/label) oi to

object oj. Following the setting of Skip-gram adapted to network embedding [29, 26], we use

U/Q as the target embedding and U′/Q′ as the context embedding, which allows explicit

modeling of the second-order proximity as proposed in LINE [26].

To optimize Eq. 4.1, stochastic gradient descent with the techniques of edge sampling and

negative sampling [26] can be leveraged. However, the random negative sampling process
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does not leverage the graph structures at all, which leads to inefficient and unstable training.

Adversarial graph embedding. To enable efficient and robust graph embedding, Graph-

GAN [31] was proposed based on the concept of adversarial learning. Instead of randomly

sampling negative pairs of objects (objects without links), GraphGAN constructs a link dis-

criminator D and a fake link generator G, and iteratively optimizes the following objective

function by allowing D and G to play a two-player minimax game

min
θG

max
θD

JgGAN =
∑
vi∈V

(
Ev∼ptrue(·,vi)

[
logD(v, vi; θD)

]
+Ev∼G(·,vi;θG)

[
log
(
1−D(v, vi; θD)

)])
. (4.5)

Empowered by the novel graph softmax function, G is able to efficiently generate strong

negative samples on-the-fly during training in a graph-structure-aware way [31]. Note that,

by sharing the target and context embedding in both G andD, GraphGAN does not explicitly

consider second-order proximity as in PTE and LINE [26]. However, since G and D still

maintain two sets of embedding, which takes charge of generating and discriminating links

respectively, GraphGAN manages to outperform LINE on classic network embedding tasks

by significant margins.

In another line of research, complex generative adversarial nets (GAN) have been rapidly

developed in domains like computer vision and natural language processing. Particularly,

we notice the SGAN model developed for hierarchical image representation learning [203],

which consists of a top-down stack of GANs learned to generate high-level to low-level

image representations in a hierarchical fashion. While the tasks of image representation and

network representation are naturally different, we find essential connections between their

task and ours, due to the consideration of underlying hierarchical structures.

4.2.3 TaxoGAN

In this work, we aim at co-embedding network nodes and hierarchical labels. To under-

stand the main challenges of this task, let us take a look at Figure 4.2, where an author node

J. Leskovec has three labels Graph, DM and AI in the research topic taxonomy. In this simple

case, on one hand, if we do not consider the hierarchical structure of labels and put them all

in a single space, the author embedding will eventually lie somewhere in the middle of the

three label embeddings (as marked by the blue ‘+’ sign), which violates the label hierarchy

and results in underfitting. On the other hand, if we simply use separate spaces to embed the

nodes and labels under each parent label, the model will ignore the rich correlations among

29



Figure 4.2: Illustration of the main challenges: Modeling network nodes and hi-
erarchical labels all together in a single space leads to a cluttered embedding space
violating the underlying hierarchy, while simply partitioning them into separate spaces
ignores label correlations and results in parameter redundancy.

labels in the hierarchy, bringing in massive redundant parameters and leading to overfitting.

To address the above challenges, we propose TaxoGAN to co-embed network nodes

and hierarchical labels through a hierarchical network generation process, where a network

generator is devised at each parent label in the taxonomy to model the subnetwork of nodes

and child labels, and a network encoder is devised at each child label to learn the transferrable

proximity across levels in the taxonomy. The generator and encoder are jointly trained

through efficient and robust hierarchical adversarial learning, where a network discriminator

is devised in each embedding space to enforce correct node-node and node-label proximity.

In the following, we motivate and describe each component of TaxoGAN in details.

Label-wise subnetwork generator: jointly model node and label proximities in

conditional subnetworks. To properly model conditional node proximity and respect

the label hierarchy, we propose to generate a specific node-label network under each parent

(non-leaf) label in the taxonomy. Let lp denote an arbitrary parent label in T , and Lp denote

the set of all immediate child labels of lp. Then Vp is the subset of V consisting of all nodes

with label lp or labels in Lp. A conditional subnetwork Bp is constructed from Vp, Lp as well

as the node-node links Ep among nodes Vp and node-label links Yp between nodes Vp and

labels Lp.
Bp acts as a bridge between node proximity and label proximity under the condition of

lp. In the corresponding embedding space Sp, Vp and Lp can then be arranged in a flat way.

To learn the node embedding Up and label embedding Qp in the space of Sp, we devise a

subnetwork generator G to enforce Ep and Yp based on the softmax function as follows

G(vj, vi|lp) =
exp(upTj · u

p
i )∑

vk∈Vp exp(upTk · u
p
i )
, (4.6)
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G(ls, vi|lp) =
exp(qpTs · u

p
i )∑

lk∈Lp exp(qpTk · u
p
i )
. (4.7)

Following LINE [26], we can use negative sampling to compute the softmax in Eq. 4.6,

since the number of nodes |Vp| can be quite large even in the subnetworks. However, since

the number of child labels |Lp| is often quite small, we can directly compute the softmax in

Eq. 4.7 for better label accuracy. Note that, in each conditional subnetwork, there exist no

direct links among labels. Thus, the fine-grained relative distances among child labels under

each parent label are learned based on the corresponding network structure, which cannot

be inferred from the taxonomy structure itself.

Cross-level learnable encoder: proximity transfer and parameter sharing in the

taxonomy. The generator G, without the consideration of label correlations and trans-

ferrable information in the taxonomy, can either model all conditional subnetworks essen-

tially in a single embedding space or separately in independent spaces. The key difference

lies in the computation of Up and Qp. Since in each conditional subnetwork Bp, we co-embed

nodes Vp and labels Lp in the space Sp, Up and Qp can be computed from U and Q in the

same way. Without loss of generality, we will focus our discussion on the computation of

Up.

Particularly, if Up = U, which is shared across all conditional subnetworks, all nodes

and labels are essentially flatly arranged in a single embedding space of U, which violates

the label hierarchy, resulting in clutter embedding space and underfitting. Otherwise, if we

compute a completely different Up for each conditional subnetwork, the subnetworks are

modeled in independent spaces, which ignores label correlations, leading to large parameter

redundancy and overfitting.

As a remedy to this trap, we propose to compute each Up as an encoded version of U,

i.e., Up = A(U, lp), so as to essentially transfer proximities captured by different subnetwork

generators in the taxonomy. However, since the semantic information in taxonomies is coarse,

it is hard to decide how to exactly transfer the proximities. For example, consider the sibling

labels of NLP and CV under parent AI. Since NLP communities might be tighter than CV as

including less diverse subtopics, it should transfer stronger proximity signals. That is, in the

subspace of AI, authors close in the subspace of NLP should be closer than those close in the

subspace of CV. To capture such subtle semantics in the taxonomy, we require the encoder

A to be learnable and label-dependent. To this end, we leverage the simple but powerful
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Figure 4.3: TaxoGAN overview: A framework for the adversarial learning of hierar-
chical network embedding.

nonlinear fully connected feedforward neural network (FNN) to model Up as

Up = A(U, lp) = ReLU(ApU) + bp, (4.8)

where Ap and bp are the learnable parameters in the encoder at lp.

Learning a separate encoder function at each child label does not really leverage the

hierarchical structure of T and still leads to large parameter spaces. To this end, we get

motivated by the idea of hierarchical image representation learning [203], which leverages

stacked encoders to guide the generation of image representations from high (abstract) to

low (detailed) levels. In our scenario, since nodes in the network are connected with labels in

the taxonomy, they can also be described by representations at multiple granularities [200].

Therefore, we propose to parameterize A as nested embedding transformations following the

hierarchy paths along the taxonomy. For any label lp, let lp → . . .→ lj → li denote the path

from lp to a certain leaf label li. We have

Up = A(U, lp) = Ap(· · · Aj(U, lj) · · · , lp). (4.9)

Note that, the number of parameters in A grows linearly with the number of labels |L| in
the taxonomy. However, since the main purpose for using A is to compute multi-granularity

node embeddings and separate labels on different levels, it is reasonable to share the param-

eters of A among all labels on the same levels of the taxonomy, which reduces the model

complexity of A to log |L|, and further alleviates possible overfitting due to sparse data in

certain subspaces.

Adversarial network discriminator: enable efficient and robust learning. Through

subnetwork generation and learnable encoding, we essentially manage to partition the whole

network and taxonomy into a set of conditional subnetworks with proper proximity transfer

functions. Following the classic heterogeneous network embedding framework of Eq. 4.1, we
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formulate the overall objective of TaxoGAN into

JTaxoGAN = Jvl + λ1Jvv + λ2Jll, (4.10)

where each of Jvv, Jvl and Jll is only slightly different from those in Eq. 4.1 by replacing the

global generator G with conditional generators and embedding encoders defined in Eq. 4.6-

4.9.

In practice, we find the joint training of generator networks G and encoder networks A
to be often inefficient and unstable. Inspired by recent advances in adversarial learning

[31, 41, 193, 194], we propose to improve the efficiency and robustness of model inference,

by designing a novel hierarchical adversarial network discriminator D. Specifically, each of

Jvv, Jvl and Jll can be optimized through a two-player minimax game defined in Eq. 4.5,

with the corresponding designs of G and A defined in Eq. 4.6-4.9 and D defined as follows,

which measure the log-probability of node-node and node-label links.

D(vj, vi|lp) =
1

1 + exp(−upTj upi )
, (4.11)

D(ls, vi|lp) =
1

1 + exp(−qpTs upi )
. (4.12)

As illustrated in Figure 4.3, for each node vi in N , we consider a bottom-up node encoding

process together with a top-down network generation process. u0 = u is the lowest level node

embedding, capturing raw node proximity in N . At each parent label lp in T , the encoder

network A computes a transformed embedding up, which ideally can best characterize the

embedding of Vp and Lp in the conditional embedding space Sp. To achieve this goal, the

generator network G takes up as input and generates the most misleading linked node v̂j

from Vp and the most relevant label l̂s from Lp based on Eq. 4.6 and 4.7. The discriminator

network D then tries to differentiate v̂j and l̂s from the true linked nodes and labels by

maximizing Eq. 4.10 w.r.t. the above equations.

Note that, for stable model training, we find it important for G and D to maintain two

different sets of node and label embeddings, i.e., U′, Q′ for G and U, Q for D, which

correspond to the context embedding and target embedding in [29, 26], respectively. Also

note that, since we partition the whole network into series of subnetworks, some node-node

links across different subnetworks cannot be directly modeled, but they nonetheless carry

important proximity information. To deal with this, we add a global node-node proximity

module on the base embedding of nodes U , which is implemented by exactly following [31].

Training algorithm. Finally, with the neural architectures of generator G, discriminator
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Algorithm 4.1: TaxoGAN Training

Input : network N , taxonomy T , embedding dimension τ , #batches bvl, bvv, bll,
batch size s, negative sampling rate n

1 while not converge do
2 Sample a parent label lp and construct the subnetwork Bp for t← 1 to bvv do
3 Update U′p and Up by training Gvv, Dvv, A
4 for t← 1 to bll do
5 Update Q′p and Qp by training Gll, Dll, A
6 for t← 1 to bvl do
7 Update U′p, Up, Q′p, Qp by training Gvl, Dvl, A

8 return U, Q and A

D and encoder A defined, we describe the detailed joint training process of TaxoGAN in

Algorithm 1.

In algorithm 4.1, in Line 3, the design and training of Gvv and Dvv in each subnetwork

is the same as in the plain networks of [31]; in Line 5, the training of Gll and Dll are very

similar to those of Gvv and Dvv, only by substituting U with Q, and A is shared for U/U′

and Q/Q′. Since the sampling of v and l is discrete, all generator networks are trained by

policy gradient [204]. For example, the gradient of Jvl conditioned on lp w.r.t. G is computed

as

∇U′,Q′Jvl|lp
=∇U′,Q′

∑
lj∈Lp

Elj∼G(·,vi|lp)[log(1−D(lj, vi|lp)]

=
∑
lj∈Lp

Elj∼G(·,vi|lp)

[∇U′,Q′ log G(lj, vi|lp) log(1−D(lj, vi|lp))].

Training the generator networks G results in the update of U′ and Q′, while training the

discriminator networks D results in the update of U and Q. For stability concern, we fix A
during the training of G, and only update it while training D.

In each iteration, the complexity of Line 2-3 is O(bvvsndNK), Line 4-5 is O(bllsndTK),

Line 6-7 is O(bvlsndTK), where dN is the average node degree in N and dT is the average

number of child labels of each non-leaf label in T . bvv, bll and bvl are set to balance the trade-

off among the three objectives and reflect the weighing parameters λ1 and λ2 in Eq. 4.10.

Considering convergence to be reached after a constant number of iterations over all nodes,
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the overall complexity of TaxoGAN is bounded by theN logN complexity of global network

embedding same as [31].

We implement TaxoGAN with Pytorch. As we can observe from the experimental results,

the variance across different trains of TaxoGAN on the same data is not large. We further

inspect the loss curves and conclude that the training process of TaxoGAN is stable. All

code and data will be released upon the acceptance of this work.

4.3 EXPERIMENTAL EVALUATIONS

4.3.1 Experimental Settings

Datasets. We construct four datasets of real-world networks with explicit taxonomies.

• DBLP: We collect the author network3 with the research topic taxonomy4. Undirected

uniform links in the network are generated based on coauthorships. A label in the taxon-

omy is assigned to an author if her/his papers mentions the keyword.

• Yelp: We collect the business network5 with the category taxonomy6. Undirected uniform

links in the network are generated based on common customers who posted reviews for

both businesses. Label assignments are given in the original dataset.

• FreeBase: We collect the entity network7 with the type taxonomy8. Undirected uniform

links in the network are generated if two entities appear together in any triplet of facts.

Labels are assigned by retrieving the nested entity types.

• PubMed: We collect the protein network9 with the disease taxonomy10. Undirected

uniform links in the network are generated if mentions of two proteins appear in any same

sentence. Labels are assigned by surface name matching.

Compared algorithms. We compare with three groups of network embedding algorithms

from the state-of-the-art to comprehensively evaluate the performance of TaxoGAN.

3https://dblp.uni-trier.de/xml/
4https://dl.acm.org/ccs/ccs flat.cfm
5https://www.yelp.com/dataset
6https://www.yelp.com/developers/documentation/v3/all category list
7http://freebase-easy.cs.uni-freiburg.de/dump/
8http://dbpedia.org/page/Taxonomy
9ftp://ftp.ncbi.nih.gov/pub/taxonomy

10ftp://ftp.ncbi.nlm.nih.gov/
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Datasets
Network Taxonomy

#nodes #links #labels #levels
DBLP 81,389 208,711 268 4
Yelp 14,573 55,243 438 4

FreeBase 30,180 53,632 18 3
PubMed 9,619 25,655 87 4

Table 4.1: Statistics of the four real-world datasets we use.

• Plain network embedding: We compare with DeepWalk [29] and GraphGAN [31]. Deep-

Walk is the most pioneering and popular Skip-gram based network embedding algorithm,

while GraphGAN represents the state-of-the-art plain network embedding models lever-

aging adversarial learning. We run both algorithms on the original networks by ignoring

the taxonomies.

• Attributed and labeled network embedding: We compare with PTE [43] and GraphSage

[33]. PTE is an extension of the popular LINE [26] algorithm to networks with attributes

and labels. We treat taxonomies as flat label networks, and run PTE on the bipartite

networks of nodes and labels. GraphSage represents the state-of-the-art attributed and

labeled network embedding models. We regard all labels as flat node attributes and train

GraphSage in the link prediction fashion.

• Taxonomy aware network embedding: We compare with Poincare [199] and Nethiex [200],

which are the most recent network embedding algorithms assuming latent node tax-

onomies. Since they do not work with explicit taxonomies, we run both of them on

the original networks as in their original settings.

We also conduct comprehensive ablation study by comparing four different TaxoGAN vari-

ants: (1) TaxoGAN-sin is the model with a single embedding space; (2) TaxoGAN-sep

is the model with separate embedding spaces; (3) TaxoGAN-noadv is the model without

adversarial training; (4) TaxoGAN is our full model.

Evaluation protocols. We evaluate all algorithms on two fundamental tasks: node classi-

fication and link prediction.

For node classification, since we consider hierarchical labels in taxonomies in this work,

we focus on the setting of level-by-level classification. Given the learned embedding of

training nodes and the label taxonomy, we further train a linear SVM at each parent label

to classify the testing node w.r.t. the current child labels. During testing, each node thus

can be assigned to a path in the label taxonomy, a testing node-label pair (v, l) is correct
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if the predicted label path of v includes l. All TaxoGAN models except for TaxoGAN-

sin use the corresponding embeddings in each level, while the other models all use a single

embedding across all levels. We randomly split the set of labeled nodes into training and

testing sets with the ratio of 4:1 for five times and compute the testing F1 of each node-label

pair. We aggregate the pair-wise F1 scores by each node to compute the micro F1 and by

each label to compute the macro F1.

We consider standard link prediction in the same way as in [29, 26]. Predicted links are

ranked by the cosine distance among the node embedding vectors. All TaxoGAN models

use the shared base embedding U for link prediction. We randomly split the set of all links

in the network into training and testing sets with the ratio of 4:1 for five times and compute

the standard AUC and MRR scores over all links in the testing sets.

Parameter settings. The implementations of all compared algorithms are provided by

their original authors, and all model hyper-parameters are tuned to the best via standard

five-fold cross validation. For TaxoGAN, we use the same parameters for all datasets.

Without much tuning, we empirically set the loss weighing parameters λ1 and λ2 to 0.1,

embedding dimension τ to 50, batch size s to 64 and learning rate to 10−4. All batch

numbers b’s are set to 128 and negative sampling rate n is set to 5.

4.3.2 Quantitative Evaluations

Table 4.2 presents the performance of compared algorithms on hierarchical node classifi-

cation. The improvements of TaxoGAN over the second runners all passed the significance

t-test with p-value 0.01. Since the classification at each level in the label taxonomy is

multi-class, and deeper labels are harder to be correctly predicted (if any precedent label is

predicted wrong, the label path can never reach the correct label), the absolute F1 values

are all pretty low. Dataset like Yelp has a lot of deep but narrow labels, which are hard

to correctly predict, and the mistakes largely impact the macro F1, whereas dataset like

PubMed has a lot of shallow but wide labels, and the mistakes largely impact the micro

F1. Thus the suite of datasets and metrics provides a comprehensive evaluation towards the

compared algorithms.

The baselines have varying performance across different datasets, while PTE and Graph-

Sage often perform better due to the leverage of labeled data during training. By considering

latent hierarchies, Poincare and Nethiex perform better than DeepWalk and GraphGAN in

many cases, but their learned latent hierarchies do not always perfectly match the reality

and even lead to worse performance in some cases like on DBLP.
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DeepWalk 11.07 ± 0.61 26.24 ± 0.84 26.41 ± 1.12 10.94 ± 1.06
GraphGAN 16.10 ± 0.55 26.40 ± 1.21 25.97 ± 0.85 13.68 ± 1.28

PTE 16.42 ± 0.47 33.73 ± 0.93 50.27 ± 1.40 12.71 ± 1.64
GraphSage 18.72 ± 1.18 29.06 ± 0.29 45.77 ± 0.60 12.05 ± 1.17
Poincare 13.87 ± 0.51 29.02 ± 1.12 30.43 ± 1.29 12.73 ± 1.90
Nethiex 10.06 ± 0.56 19.44 ± 1.53 35.39 ± 1.37 12.22 ± 1.31

TaxoGAN-sin 20.56 ± 0.25 34.88 ± 0.42 65.36 ± 0.59 11.81 ± 1.13
TaxoGAN-sep 25.80 ± 1.01 28.47 ± 1.04 63.46 ± 0.46 11.98 ± 0.42

TaxoGAN-noadv 29.52 ± 0.79 39.83 ± 1.09 65.79 ± 1.07 16.31 ± 0.22
TaxoGAN 31.97 ± 1.44 41.37 ± 0.58 65.98 ± 0.98 20.11 ± 1.41

Algorithm
Link prediction AUC

DBLP Yelp FreeBase PubMed
DeepWalk 83.40 ± 0.26 87.93 ± 0.43 64.93 ± 0.35 69.15 ± 1.18

GraphGAN 83.76 ± 0.09 88.51 ± 0.28 65.00 ± 0.67 68.19 ± 1.31
PTE 75.47 ± 0.15 89.10 ± 0.26 63.16 ± 0.52 71.46 ± 0.86

GraphSage 82.63 ± 0.22 85.33 ± 0.56 66.53 ± 0.51 68.20 ± 1.21
Poincare 84.06 ± 0.15 91.60 ± 0.16 68.86 ± 0.35 71.68 ± 0.80
Nethiex 84.41 ± 0.07 92.70 ± 0.26 69.75 ± 0.68 71.78 ± 0.28

TaxoGAN-sin 84.14 ± 0.06 92.31 ± 0.31 67.14 ± 0.41 68.00 ± 0.74
TaxoGAN-sep 84.17 ± 0.14 87.47 ± 0.34 63.29 ± 0.65 68.60 ± 0.64

TaxoGAN-noadv 84.56 ± 0.15 92.22 ± 0.39 66.73 ± 0.66 68.95 ± 0.33
TaxoGAN 85.02 ± 0.25 92.92 ± 0.44 70.48 ± 0.32 70.02 ± 1.03

Table 4.2: Performance of all compared algorithms.

Overall, TaxoGAN constantly outperforms all compared algorithms in all cases, with

significant margins over the best baseline ranging from 11% to 70%, and the scores all

passed t-test with p-value 0.05, demonstrating its superior effectiveness and generalizability.

In particular, the improvements of TaxoGAN are more significant when the numbers of

labels are larger and the hierarchies of labels are deeper, like with DBLP and Yelp, which

supports the appropriate design of our model to leverage the explicit hierarchical structure

of associative labels. Note that, while the unsupervised baselines (DeepWalk, GraphGAN,

Poincare and Nethiex) do not have access to the node labels in the taxonomy, PTE and

GraphSage use the exact same labels as TaxoGAN. This shows TaxoGAN to be effective

in modeling hierarchical label spaces, as we will further demonstrate in the ablation study.

For ablation study, our TaxoGAN-sin model has close performance towards the best

baselines like PTE, because they are indeed similar only by the difference in adversarial

training; our TaxoGAN-sep model does not always outperform TaxoGAN-sin, indicating

that even if the evaluation protocol of level-by-level classification may favor multiple embed-

dings, simply using separate embeddings is not good enough and can harm the performance
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due to problems like subnetwork sparsity and overfitting, and TaxoGAN-sep is extremely

hard to train due to redundant parameters and large memory cost; our TaxoGAN-noadv

model is the nested space model without adversarial training, which outperforms Taxo-

GAN-sep with significant margins, corroborating the effectiveness of our model design with

connected subspaces through base and transformed embeddings; our TaxoGAN model fur-

ther outperforms TaxoGAN-noadv, directly showing the advantage of our novel hierarchical

adversarial training technique.

Table ?? presents the performance of compared algorithms on standard link prediction.

Note that, the main goal of TaxoGAN is hierarchical node classification by design, where

we leverage network structures to compute the node embeddings as inputs of the hierarchical

classifiers. As a result, the base embeddings that we use for the link prediction experiments

are mostly decided by the plain network structures and only get slightly influenced during the

training of the hierarchical GAN model. Nonetheless, such fine tuning w.r.t. hierarchically

structured labels is shown to be useful for global (unconditional) link prediction, which leads

to very competitive performance compared to the strongest baselines, further corroborating

the general utility of TaxoGAN. It is reasonable to expect TaxoGAN to further excel on

datasets where links are also generated under different conditions.

We measure the runtimes of all compared algorithms on a server with one GeForce GTX

TITAN X GPU and two Intel Xeon E5-2650V3 10-core 2.3GHz CPUs. We observe the

runtimes of TaxoGAN to be similar to GraphGAN and GraphSage, while slightly larger

than other baselines like PTE and DeepWalk.

4.3.3 Conditional Proximity Search

To illustrate how TaxoGAN is able to capture both global and conditional proximity on

networks with hierarchical labels, we select four of the many well-known researchers from

different fields related to data mining and extract their hierarchical embeddings computed

by TaxoGAN on DBLP.

In Table 4.3, for each author pair, we present their predicted proximity based on the cosine

similarity between their global base embeddings as well as the topic-wise conditional em-

beddings of the top five research topics where the pair is embedded most closely. As we can

observe, (1) the global proximity computed by TaxoGAN reflect the reality, where authors

working on more similar topics in general are embedded closer. Meanwhile, (2) the condi-

tional proximities are even more accurate and telling, since they provide essential insights

into which particular research topics a given pair of authors are likely to collaborate on.

Such knowledge, while directly facilitating the unique application of conditional proximity
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search as we advocate in this work, is hard to gather without proper joint modeling of the

network and associated taxonomy.

Jiawei Han & Christos Faloutsos Jiawei Han & Jure Leskovec

global (0.8772) global (0.7401)
knowledge rep. and reasoning (0.8983) information system applications (0.8238)
collaborative and social computing (0.8884) machine learning approaches (0.7671)
data mining (0.8579) collaborative and social computing (0.7019)
information system applications (0.7960) users and interactive retrieval (0.6784)
spatial-temporal systems (0.7280) knowledge rep. and reasoning (0.5381)

Jiawei Han & Yoshua Bengio Christos Faloutsos & Jure Leskovec

global (0.6558) global (0.8883)
foundations of AI (0.7266) collaborative and social computing (0.9229)
retrieval tasks and goals (0.6369) specialized information retrieval (0.8864)
machine learning approaches (0.5616) information system applications (0.8664)
document representation (0.5331) search methodologies (0.8624)
scheduling and planning (0.5162) machine learning (0.7989)

Christos Faloutsos & Yoshua Bengio Jure Leskovec & Yoshua Bengio

global (0.7939) global (0.7710)
foundations of AI (0.8143) enterprise information systems (0.7976)
enterprise information systems (0.7319) knowledge rep. and reasoning (0.7313)
collaborative and social computing (0.6996) machine learning approaches (0.7195)
retrieval models and ranking (0.6292) planning and scheduling (0.7044)
computer vision (0.6098) search methodologies (0.6419)

Table 4.3: Pair-wise global and conditional similarity among four researchers
jointly learned by TaxoGAN.

4.3.4 Fine-Grained Taxonomy Visualization

Another novel application of TaxoGAN is fine-grained taxonomy visualization, which is

enabled by our unique leverage of node proximity in networks associated with the taxonomies.

As an example, we visualize the embedding spaces (Figure 4.4, reduced to 2-dim by standard

PCA) of four label-induced subnetworks from DBLP, corresponding to the labels root, AI,

IR, and ML. Grey dots are nodes in the conditional subnetworks, while red and blue dots

are the parent and child labels, respectively. Since many labels have quite similar textual

names, such fine-grained label representations are hard to generate by existing methods like

word embedding.

As we can observe, the results are highly interpretable and insightful, which provide knowl-

edge about the relative distances among labels. For example, in the AI subnetwork, labels

closest to AI include CV, NLP and foundations of AI, while the closest pairs of labels include

knowledge rep.–NLP, CV–planning, planning–control, etc.. While existing taxonomies mostly
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(a) Base Embedding Space (b) Artificial Intelligence

(c) Information Retrieval (d) Machine Learning

Figure 4.4: Visualization of the hierarchical label spaces learned by TaxoGAN given
the network and label taxonomy.

only include a label skeleton, such label embeddings are valuable towards the understand-

ing of subtle label relations, and likely useful for more downstream tasks like taxonomy

refinement and others involving machine learning on taxonomies.

4.4 GRAPH GENERATION BASED ON CONTEXTUALIZED STRUCTURES

Graphs (networks) provide a generic way to model real-world relational data, such as

entities in knowledge graphs, users in social networks, genes in regulatory networks, etc..

It is thus critical to study the generation of graph structures, which is fundamental for

the understanding of their underlying functional components and creation of meaningful

structures with desired properties. Nowadays, contextual data like attributes and labels are

becoming ubiquitous in networks [11], the rich semantics of which may well correspond to
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Figure 4.5: Toy example of conditional structure generation: Real-world net-
works nowadays are often associated with correlated semantic attributes/labels.
This allows us to explore the possible correspondence between graph contexts
and structures, which can be leveraged to generate structures for graphs with
certain semantic contexts that are hardly observed.

particular graph structures. This brings up a natural but challenging question: Can we

generate graph structures w.r.t. given semantic conditions?

In this work, we propose and study the novel problem of conditional structure generation,

whose goal is to learn and generate graph structures under various semantic conditions

indicated by contextual attributes or labels in the networks. Figure 4.5 shows a toy example

of biomedical networks, where the interactions of certain genes and proteins may follow

related but different patterns for individuals with different diseases (e.g., cancers in different

body parts and stages). Due to limited observations, network data of some diseases may be

more scarce (only one network observed for Case 1 ) or totally missing (no network observed

for Case 2 ), while those of other closely related diseases are more available (2-3 networks

observed for other cases). Since the diseases are semantically related, their corresponding

gene networks may well share certain graph structures. Thus, by efficiently exploring the

possible correspondence between network contexts and structures, an ideal model should

be able to generate more similar graphs for conditions with scarce observed graphs (Task

1 ), and generate meaningful novel graphs for conditions without any observed graphs (Task

2 ). The problem is important because the generated networks can be valuable in various

subsequent studies such as the understanding and prediction of disease development. It

is also general, if we consider vast other examples such as in social networks, where users

in different communities may share certain connection patterns, and in knowledge graphs,

where different types of entities may be related in particular ways.

Existing works on network generation cannot flexibly handle various semantic conditions.
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Specifically, earlier probabilistic graph models can only generate networks with limited pre-

assumed properties like random links [97], small diameters [98], power-law distribution [99],

etc.. Recent works based on neural networks can generate graphs with much richer properties

learned on given graphs. However, they either only work with single graphs and fixed sets

of nodes [101, 102, 103, 104, 105, 106], or model single representative sets of graphs which

essentially belong to the same semantic group [107, 108, 109, 110, 111]. Only [110] mentions

the ability of conditional generation, but the conditions in their setting are direct graph

properties such as number of nodes, which is fundamentally different from the semantic

conditions as we consider in this work. Moreover, none of the existing methods really solve

the fundamental challenge of graph permutation invariance [205, 168, 206, 207, 208] during

their translation between graph structures and representations, due to the facts that their

embedding spaces or generated graphs are essentially not permutation-invariant (Sec. 4.5),

so they tend to generate different graphs given the same input graphs with permutated node

orders (Sec. 4.6).

Thanks to the surge of deep learning [116, 117], many successful neural network models like

skip-gram [25] and CNN [209] have been studied for graph representation learning [29, 30, 26,

32, 35]. Among them, graph convolutional neural networks (GCN) [32] has received extensive

theoretical analyses and empirical studies recently [205, 168, 33, 34, 210], due to its proved

ability to encode nodes, (hyper)links or whole graphs into a permutation-invariant space.

However, how to map the distributed vectors back to graphs in a permutation-invariant

manner still remains an open problem. Particularly, the graph variational autoencoder

(GVAE), as the direct application of GCN for graph generation [101], still only models

single networks with fixed sets of nodes (with fixed orders), thus cannot handle flexible

semantic conditions and permutation invariance.

In this work, to address the essential challenges of flexible context-structure conditioning

and permutation-invariant graph generation in conditional structure generation, we propose

the novel model of CondGen, which is essentially a neural architecture of graph varia-

tional generative adversarial nets. It fully leverages the well developed GCN model by

further collapsing the node encoding into permutation-invariant graph encoding through

variational inference on the conjugate latent distributions, which naturally allows flexible

graph context-structure conditioning. To further guarantee permutation-invariant graph de-

coding/generation, GCN is leveraged again to construct a graph discriminator before the

computation of graph reconstruction loss in the standard encoder-decoder framework. This

allows the graph generator to explore graphs of variable sizes and arbitrary node orders,

which is critical for the capturing of essential graph structures. Finally, for efficient and ro-

bust model training, we let the GCNs in graph encoder and discriminator share parameters
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to enforce mapping consistency between the graph context and structure spaces and avoid

the encoder collapse.

To fully demonstrate the value of conditional structure generation and the power of our

proposed CondGen model, we create two benchmark datasets of real-world context-enriched

networks and design a series of experiments to evaluate CondGen against several state-

of-the-art graph generative models properly adapted to the same setting. Through close

comparisons over various graph properties and careful visual inspections, we comprehensively

show the supreme effectiveness and generalizability of CondGen on conditional structure

generation.

4.5 MODEL: CONDITIONAL GRAPH GENERATION (CONDGEN)

4.5.1 Problem Formulation

We focus on the novel problem of conditional structure generation. We are given a set

of graphs G = {G1, G2, . . . , Gn}, where Gi = {Vi, Ei} corresponds to a particular graph

structure described by the set of nodes Vi and the set of edges Ei. Since graphs nowadays

are often contextualized with certain semantic attributes or labels of interest, we construct a

condition vector Ci for each graph Gi, which describes some particular simple graph contexts

of Gi (examples are shown in the data preparation in Sec. 4.6). We leave the exploration of

more complex contexts as future work.

In this work, we aim to explore and model the possible context-structure correspondence

on graphs. That is, by training a model M on a set of graphs with certain conditions (i.e.,

T = {Gi, Ci}ni=1), we hope to (1) given a seen condition C ∈ T , generate more graphs G

mimicking the structures of those in the training set T , and (2) given an unseen condition

C /∈ T , generate reasonable novel graphs G that can support similar tasks in T while

providing insight into the unobservable world.

We summarize the essential challenge of conditional structure generation as two folds in

the following.

Requirement 1. Flexible context-structure conditioning. Both the context space, structure

space and mapping between the two spaces can be rather complex. Therefore, a model should

be able to effectively explore the two spaces and their correspondence based on all context-

structure pairs in T . This means the model needs to jointly capture arbitrary contexts and

generate graphs of arbitrary sizes and structures. Moreover, a single model has to be trained

on arbitrary numbers of context-structure pairs upon availability.
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Remark 1. Existing graph generative models only consider graph structures and ignore

the rich graph contexts associated for structure generation. Moreover, earlier works only

model particular families of structures [211, 212], while more recent works mostly consider

single graphs with fixed sizes [101, 102, 103, 104, 105, 106]. GraphRNN [107] is the only

one we have seen so far that can be trained with a set of graphs and scale up to graphs

with hundreds of nodes, but its GRU design with sequential hidden spaces makes it hard to

directly apply effective semantic conditioning (as we will show more details in Sec. 4.6).

Requirement 2. Permutation-invariant graph generation. The structure of a graph G is

most commonly represented by an adjacency matrix A, where Aij = 1 means vi and vj are

connected and Aij = 0 otherwise. However, the representation is not unique. In fact, since

there are n! possible permutations for a graph with n nodes, the number of possible adjacency

matrices corresponding to the same underlying graph is also exponential. Therefore, a model

should be able to efficiently compare the underlying graphs instead of the representations

and equalize different representations of the same underlying graphs, essentially achieving

permutation-invariance [205, 168, 206, 207, 208].

Remark 2. Existing graph generative models are not permutation-invariant. Particularly,

models relying on fixed sets of nodes are not permutation-invariant, because there exists

no canonical node ordering and the models have to be re-trained whenever the ordering of

nodes is changed [101, 106, 108, 103, 104, 110]. Moreover, models that convert between

graphs and other structures like node-edge sequences, trees and random walks are also not

permutation-invariant, because there is no guarantee of one-to-one mapping between graphs

and the selected structures [107, 109, 102, 111, 105].

4.5.2 Proposed Model

We propose CondGen, which coherently joins the power of GCN, VAE and GAN for

conditional structure generation, and satisfies both requirements above. Figure 4.6 illustrates

the overall architecture of CondGen. In the following, we introduce the motivations and

details of our model design.

Given the two requirements, we get inspiration from recent works on GCN, which is

promising in calculating representative and permutation-invariant graph embedding [205,

168]. It is thus natural to think of a permutation-invariant graph encoder-decoder frame-

work by leveraging GCN and enable flexible conditioning through variational inference [213].

In fact, [101] proposed a VAE framework for graph generation soon after the invention of

GCN. However, they only consider learning on a single graph G = {V,E} and generat-
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Figure 4.6: Overall framework of CondGen: The upper part is a graph varia-
tional autoencoder, where we collapse the node embeddings into a single graph
embedding, so as to enable flexible graph context-structure conditioning and
allow training/generating of graphs with variable sizes. The lower part makes
up for a graph generative adversarial nets, where we leverage GCN to guarantee
permutation-invariant graph encoding, generation and comparison for recon-
struction. Parameters in the decoder and generator networks as well as those in
the two GCN networks in the encoder and discriminator are shared to further
boost efficient and robust model inference.

ing/reconstructing links E on the fixed set of nodes V , thus failing to meet both requirements

for conditional structure generation.

In this work, we apply a small but necessary trick to the original GVAE framework

in [101], i.e., latent space conjugation, which effectively converts node-level encoding into

permutation-invariant graph-level encoding, and allows learning on arbitrary numbers of

graphs and generation of graphs with variable sizes. Particularly, given a graph G = {V,E},
since we consider available node contents as semantic conditions, we regard G as a plain net-

work with the adjacency matrix A and generate node features X = X(A) as the standard

k-dim spectral embedding11 based on A. As suggested by reviewers, we later also experiment

with replacing spectral embedding by Gaussian random vectors, which leads to significant

reduce in runtime and comparable model performance, thanks to the representative and

permutation-invariant structure encoding of GCN (details in Sec. 4.6).

Following [101], we introduce the stochastic latent variable Z, which can be inferred from

X and A as q(Z|X,A) =
∏n

i=1 q(zi|X,A). zi ∈ Z can be regarded as the node embedding of

11https://scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html
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vi ∈ V . Different from [101], we use a single distribution z̄ to model all zi’s by enforcing

q(zi|X,A) ∼ N (z̄|µ̄, diag(σ̄2)), where µ̄ =
1

n

n∑
i=1

gµ(X,A)i, σ̄
2 =

1

n2

n∑
i=1

gσ(X,A)2
i , (4.13)

where g(X,A) = ÃReLU(ÃXW0)W1 is a two-layer GCN model. gµ(X,A) and gσ(X,A)

compute the matrices of mean and standard deviation vectors, which share the first-layer

parameters W0. g(X,A)i is the ith row of g(X,A). Ã = D−
1
2AD−

1
2 is the symmetrically

normalized adjacency matrix of G, where D is its degree matrix with Dii =
∑n

j=1Aij.

The trick of latent space conjugation leads to the modeling of z̄, which essentially is

the mean of zi over G, and thus can be regarded as the graph embedding of G. While

straightforward, the introduction of z̄ is critical for conditional structure generation, because

(1) it allows the model to generate graphs of variable sizes and be trained on set of graphs; (2)

it enables graph-level variational inference and flexible context-structure conditioning; (3) it

guarantees permutation-invariant graph encoding. We discuss about these three advantages

in details in the following.

Firstly, by individually modeling the embedding zi of each node vi ∈ V with separate latent

distributions, [101] can only generate links among the fixed set of nodes V , whereas we can

generate graphs of an arbitrary sizem by sampling zi form times from the shared distribution

of z̄. Secondly, according to [214], a conditional GVAE can be directly constructed by

concatenating (�) the condition vector C to both X and z̄ during training and to zi’s

sampled from z̄ during generation. Finally, since g(X,A) is permutation-invariant (i.e., ∀P ∈
{0, 1}n×n as a permutation matrix, g(PX,PAP T ) = Pg(X,A)P T [154]), z̄, µ̄ and σ̄ are also

permutation-invariant (i.e.,
∑n

i=1 g(PX,PAP T )i =
∑n

i=1[Pg(X,A)P T ]i =
∑n

i=1 g(X,A)i).

It thus guarantees that z̄ is indistinguishable if A is permutated.

Besides this difference, after sampling a desirable number of zi’s, to improve the capability

of the graph decoder, we append a few layers of fully connected feedforward neural networks

f to zi before computing the logistic sigmoid function for link prediction, i.e.,

p(A|Z) =
n∏
i=1

n∏
j=1

p(Aij|zi, zj), with p(Aij = 1|zi, zj) = σ(f(zi)
T f(zj)), (4.14)

where σ(z) = 1/(1+e−z). We optimize the model by minimizing the minus variational lower

bound

Lvae = Lrec + Lprior = Eq(Z|X,A)[log p(A|Z)]−DKL(q(Z|X,A)||p(Z)), (4.15)
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where Lrec is a link reconstruction loss and Lprior is a prior loss based on the Kullback-

Leibler divergence towards the Gaussian prior p(Z) =
∏n

i=1 p(zi) = N (z̄|0, I)n. The model

now consists of a GCN-based graph encoder E(A) = 1
n

∑n
i=1 g(X(A), A)i, and an FNN-based

graph decoder/generator G(Z) = f(zi)
T f(zj).

With this modified GVAE, we can compute permutation-invariant graph encoding and

generate graphs of variable sizes under different conditions. However, the graph generation

process is still not permutation-invariant, because Lrec is computed between the generated

adjacency matrix A′ = G(Z) and the original adjacency matrix A, which means A′ has to

follow the same node ordering as A. In an ideal case, if A′ = PAP T , Lrec should be zero.

This is not the case for the current model, which misleads the generator/decoder to waste its

capacity in capturing the n! node permutations, instead of the underlying graph structures.

To deal with this deficiency, we again leverage GCN, by devising a permutation-invariant

graph discriminator, which learns to enforce the intrinsic structural similarity between A′

and A under arbitrary node ordering. Particularly, we construct a discriminator D of a

two-layer GCN followed by a two-layer FNN, and jointly train it together with the encoder

E and decoder/generator G, by optimizing the following GAN loss of a two-player minimax

game

Lgan = log(D(A)) + log(1−D(A′)), with D(A) = f ′(g′(X(A), A)), (4.16)

where X, g′ and f ′ are spectral embedding, GCN and FNN, respectively, similarly as

defined before. After g′, the encodings g′(A) and g′(A′) are permutation-invariant (i.e.,

∀A′ = PAP T ,g′(A) = g′(A′)), and the reconstruction loss Lrec can be simply computed as

Lrec = ||g′(A) − g′(A′)||22, which captures the intrinsic structural difference between A and

A′ regardless of the possibly different node ordering.

At this point, we find our model closely related to the recently popular framework of

VAEGAN [215, 216, 217]. Similarly to their observations, we find it beneficial to include

two sources of generated matrix A′, i.e., one from the sampled graph encoding Zs w.r.t. the

prior distribution, and another from the computed graph encoding Zc = E(A), and redefine

the GAN loss as

Lgan = log(D(A)) + log(1−D(G(Zs))) + log(1−D(G(Zc))). (4.17)

Different from VAEGAN, and motivated by the powerful framework of CycleGAN [218],

we further aim to apply additional constraints to the framework to enforce mapping consis-

tency between the context and structure spaces. Particularly, we find it beneficial to share
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parameters in the two GCN modules g and g′, which essentially requires that the generated

graph A′ can be brought back to the latent space of graph encoding with contexts Z � C
by the same encoder g that maps the original graph A to the space of Z � C. Besides,

in practice, it may also help prevent the encoder from occasional collapse due to the over-

whelmingly powerful decoder/generator [219], when E keeps yielding the same noise Z for

different input A, but G manages to overfit the training data by generating the correct A′

solely based on the condition vector C. In this case, the model degrades into a conditional

GAN [214], which is harder to train without E functioning as expected.

4.5.3 Training Details

We jointly train the encoder E , decoder/generator G and discriminator D by optimizing

the following combined loss function

LCondGen = Lrec + λ1Lprior + λ2Lgan, (4.18)

where λ1 and λ2 are tunable trade-off hyperparameters. As suggested in [215], it is important

not to update all model parameters w.r.t. the combined loss function. Particularly, we use

the following parameter updating rules for in each training batch

θE
+←− −∇θE(Lrec + λ1Lprior), θG

+←− −∇θG(Lrec − λ2Lgan), θD
+←− −∇θDλ2Lgan. (4.19)

4.6 EXPERIMENTAL EVALUATIONS

We create two real-world context-rich network datasets and conduct thorough experiments

to demonstrate the effectiveness and generalizability of CondGen in conditional structure

learning. All code and data used in our experiments have been made available on GitHub12.

Datasets. Since we are the first to consider the novel but important problem of conditional

structure generation, there is no existing dataset for evaluation. To this end, we created two

benchmark datasets, i.e., a set of author citation networks from DBLP13 and a set of gene

interaction networks from TCGA14.

From DBLP, we create a set of 72 (8 × 3 × 3) author networks, each associated with a

10-dim condition vector. The nodes are the first authors of research papers published in

12https://github.com/KelestZ/CondGen
13DBLP source: https://dblp.uni-trier.de/
14TCGA source: https://www.cancer.gov/tcga
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8 conferences, i.e., NIPS and ICML (representing the ML community), KDD and ICDM

(DM), SIGIR and CIKM (IR), SIGMOD and VLDB (DB). Then each of the 8 groups of

authors are further divided into 3 subgroups by the number of total publications (1-10, 10-

30, 30+), representing the productivity of authors. Finally three networks are created for

each of the 24 sets of authors, by adding in the citation links created in different time period

(1990-1999, 2000-2009, 2010-2019). Thus, the 10-dim condition vector is a concatenation of

a 8-dim one-hot vector denoting the conferences, and a 2-dim integral vector denoting the

level of productivity and link creation time (each with three values 0, 1, 2). The average

numbers of nodes and edges in the author networks are 109 and 186, respectively.

From TCGA, we create a set of 54 (6 × 3 × 3) gene networks, each associated with a 8-

dim condition vector consisting of a 6-dim one-hot encoding of cancer primary sites (brain,

liver, lung, ovary, skin, and kidney) and a 2-dim integral vector denoting age of diagnosis

(30-57, 58-69, 70-90) and stage approximated by days-to-days (0-400, 400-800, 800-8000).

For each faceted search with a particular combination of primary site, age-at-diagnosis, and

days-to-death filters, a gene correlation network was created using a gene expression matrix

constructed from the first 10 RNA-Seq FPKM files. From each RNA-Seq FPKM matrix

M , a transformed matrix N = log10(M + 0.5 ×min(M)) was created and then filtered for

genes with a unique entrez ID and vector representation [220]. Finally, a gene correlation

network was constructed using pearson correlation with p-value threshold 0.01. The average

numbers of nodes and edges in the gene networks are 177 and 1096, respectively.

Baselines. Since no baseline is available for the novel task of conditional structure learn-

ing, we carefully adapt three state-of-the-art graph generation methods, i.e., GVAE [101],

NetGAN [102] and GraphRNN [107], by concatenating the condition vectors to both the

node features of the input graph and the output of the last encoding layer following the

standard practice in [214]. To allow a single GVAE or NetGAN model to be trained on a

set of graphs, we fix the size of input and output graphs as the largest size of all networks

following [108]. As suggested by reviewers, we also construct a variant of CondGen by

replacing the spectral embedding with Gaussian random vectors of the same sizes to use as

input node features to GCN, denoted as CondGen(R) (i.e., random vectors) as opposed to

CondGen(S) (i.e., spectral embeddings).

Protocols. To demonstrate the effectiveness and generalizability of CondGen, we evaluate

both tasks of mimicking similar seen graphs and creating novel unseen graphs. We firstly

partition all networks at random by a ratio of 1:1 into training and testing sets. Note that,

the testing set includes graphs with both seen and unseen conditions in the training set, so
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a good model that performs well on the testing set has to effectively capture the context-

structure correspondence among graphs with the seen conditions and generalize to graphs

with unseen conditions.

Parameter Settings. As mentioned, our CondGen model consists of an encoder, a de-

coder, and a discriminator.

In the encoder, we use a spectral embedding layer to extract the node features solely based

on graph structures. The output of the spectral embedding layer is a n×d, where d is set to

5 on DBLP and 10 on TCGA. We select d as such small values because there are some small

graphs especially in the DBLP dataset and the Laplacian eigenvectors corresponding to the

first few smallest eigenvalues usually capture the most important graph properties such as

number of disconnected components, clustering structures, etc.. A graph convolution layer

follows afterwards with the output size of 16. We notice that simply using graph convolution

layers tends to give unstable outputs, so we add two linear layers with a one-dimensional

batch normalization layer and a ReLU activation layer before obtaining the mean and variance

variables. Both mean and variance vectors have a dimension of 6.

In the decoder, we use a graph convolution layer followed by linear layers. We follow

the same design of GVAE to reconstruct graphs, i.e., using the encoded vectors generated

from the linear layers multiplied by their transpose vectors. Interestingly, we notice that

if the dimension of the encoded vectors is large, the output graphs tend be very dense,

while a small dimension may lead the graphs having many disconnected components. Thus

the selection of 6 is done through vast cross-validation. However, since the set of candidate

values is relatively small (we conduct cross-validation on values of 2-10), the hyperparameter

selection process is easy to complete.

The discriminator has similar settings as the encoder, i.e., they share the exact same GCN

module followed by FNNs with the same design, except that the output here is a single value,

differentiating generated graphs from real graphs.

We use Adam optimizers for the training of all modules in the CondGen with a learning

rate of 0.001.

Performances. Following existing works on generative models [102, 107, 108], we evalu-

ate the generated graphs through visual inspection and graph property comparison15. Our

model can flexibly generate graphs with arbitrary numbers of nodes and edges. For fair

and clear comparison, when generating each graph, we set the maximum number of nodes

15Statistics we use include LCC (size of largest connected component), TC (triangle count), CPL (char-
acteristic path length), MD (maximum node degree) and GINI (gini index), measuring different properties
of graphs.
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and edges to the same as the real graph for all compared algorithms. As shown in Table

4.4, the suite of statistics we use measure graphs from different perspectives, and different

algorithms often excel at particular ones. Our proposed CondGen models constantly rank

top with very few exceptions on all measures over both datasets. The advantage of Cond-

Genon generating graphs with seen conditions in the training set demonstrates its utility in

generating more similar graphs for conditions where observations might be sparse, while the

edge on unseen conditions indicates its generalizability to semantically relevant conditions

where observations are completely missing. The CondGen(R) model variant has quite

competitive performance with CondGen(S), which can be explained by the representative

and permutation-invariant structure encoding power of GCN. Due to space limit, we put

detailed parameter settings, qualitative visual inspections and in-depth model analyses into

the appendix in the supplemental materials.

Runtimes. Similar to most neural network models, it is meaningless to compute the exact

complexity of CondGen, because the actual runtimes mostly depend on the number of

training iterations until convergence. To this end, we record the average runtimes for the

training of all compared algorithms until convergence on the two sets of networks and present

in Table 4.5. As we can clearly observe, state-of-the-art graph generation algorithms like

GraphRNN and NetGAN are rather slow, due to the heavy model of RNN and large number

of sampled walks, respectively, while CondGen and its base model GVAE are much faster.

Since CondGen and GVAE are basically a simple GCN model encapsulated in a VAEGAN

and VAE framework, respectively, we also find that the memory consumptions of Cond-

Gen and GVAE are orders of magnitudes lower than GraphRNN and NetGAN. Among the

two CondGen variants, CondGen(S) takes about double runtime as CondGen(R), due

to the computation of spectral embeddings. While the overhead is not significant, it can get

more concerning as the networks become larger, due to the essential O(n3) complexity of

spectral embedding. However, since CondGen(R) has quite competitive performance with

CondGen(S), one can use it as a substitute of CondGen(S) when efficiency is more of a

concern.

In-depth Model Analyses To understand how our proposed CondGen model learns to

capture the key properties of graphs, we closely evaluate it along training. Since the results

are averaged among all networks in the dataset, which exhibits various graph structures, the

variances are pretty large and often do not cancel with each other. Interestingly, we find

that most graph properties tend to have larger values on real graphs than random graphs,

and thus an untrained model often gives lower values on them compared with a well trained
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model. Nonetheless, CondGen manages to approach the values of real graphs rapidly after

around one hundred of epochs on most graphs.

Figure 4.7 shows the in-depth model analyses results on the DBLP dataset, while the re-

sults on the TCGA dataset follow the similar trends and are thus omitted. Interested readers

are encouraged to run our models which are submitted together in the supplementary ma-

terials and see how different models behave during training on the novel task of conditional

structure generation. Meanwhile, in order to better demonstrate how the generated graphs

can be useful in downstream applications, we are conducting more experiments with ad-

vanced graph classification and regression tasks, hoping to see that the graphs generated by

CondGen can successfully ‘fool’ the classification and regression models, providing unlim-

ited structural data under particular conditions of interest that are close to hardly observed

or unobservable real graphs.
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Graphs Models LCC TC CPL MD GINI

DBLP
Seen

Real 96.00 48.54 3.696 11.62 0.3293
GVAE 20.91∗∗ 21.76∗∗ 1.390∗ 2.32∗∗ 0.1964∗∗

NetGAN 21.15∗∗ 22.46∗∗ 1.641∗∗ 2.77∗∗ 0.0568∗∗

GraphRNN 6.88∗ 69.32∗∗ 1.628∗∗ 7.06∗∗ 0.2446∗∗

CondGen(R) 6.70∗ 7.70∗ 1.201∗ 1.33 0.1232∗

CondGen(S) 6.00 11.32 0.963 1.48 0.0959

DBLP
Unseen

Real 102.50 58.21 4.982 14.29 0.3223
GVAE 17.40∗∗ 17.02∗∗ 1.521∗∗ 3.53∗ 0.2479∗∗

NetGAN 29.57∗∗ 39.85∗∗ 1.494∗∗ 3.71∗∗ 0.0812
GraphRNN 6.43 73.21∗∗ 1.305∗ 6.43∗∗ 0.1447∗∗

CondGen(R) 9.25∗ 10.50 1.445∗∗ 1.92 0.1418∗∗

CondGen(S) 6.33 10.17 1.162 1.92 0.0861

TCGA
Seen

Real 177.34 8913.20 4.171 38.27 0.4192
GVAE 54.82∗∗ 2396.94∗ 1.538 14.10∗∗ 0.2035∗∗

NetGAN 32.02∗∗ 3614.61∗∗ 1.702∗∗ 17.61∗∗ 0.1289∗

GraphRNN 16.20∗ 2881.68∗∗ 1.899∗∗ 18.78∗∗ 0.2726∗∗

CondGen(R) 34.42∗∗ 2594.16∗∗ 1.542 9.50 0.1509∗∗

CondGen(S) 23.72 2076.05 1.524 8.32 0.1093

TCGA
Unseen

Real 177.91 8053.18 4.143 34.34 0.4154
GVAE 37.18∗∗ 2768.55∗∗ 1.324∗ 13.03∗∗ 0.1497∗∗

NetGAN 31.36∗∗ 3557.91∗∗ 1.645∗ 18.45∗∗ 0.1277∗∗

GraphRNN 15.73∗∗ 2605.73∗∗ 1.859∗∗ 13.55∗∗ 0.2647∗∗

CondGen(R) 27.77∗ 3083.81∗∗ 1.362∗ 10.86∗ 0.1413∗∗

CondGen(S) 23.97 2058.95 1.522 8.68 0.1003

Table 4.4: Performance evaluation over compared algorithms regarding several
important graph statistical properties. The Real rows include the values of real
graphs, while the rest are the absolute values of differences between graphs
generated by each algorithm and the real graphs. Therefore, smaller values
indicate higher similarities to the real graphs, thus better overall performance.
We conduct paired t-test between each baseline and CondGen(S), scores with ∗

and ∗∗ passed the significance tests with p = 0.05 and p = 0.01, respectively.

Graphs GVAE NetGAN GraphRNN CondGen(R) CondGen(S)
DBLP 12.8 398.6 299.5 31.5 72.3
TCGA 10.9 414.0 192.4 27.6 52.1

Table 4.5: Runtimes of training all compared algorithms on the two sets of
networks (minutes).
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(a) (b)

(c) (d)

(e)

Figure 4.7: Different graph statistics evaluated along the training of CondGen on
DBLP (averaged between seen and unseen conditions). CondGen efficiently
learns to capture the key properties of graphs and converges to the values of
real graphs with only around 100 epochs of training.
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CHAPTER 5: APPLICATIONS

In this Chapter, I give two examples of real-world graph mining applications enabled

by my proposed framework of contextualized projections, i.e., web-scale recommendation

with explicit contexts (Section 5.1-5.3) and new user churn prediction with implicit contexts

(Section 5.4-5.5).

5.1 WEB-SCALE RECOMMENDATION WITH EXPLICIT CONTEXT

Recent research on extracting information from large networks (graphs) has been largely

focused on graph neural networks [221],

among which, graph convolutional networks (GCNs) have received significant attention

[32, 34, 210, 222, 223, 224, 225]. This is not only because of their fundamental connections

to spectral graph theory and thus provable representation power [168, 226, 227], but also

their promising performance on several graph mining benchmarks [33, 154, 35].

To harness the power of GCNs, GraphSage was designed to enable batch-wise training

through fixed-sized neighborhood sampling [33]. It was later adapted to a more robust

enterprise-scale version called PinSage [228] and deployed at Pinterest. PinSage was shown

to be extremely effective at recommending similar pins based on the industry-scale pin-board

graph (billions of nodes with each node having thousands of features).

However, one key limitation of existing GCNs is that they cannot distinguish multi-facet

node properties and complex node interactions, which manifests due to their homogeneous

treatment of node links. As illustrated in Figure 5.1(a), in real-world industrial platforms

like Pinterest, state-of-the-art GCN models mix all related nodes in a single embedding

space.

Present work. Here we argue that nodes in a network are connected due to different

reasons and are thus close in different ways, which cannot be simultaneously captured by a

single embedding. To this end, we propose MultiSage, which is based on a novel idea of

contextualized multi-embedding, where we compute multiple embeddings for network nodes

to capture their contextualized interaction in the corresponding multiple embedding spaces.

Figure 5.1(b) illustrates the scenario where MultiSageretrieves and organizes nodes related

to the query under different contexts in multiple embedding spaces. Our MultiSageanswers

two important questions: (1) how to find proper context; And (2) how to leverage context

in massive real-world networks to facilitate effective and flexible downstream applications.

RQ 1: How to find proper context? Real-world applications often care most about par-
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(a) PinSage Global Single-
Embedding

(b) MultiSage Contextualized Multi-Embedding

Figure 5.1: A toy example of related pin recommendation in Pinterest. In
Subfigure (a), given the query pin (in red), PinSage computes a single pin em-
bedding and mixes up all related pins. On the contrary, in Subfigure (b), we
compute multiple pin embeddings based on different boards (e.g., fashion and
crafts), which naturally organizes related pins according to their contextualized
distances to the query and effectively distinguishes relatedness in different per-
spectives (fashion models are drawn towards the query in the first space, whereas
craft clothes in the second).

ticular types of nodes (e.g., papers in academic graphs, users in social networks, etc. [228,

229, 230]). However, we observe that real-world networks are often multipartite, i.e., in-

cluding multiple types of nodes, which naturally provide the context of interactions for each

other. Due to this observation, we find it beneficial to model target nodes and context nodes

in multipartite networks, where the interactions among target nodes can be subtly modeled

under the help of context nodes.

Take Pinterest as an example, where users interact with pins (e.g., images in Figure 5.1)

mostly by pinning them to customized boards, thus creating a massive bipartite pin-board

graph. Since the embeddings of pins are critical for various downstream services like search

and recommendation, we regard all pins as the target nodes and aim to compute high-quality

contextualized multi-embeddings for them. In the meantime, we regard each board node as a

context node and leverage the fact that a board provides context for the relationship between

two pins.

The intuition behind leveraging boards to contextualize interactions among pins is natural—

for example, if the paths connecting two particular pins mostly pass through a fashion board,

the embeddings of the two pins are likely close because they both describe fashionable items.

Besides simplicity, we also find the idea general—for example, on a publication network like
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OAG,1 if two papers are mostly connected by paths passing through a data mining venue,

they are likely close because they both study data mining problems.

RQ 2: How to leverage context? We propose MultiSage, which leverages ubiquitous

graph context in real-world multipartite networks to empower GCN by injecting interaction

contextualization into its critical neighborhood convolution process, where we dynamically

compute multiple embeddings for each target node under the conditions implied by different

context nodes. Particularly, we design a novel GCN architecture with a learnable contextual

masking operation based on context node features for flexible feature-level embedding pro-

jection, and a three-way contextual attention mechanism for node-level neighbor reweighing

during graph convolutions. To fully capture the rich information in web-scale networks, we

further implement a parallel contextualized random walk engine and an efficient Hadoop2-

based data provider pipeline to pre-join and dynamically feed training data to the multi-GPU

model trainer, which allows scalable model training on massive networks with millions to

billions of nodes.

We conduct extensive experiments and case studies on an enterprise Pinterest pin-board

network as well as a public OAG publication network. The advantages of MultiSage are

intriguing not only because it outperforms various state-of-the-art baselines with significant

margins (9%-25% on MRR over the production model of PinSage) by incorporating rich and

subtle network information, but also due to its corroborated utility in generating flexible

and meaningful multi-embeddings that naturally paves the way to fine-grained search and

recommendation.

5.2 MODEL: GRAPHSAGE WITH CONTEXTUALIZED MULTI-EMBEDDING
(MULTISAGE)

5.2.1 Preliminaries

Following abundant recent works on GCN [33, 34, ?, 224], we take [32] proposed by Kipf

and Welling as a representative to briefly recapitulate its main design. Particularly, the

typical output of the (l + 1)-th convolutional layer H(l+1) of GCN is computed as follows

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2 H(l)W(l)

)
, (5.1)

where Ã is the adjacency matrix with self-connections of the whole graph with N nodes,

D̃ii =
∑

j Ãij, W(l) is the trainable layer-wise weight matrix, and σ(·) is a nonlinear acti-

1https://www.openacademic.ai/oag/
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vation function such as ReLU. H(l) ∈ RN×Dl is the output of the l-th layer, with H(0) = X,

i.e., the original node features.

One major drawback of [32] is the requirement of putting the whole graph (i.e., Ã, D̃ ∈
RN×N) into the main memory (or GPU memory), which limits the training to graphs with

only thousands of nodes. To address this issue, GraphSage [33] is proposed to sample a fixed

number of neighbors in each convolution layer and aggregate the neighborhood embedding

as follows

h
(l+1)
N (v) = AGGREGATE({h(l)

u ,∀u ∈ N (v)}), (5.2)

where N (v) is the sampled neighborhood of node v, and AGGREGATE is the aggregation

function such as mean pooling.

To fully leverage the model capacity of GCN and scalability of GraphSage, PinSage [228]

is developed at Pinterest for the particular task of related pin recommendation. To suit this

real-world recommendation task, a series of techniques are adopted, while the major one lies

in the triplet-wise optimization objective based on max-margin ranking as follows

J (vq, vp, vn) = max{0,hTvqhvn − hTvqh
L
vp + δ}, (5.3)

where δ is a margin hyper-parameter. In each triplet (vq, vp, vn), vq and vp are the query and

positive nodes sampled from available training data (e.g., related pin pairs generated from

users’ interactions with pins), while vn is the negative node sampled from Pn(vq) (i.e., the

distribution of negative examples for vq).

5.2.2 Problem Definition

In this work, we propose to leverage the heterogeneity of real-world networks by separating

different types of nodes into target nodes and context nodes based on application need,

so as to focus the computations on the important types of nodes, while enabling flexible

contextualization based on the others.

Figure 5.2 gives an example of separating the multipartite Pinterest network into tar-

get nodes (i.e., pins) and context nodes (i.e., boards), where pins are related via boards,

which naturally describe their interaction contexts. Note that, we make two assumptions

to achieve such desired simplifications of the otherwise complicated heterogeneous networks:

(1) minimum domain knowledge is available to separate target nodes from context nodes; (2)

most important interactions among target nodes involve context nodes. To show that both

59



Figure 5.2: Target-context separation of Pinterest network.

assumptions are general and realistic, we give examples of a few commonly used multipartite

networks in Table 5.1. Note that, while we focus most of our discussion on the major context

nodes, the framework we develop is easily extendable to incorporate various other context

nodes.

Dataset Target node Major context Other context
IMDB [7] movie genre director, actor
TCGA [9] gene pathway disease, species
OAG [113] paper venue author, keyword

Pinterest [112] pin board user, session

Table 5.1: Target and context nodes on different networks.

Under different conditions characterized by context nodes, proximity among target nodes

can be rather different. For example, a fashionable pair of glasses and a fashionable pair of

shoes are close under fashion and far away under crafts. In this work, to capture the complex

multi-perspective interactions among network nodes, we propose to improve the successful

GCN models with the novel computation of contextualized multi-embedding as follows

Definition 4 Contextualized Multi-Embedding. Given a network with target nodes T and

context nodes C, compute |C| embeddings for each of the |T | nodes, so that the conditional

proximity p(v, u|o) between any two target nodes v, u ∈ T under the condition indicated by

any context node o ∈ C is captured in the embedding space corresponding to o.

5.2.3 MultiSage

Contextualized graph convolution. Figure 5.3 illustrates the detailed architecture of

MultiSage. Based on GCN [32], MultiSage leverages graph convolutional layers to
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Figure 5.3: The overall neural architecture of MultiSage.

generate embeddings for each target node by treating it as the ego and aggregating infor-

mation from its neighbor on the graph. However, existing GCNs do not leverage context

nodes during graph convolution, and apply the same aggregation function to all neighbors

by treating them equally. As we stress in this work, every ego target node interacts with its

neighbor target node under different conditions characterized by the intermediate context

nodes, so neighbors with different contexts should be distinguished during aggregation.

Take Figure 5.4 as an example. In (a), when three neighbor pins (i.e., target nodes) are

aggregated through mean pooling, the resulting neighborhood embedding simply lies in the

center of the three pins, reflecting the same influence of all neighbors on the ego. As a contrast

in (b), two neighbor pins are connected via the fashion board (i.e., context node) while the

other one via the crafts board (i.e., another context node), thus drawing the neighborhood

embedding more into the fashion direction. Such contextualization over the target interaction

is desirable, since each neighbor is similar to the ego from a particular perspective, and thus

should influence the ego embedding more in the corresponding subspace.

To achieve such interaction contextualization, we firstly retrieve the dominant context

node between each pair of ego and neighbor target nodes with a parallel contextualized

random walk engine (details deferred to Section 5.2.3.2). As a result, each neighbor u ∈
Nv ⊂ T of the ego v ∈ T is associated with a dominant context node o ∼ (v, u) ∈ C that

characterizes the interaction between v and u. Based on this, in the following we describe

how to learn the target embedding zt for both v and u, and the context embedding zc for o,

and combining zt and zc for contextualized graph convolution.

Raw feature transformation. Since |T | and |C| can both be very large in real-world
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networks (e.g., millions), identity based embedding is impractical. To this end, we adopt

the common practice of feature based embedding for both target and context nodes, which

learns to project and transform raw node features via stacked dense neural networks as

follows (Steps 1-2 in Figure 5.3)

zt = ReLU
(
W

(K)
t . . .ReLU(W

(1)
t xt + b

(1)
t ) . . .+ b

(K)
t

)
,

zc = ReLU
(
W(K)

c . . .ReLU(W(1)
c xc + b(1)

c ) . . .+ b(K)
c

)
, (5.4)

where xt and xc are the raw features of target and context nodes, respectively, and
{
W

(k)
t ,b

(k)
t ,

W
(k)
c ,b

(k)
c ,∀k ∈ {1, . . . , K}

}
are the learnable parameters of the target and context embed-

ding layers shared on the whole graph, which are independent of the graph structures and

sizes (|T | and |C|). zt and zc are the embeddings of target and context nodes in the shared

embedding space.

Contextual masking. The next step is to transform and aggregate target embeddings

zt based on context embeddings zc. Motivated by the example in Figure 5.4, we design

and apply a contextual masking operation by setting the size of zt and zc to be the same,

and then element-wise multiplying the embedding of dominant context node zc(o) onto the

embeddings of both ego and neighbor target nodes zt(v) and zt(u) as follows (Step 3 in

Figure 5.3)

zt|c = zt ⊗ zc. (5.5)

Note that, since the last embedding layer of zc is ReLU, certain dimensions can be learned

to be zero, which effectively “masks out” irrelevant dimensions, so as to project the target

embeddings into particular subspaces directly controlled by the context embeddings, which

exactly matches the geometric intuitions in Figure 5.4.

Although the contextual masking operation is geometrically intuitive, to be comprehen-

sive, we also explore and employ other schemes to compute zt|c. Motivated by the popular

translation based relational models [67, 68], we compute zt|c = zt ⊕ zc, which “translates”

target embedding into different spaces by element-wise summation with context embedding.

Moreover, motivated by the power of dense neural networks [231], we also attach freely

learnable dense neural networks to the concatenation of target and context embedding, i.e.,

zt|c = ReLU
(
Wp(zt � zc) + bp

)
.

Contextual attention. Contextual masking allows us to project different ego-neighbor

pairs into various embedding subspaces indicated by the dominant context, so as to em-

phasize contextualized interaction among target node pairs regarding particular embedding
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Figure 5.4: Geometrics of contextualized multi-embedding.

dimensions at the feature level during graph convolutions. However, it does not consider the

overall impact of different neighbors on particular egos at the node level, especially under

the consideration of different interaction context.

Motivated by the powerful attention networks [232, 35], we design a novel contextual

attention mechanism, by jointly computing an attention weight for each ego-context-neighbor

triplet as follows (Step 4 in Figure 5.3)

α(v, o, u) = (5.6)

exp
(
τ
(
aT [Watzt(v)�Waczc(o)�Watzt(u)]

))
∑

u′∈Nv ,o′∼(v,u′) exp
(
τ
(
aT [Watzt(v)�Waczt(o′)�Watzt(u′)]

)) ,
where {a,Wat,Wac} are the learnable attention parameters (Wat for target embedding and

Wac for context embedding), and τ is the LeakyReLU activation function following [233, 35].

α(v, o, u) is learned to assign different weights to neighbors based on the embedding of

both context o and target pair (v, u), so as to allow graph convolution at each ego to raise

attention to important neighbors and contexts. To further improve the capacity and stability

contextual attention, we exploit multi-head attention [232, 35] to compute the aggregated

contextualized embedding as follows

zNv(x) = σ
( 1

D

D∑
d=1

∑
u∈Nv ,o∼(v,u)

α(d)(v, o, u)zt|c(x, o)
)

(5.7)

where each α(d) is a single attention weight computed by Eq. 6, and σ is the Sigmoid function.

63



x can be either v or u.

While being expressive, our multi-head contextual attention mechanism is also feature

based and cheap to compute. Particularly, all attention parameters {a(d),W
(d)
at ,W

(d)
ac , d ∈

{1, . . . , D}} are shared across all links in the graph and independent of graph structures and

sizes.

Training objective. For MultiSage, we find directly adding up the contextualized ego

embedding zNv(v) and neighbor embedding zNv(u) as the final MultiSageembedding h(v)

to be most efficient and beneficial (Step 5 in Figure 5.3). As for the training loss, we follow

PinSage to take query-positive pairs (vq, vp) from the training data, and apply the hard

negative sampling strategy [234, 228] to generate query-positive-negative triplets (vq, vp, vn).

After that, we apply the same convolution procedure to vq, vp and vn to compute their Mul-

tiSageembedding h(vq), h(vp) and h(vn), which are then optimized with the loss function

in Eq. 5.3 (Step 6 in Figure 5.3).

Note that, during graph convolution, the contextualized multi-embeddings are aggregated

into a single MultiSageembedding, to be trained and evaluated towards a single node

similarity (e.g., pin/paper relatedness, as in Sec 3.2). Nonetheless, we can easily compute

the feature-based contextualized multi-embeddings based on the trained model and use them

towards fined-grained downstream applications (e.g., contextualized recommendation, as in

Sec 3.3).

Web-scale implementation. Now we consider the implementation of MultiSage on

real-world web-scale multipartite networks. As an example, in Pinterest, we construct a

relatively smaller graph of 76 million pins, 15 million boards, and 2.7 billion links for the rapid

development and evaluation of MultiSage, while a larger graph includes 1.4 billion pins,

1.3 billion boards, and 23 billion links. In contrast, most state-of-the-art graph embedding

models are only scalable to thousands of nodes and links [32, 34, 225, 35, 63], which are

far from useful for real-world large-scale applications. In this work, we develop a series of

techniques to scale up MultiSage.

Parallel contextualized random walk. The first complexity of MultiSage lies in the

multi-layer graph convolutions, which requires the retrieval of multi-order neighbors on the

graph during training. Since neighbors of a node can be almost anywhere on the graph due to

the small world phenomenon [98], most GCN-based models simply put the whole adjacency

matrix in memory [32, 35], which is impossible for large-scale applications. Another way

is to compute minibatches with fixed numbers of neighbors [33], but such minibatches still

easily become too large and complex when the convolution depth increases.

To simplify the multi-layer architecture of GCN while maintaining its long-range propaga-
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tion ability, we get motivated by [225], which shows that a single-layer GCN with neighbors

sampled according to personalized PageRank scores can mimic the behavior of multi-layer

GCNs while avoiding graph over-smoothing. To leverage this observation, we develop a

highly parallelizable random walk with restart engine to sample a fixed number of higher-

order neighbors for each target node, which is stored in a database and can be efficiently

prepared before model training.

In order to enable the contextualized embedding of MultiSage, the random walk engine

needs to also retrieve the context nodes between each ego-neighbor pair of target nodes.

However, it is not realistic to retrieve all intermediate context nodes if there are multiple,

because it will blow up the size of the resulting contextualized neighbor list and pose chal-

lenges to the design of the contextualized graph convolution. It is also not necessary, because

although each ego node can have multiple facets, usually only one facet is active when it

interact with a particular neighbor node. Therefore, we build a novel light greedy algorithm

based on stream data processing [235] into the random walk engine to retrieve only one

dominant context node for each pair of target nodes, which best describe the interaction

between them. The idea is to run many random walks between each pair of target nodes,

and use the most frequently visited context node by these paths as the dominant context.

Hadoop2-based data provider. The second complexity lies in the retrieval and joining of

node features. Consider a Pinterest graph with 1 billion pins, each with 64-dim float visual

features and 128-dim short-int textual features. The feature store of all pins will thus take

1TB space. During training and inference, again since the neighbor of a node in the current

batch can be anywhere on the graph, neighbor retrieval is fast enough only if the 1TB graph

is completely stored in memory. This approach, though expensive, has been adopted for

PinSage under the support of the Linux HugePage technology [228]. However, it is hard to

acquire many dedicated machines with such large memory for rapid model development and

training, and it constrains the inclusion of additional data and signals as a path to further

model improvements.

To remove the requirements of large memory, we develop a Hadoop2-based data provider

with pre-computed neighbor datasets and AWS S3 streaming. The idea is to sample and fix

the neighbor lists S of all target nodes T on G with Algorithm 2 offline, pre-join the large

feature stores with S and store the results on S3 cloud. During training and inference of

MultiSage, it is then possible to dynamically prepare minibatches of nodes with neighbors,

both already joined with the features, so as to avoid the heavy joining operation online. We

develop an efficient and robust pipeline that handles tremendous amounts of data (more than

60TB intermediate data during a full join of all neighbor lists with the feature stores), and

synchronize the model training and inference on multiple GPUs with S3 streaming through
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dedicated stream data loaders.

5.3 EXPERIMENTAL EVALUATIONS

5.3.1 Experimental Setup

Dataset preparation. From Pinterest, we collect a pin-board graph of 76M pins, 15M

boards, and 2.7B pin-board links. In addition, we collect a paper-venue graph of 87M

papers, 46K venues and 87M paper-venue links from OAG [113] where all pairs of iden-

tical papers have different titles, to further evaluate the generalizability of MultiSage.

Since in Pinterest and OAG, the most important use cases for search and recommendation

are around pins and papers respectively, we model pins/papers as the target nodes, and

boards/venues/keywords as the context nodes.

For Pinterest, we collect training data based on the repin signals. A repin pair (q, i) ∈ R
is created when a user stores a pin i after exploring potentially related pins of q, which is a

valuable signal indicating that the user likes the recommendation of i based on q (i and q

are related in certain ways). A good model should be able to learn to capture the similarity

between i and q. We remove repin pairs with low frequencies (e.g., less than 2 times) to

reduce noise, and keep a maximum number of repin pairs for the same query (e.g., 20) to

reduce bias. In our experiments, we collect a set of 75M repin pairs. We create separate

validation sets from all training data by randomly sampling 1M from the 75M pairs.

For OAG, we collect 14M pairs of identical papers on Microsoft Academic Graph and

Aminer. Since most pairs are easy to classify simply based on paper contents like titles, we

further pick 72K from the 14M pairs with different titles for model training and evaluation.

Similarly to Pinterest, a random set of 10K pairs are separated from the 72K pairs, which

is only used for evaluation.

Compared algorithms. We mainly compare with the state-of-the-art production model

PinSage currently deployed at Pinterest, together with a few other commonly used embed-

ding methods leveraging various signals with advanced mainstream deep learning models

[228]. The baselines we compare include

• Visual: The unified visual embedding used as pin features.

• Textual: The conceptnet textual embedding used as pin and paper features.

• Combined: The combination of visual and textual embeddings used as pin features.
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• Pixie [112]: Graph-based ranking through aggregating random-walk visiting counts de-

ployed at Pinterest, which essentially computes the popular Personalized PageRank scores

[164].

• PinSage [228]: The state-of-the-art production pipeline that computes pin embeddings

by incorporating visual, textual and graph signals based on the GraphSage model [33]

currently deployed at Pinterest (V5).

• GAT [35]: Our implementation of graph attention networks based on PinSage V5 for

scalable training.

• HAN [63]: Our implementation of heterogeneous graph attention networks based on

PinSage V5 for scalable training.

Note that, only HAN and our MultiSage variants can model the context nodes between

target nodes, whereas Pixie, PinSage and GAT can only model the homogeneous network

of target nodes by ignoring their different interaction contexts.

Evaluation metrics. We evaluate the performance of different models based on a separate

set of evaluation node pairs Peval. For each pair p = (q, i) ∈ Peval, we use q as a query and

then compute a set of metrics based on the ranking position of i among the fixed pool I of

evaluation nodes. The ranking is done based on exact cosine similarity for all embedding

methods except Pixie, which directly returns a rank list of nodes given a query. Similar to

[228], we compute the scaled Mean Reciprocal Rank as MRR = 1
|Peval|

∑
(q,i)∈Peval

1
Ri,q/Ms

,

where Ri,q is the rank of i among I. Ms is the scaling factor ensuring the difference between

large ranks to be still noticeable. We use Ms = 10 which is smaller than 100 used in [228],

because we now use a smaller pool I of nodes for faster evaluations and also because all

baselines including PinSage have been largely improved in the past one year, which makes

the distinguish between small ranks to be more important. Due to the same reasons, for

recall@K (short as REC@K, also known as hit-ratio@K, which is defined as the fraction of

queries q where i is ranked among the top K among I), we also use extremely small values

of K such as 10 and 1.

In addition to the ranking based metrics which only measure the relative distances among

relevant and irrelevant nodes, we also compute the average cosine distances (DC) and Eu-

clidean distances (DE) among the embeddings of all nodes (DC∗ and DE∗) and all relevant

nodes pairs (DC+ and DE+). This helps us to understand the absolute distribution of

nodes in the embedding space. A good embedding method should be able to spread all

nodes further apart to occupy vast areas in the embedding space (large D∗’s), while putting

relevant nodes close to each other (small D+’s).
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Furthermore, we compute the sets of top-K retrieved nodes for both q and i (TopK(q)

and TopK(i), respectively), and thus compute the average sizes of intersection (INT =

|TopK(q) ∩ TopK(i)|) and union (UNI = |TopK(q) ∪ TopK(i)|) of the two sets, as well as

their Jaccard index (JAC = INT/UNI). These metrics help us to further understand how

query nodes and positive nodes are distributed in the embedding space. A good embedding

method should put q and i closer in the embedding space, in the sense that their neighbor-

hoods TopK(q) and TopK(p) overlaps much, leading to large values of INT , small values

of UNI, and large values of JAC.

Training Details For Pinterest, we collect training data mainly based on the organic repin

signals. A repin pair (q, i) ∈ R is created when a user stores a pin i after exploring potentially

related pins of q, which is a valuable signal indicating that the user likes the recommendation

of i based on q (i and q are related in certain ways). A good model should be able to learn

to capture the similarity between i and q. We remove repin pairs with low frequencies (e.g.,

less than 2 times) to reduce noise, and keep a maximum number of repin pairs for the same

query (e.g., 20) to reduce bias. In our experiments, we collect a set of 75M repin pairs. We

further create separate validation sets from all training data by randomly sampling 1M from

the 75M pairs.

In addition to organic repins, we also extract pin pairs based on other signals to train and

evaluate different models for comprehensive understanding of their behaviors. For example,

we use shopping signals from Pinterest, where a shopping pair (q, i) ∈ S is created when

a user long-clicks (click and stay for more than 10s) on a shopping pin (pins with links to

shopping pages) i recommended for query pin q. The shopping signals, while also indicating

successful recommendations, might favor different aspects of relatedness between i and q,

which is helpful in testing the models’ capability of capturing different contextual proximities

among i and q.

We process the shopping pairs similarly as repin pairs to reduce noise and bias. However,

in practice we observe shopping pairs to be much more noisy, and use human labors to

further curate two categorized smaller sets of gold quality shopping pairs. Particularly, we

pick out two popular categories of shopping products in Pinterest, i.e., home decororation

and women’s fashion, and generate a set of 8192 gold pairs for each of them.

For OAG, we collect 14M pairs of identical papers on Microsoft Academic Graph and

Aminer. Since most pairs are easy to classify simply based on paper contents like titles, we

further pick 72K from the 14M pairs with different titles for model training and evaluation.

Similarly to Pinterest, a random set of 10K pairs are separated from the 72K pairs, which

is only used for evaluation.

As for model parameters, we use two separate three-layer feedforward neural networks
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(FNN) with sizes 2349→ 1024→ 256 for target embedding for Pinterest (300→ 256→ 128

for OAG), and use another two-layer FNN with sizes 600→ 256 for context embedding for

Pinterest (300 → 128 for OAG). A three-layer FNN with sizes 768 → 128 → 1 is used for

the computation of three-way attention weights for Pinterest (384→ 64→ 1 for OAG). All

FNNs are with ReLU activations. On both datasets, we set the number of attention heads

to 10, the training batch size to 256 and the number of epochs to 100K. We always use

the Adam optimizer with learning rate 0.0001. The random walk parameters ζ, κ, ξ and s

are empirically set to 10, 10K, 128, and 20, respectively, and the random walk is restarted

with probability 0.1 at each target node. We deploy the data provider pipeline described in

Section 5.2.3 on a Hadoop2 cluster with 378 d2.8xlarge Amazon AWS nodes. Model training

is then done in parallel on a p2.16xlarge AWS machine with 8 GeForce GTX 1080 Ti GPUs.

5.3.2 Quantitative Evaluation

Overall comparison Overall comparison. We firstly compare MultiSage against all

baseline methods on related pin recommendation based on the organic repin pairs, which

is the most classic evaluation scenario in Pinterest due to its close connection to user en-

gagement [228]. Similarly, we also present results on same paper identification based on the

paper pairs on OAG. Table 5.2 shows the comprehensive set of evaluation metrics computed

on both datasets. The differences in the performances between MultiSage and baselines

all passed the standard paired t-test with p-value 0.01.

MultiSage-2 is our model on bipartite networks (i.e., pin-board networks of Pinterest and

paper-venue networks of OAG). As we can see, it constantly outperforms all baselines with

significant margins in all cases, which provides strong signals towards its effectiveness and

robustness in utilizing network contexts. In Particular, the performance gain over PinSage

and GAT clearly demonstrates its broader model capacity regarding context nodes, while

the improvements over HAN also corroborates its appropriate model design for handling the

multipartite contexts.

To show that MultiSage is general and lends itself to model multipartite networks with

more than two types of nodes, we further incorporate keywords into the OAG network to form

a tripartite network by linking each paper to its keywords. During convolution (Algorithm

1), we compute two sets of context embeddings for each paper based on both the neighboring

venues and keywords, which have the same neural architecture (Eq. 4-7) but different sets of

learnable parameters. We observe that MultiSage-3, which is computed on the tripartite

network, can lead to additional performance gain, thus indicating the generalizability of our
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proposed system.

Pinterest MRR REC@1 REC@10 DC+ DC* DE+ DE* INT UNI JAC
Visual 0.4406 0.1710 0.3606 0.4194 0.6337 0.9101 1.1255 23.32 174.67 0.1506

Textual 0.5741 0.1888 0.4965 0.3414 0.7614 0.7549 1.2050 31.78 166.21 0.1917
Combined 0.4438 0.1731 0.3635 0.4190 0.6340 0.9096 1.1258 23.44 174.53 0.1512

Pixie 0.3093 0.0418 0.2169 N/A N/A N/A N/A 21.32 176.65 0.1351
PinSage 0.8759 0.4928 0.8234 0.2655 0.9279 0.7161 1.3593 47.30 150.69 0.3302

GAT 0.8880 0.5357 0.8665 0.2532 0.9343 0.7060 1.3618 48.70 149.24 0.3572
HAN 0.9013 0.5653 0.8838 0.2501 0.9415 0.6907 1.3558 50.29 148.83 0.3672

MultiSage-2 0.9569 0.6215 0.9326 0.2316 0.9655 0.6660 1.3871 53.95 144.04 0.3906

OAG MRR REC@1 REC@10 DC+ DC* DE+ DE* INT UNI JAC
Textual 0.1418 0.0273 0.0399 0.1081 0.4788 0.2814 1.0557 33.10 164.87 0.2193

Pixie 0.3126 0.1054 0.2642 N/A N/A N/A N/A 36.58 160.76 0.2517
PinSage 0.5682 0.1845 0.5193 0.1238 0.6381 0.3179 1.1577 41.13 156.80 0.2935

GAT 0.6059 0.2355 0.5498 0.1104 0.6416 0.2908 1.2022 43.02 155.70 0.3144
HAN 0.6214 0.2641 0.5749 0.1005 0.6543 0.2869 1.2383 44.96 154.49 0.3200

MultiSage-2 0.6874 0.3270 0.6455 0.0836 0.6989 0.2542 1.2769 48.63 148.97 0.3602
MultiSage-3 0.7026 0.3614 0.6875 0.0814 0.7127 0.2583 1.3058 51.63 145.40 0.3891

Table 5.2: Performance of state-of-the-art web-scale embedding methods for
general recommendation.

Off-task analysis. In addition to related pin recommendation, we now focus on the com-

parison between MultiSage and the production model PinSage to evaluate how the learned

pin embeddings can influence the performance of other important but not directly related

tasks. For instance, besides the repin signals that quantify user engagement, shopping sig-

nals are impactful in monetization. However, since high-quality shopping pairs are expensive

and scarce, can an embedding model trained based on repin signals be useful in shopping

recommendation?

Method
Home Decoration Women’s Fashion

MRR REC@1 REC@10 MRR REC@1 REC@10
Visual 0.6446 0.2892 0.5615 0.5770 0.2568 0.4941

Textual 0.6066 0.3009 0.5420 0.4503 0.1881 0.3762
Combined 0.4438 0.1731 0.3635 0.5788 0.2576 0.4964

Pixie 0.2491 0.0344 0.1682 0.3394 0.0464 0.2576
PinSage 0.8021/0.8067 0.4195/0.4257 0.7439/0.7460 0.7537/0.7545 0.3754/0.3759 0.6838/0.6976

MultiSage 0.8407/0.8488 0.4899/0.5160 0.7954/0.8146 0.8058/0.8294 0.4363/0.4711 0.7533/0.7806

Table 5.3: Off-task utility of embeddings produced by different methods in shop-
ping recommendation.

Table 5.3 presents the off-task utility of pin embeddings on shopping recommendation. As

we can observe, the gap between MultiSage and PinSage change from those evaluated on

repin pairs, but the advantage of MultiSage is clearly maintained, indicating its general

beneficial effects on different related tasks. We further randomly take out half of the shopping

pairs from the evaluation set and mix into the training data of repin pairs. Second values in
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the last two rows of Table 5.3 are computed from embeddings trained with the mixture of

repin and shopping pairs. As we can observe, MultiSage is able to improve significantly

on the shopping metrics given additional shopping pairs for training, while the performance

of PinSage almost stays the same. Note that, although related, similarity among repin

pairs and shopping pairs might be slightly different. The results indicate that such subtle

differences might be more effectively captured by MultiSage, which deliberately takes the

contextualized proximity of nodes into account.

Ablation tests. To demonstrate the utility of our proposed techniques of contextual mask-

ing and contextual attention for contextualized multi-embedding, we compare multiple Mul-

tiSage variants with different model designs as introduced in the previous section, which

are inspired by common practices in recent neural network models. We also conduct ablation

tests with several variants of MultiSage:

• trans: Adding context, target embeddings before aggregation.

• concat: Concatenating context embeddings to target embeddings and computing a learn-

able projection before aggregation.

• mask: Applying the learnable contextual masking operation to the target embedding

according to Eq. 5.5 before aggregation.

• mask-diff : Contextual mask plus difference based aggregation (more details in Section

3.3.1).

• mask-atn (MultiSage): Contextual masking plus contextual attention based aggrega-

tion according to Eq. 5.7, which constitutes the final version of our proposed MultiS-

age model.

Figure 5.5 shows the main metrics we measured during the training of different model

variants on the Pinterest graph. As we can observe, the full MultiSage model with

contextual masking and contextual attention is able to converge most rapidly to stable

performance and outperform all other model variants, indicating the rationality of our model

design in achieving efficient and effective contextualized multi-embedding.

Scalability study. We study the scalability of our MultiSage pipelines from three

perspectives: parameter complexity, runtime complexity, and storage complexity.

As we claim in Section 5.2, the model parameter complexity of MultiSage is independent

of the graph sizes. Empirically, the training time complexity is linear with the number of

training batches. In practice, as similar to PinSage, we find MultiSage to converge before

a full epoch through all training pairs, which results in only a slightly longer runtime than

PinSage within the same pipeline and hardware settings, due to the processing of additional

training features and updating of additional model parameters. However, training on the
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Figure 5.5: Performance of different model variants on Pinterest. Scores are
computed every 10K iterations on the testing data.

AWS GPU machines synchronized with our Hadoop2-based data provider pipeline leads

to around 25% reduce in runtime in comparison with the original Pinsage pipelines, while

maintaining extremely close evaluation metrics.

Regarding storage, the original pipeline of PinSage requires the whole training graph (e.g.,

over 2TB for the production graph in Pinterest) to be stored in memory for fast random

access during neighbor aggregation, which was supported by Linux HugePage. As for our

Hadoop2-based MultiSage pipeline, we totally remove this memory requirement by pre-

joining and storing all data on AWS S3 and using dedicated stream data loaders to train

the model on multiple GPUs. As a direct benefit, this new training pipeline enables much

better accessibility of MultiSage model training, which allows more people to train the

models on different machines simultaneously for different data and tasks. In the meantime,

it enables the training with board features, and allows us to further increase the size of

training graphs by adding various other features and signals upon availability.

5.3.3 Qualitative Exploration

Model visualizations. Although the usage of attention is intuitive for weighing the neigh-

bors during graph convolution [35], it is intriguing but remains unknown how attention

exactly weighs different neighbors. One interesting assumption could be that since GCN is

ultimately conducting graph-based feature smoothing [210], attention might help stabilize

this process by assigning less weight to more different neighbors based on the current em-

beddings. Based on this assumption, we designed the difference-based aggregation function

by computing a weight for each neighbor u ∈ Nv based on the embedding distance dis-

tance between u and the ego v, which is shown to be beneficial in Figure 5.5 (mask+diff).

Here, through particularly designed model visualizations, we aim to further study how the

attention mechanism works and why it is better than simple difference-based weights.
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(a) Summation of ego and neighbor (b) Difference of ego and neighbor

Figure 5.6: Attention over different self-neighbor pairs.

IIn Figure 5.6, we fix the ego embedding as all zeros, while varying each of the 256

dimensions of neighbor embedding so as to change the norms of the (a) summation and (b)

difference of ego and neighbor embeddings along the X-axis. Y-axis denotes the average

attention weights yielded by the attention network learned on the Pinterest dataset. Each

colored curve corresponds to the changes on one of the 256 dimensions, while the thick

yellow curve denotes the average of all thin curves. As we can observe from both subfigures,

attention learns to put different stress on different dimensions. Moreover, in (a), attention

generally puts more weights to neighbors that sum up with egos to have larger norms, and

in (b), it puts slightly less weights to neighbors that are more different from egos. In this

sense, attention generalizes and is more powerful than simple difference-based weights.

Case studies. In the previous experiments, although we compute multi-embeddings dur-

ing graph convolution, we only use the aggregated embeddings to evaluate the overall item

similarity due to the lack of evaluation data for multi-embeddings. Now we showcase how

to leverage the multi-embeddings we learn for fine-grained applications such as contextu-

alized recommendation. Rather than generalized recommendation [228], in contextualized

recommendation, we aim to rank items (e.g., pins) based on contexts (e.g., boards), which

is flexibly personalized towards fine-grained semantics.

In Figure 5.7, we use two random real cases from Pinterest generated based on the learned

MultiSage model to demonstrate its utility in the important but seldom studied task of

contextualized recommendation in the real world. In particular, given a query pin of a

fashion model (decorative accessory), rather than returning a list of generally relevant pins,

we can choose arbitrary boards like fashion and crafts (Christmas and decoration), apply the

corresponding learned board-based contextual masking on the base embedding of both query

and candidates, and retrieve lists of pins that are relevant to the query in the corresponding

perspectives. Such flexible contextualization can be easily combined with any existing search

or recommendation services to enable fine-grained effective and interpretable personalization.
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Figure 5.7: Examples of Pinterest pins recommended under different board-
indicated semantic contexts.

5.4 NEW USER CHURN PREDICTION WITH IMPLICIT CONTEXT

Promoted by the widespread usage of internet and mobile devices, hundreds of online

systems are being developed every year, ranging from general platforms like social media

and e-commerce websites to vertical services including news, movie and place recommenders.

As the market is overgrowing, the competition is severe too, with every platform striving to

attract and keep more users.

While many of the world’s best researchers and engineers are working on smarter adver-

tisements to expand businesses by acquisition [236, 237], retention has received less attention,

especially from the research community. The fact is, however, acquiring new users is often

much more costly than retaining existing ones2. With the rapid evolution of mobile industry,

the business need for better user retention is larger than ever before3, for which, accurate,

scalable and interpretable churn prediction plays a pivotal role4.

Churn is defined as a user quitting the usage of a service. Existing studies around user

churn generally take one of the two ways: data analysis and data-driven models. The

former is usually done through user surveys, which can provide valuable insights into users’

behaviors and mindsets. But the approaches require significant human efforts and are hard

to scale, thus are not suitable for nowadays ubiquitous mobile apps. The development of

large-scale data-driven models has largely improved the situation, but no existing work has

looked into user behavior patterns to find the reasons behind user churn. As a consequence,

the prediction results are less interpretable, and thus cannot fundamentally solve the problem

of user churn.

2https://www.invespcro.com/blog/customer-acquisition-retention
3http://info.localytics.com/blog/mobile-apps-whats-a-good-retention-rate
4https://wsdm-cup-2018.kkbox.events
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In this work, we take the anonymous data from Snapchat as an example to systematically

study the problem of interpretable churn prediction. We notice that online platform users

can be highly heterogeneous. For example, they may use (and leave) a social app for different

reasons5. Through extensive data analysis on users’ multi-dimensional temporal behaviors,

we find it intuitive to capture this heterogeneity and assign users into different clusters, which

can also indicate the various reasons behind their churn. Motivated by such observations,

we develop ClusChurn, a framework that jointly models the types and churn of new users

(Section 5.5.1).

To understand user types, we encounter the challenges of automatically discovering in-

terpretable user clusters, addressing noises and outliers, and leveraging correlations among

features. As a series of treatments, we apply careful feature engineering and adopt k-means

with Silhouette analysis [238] into a three-step clustering mechanism. The results we get

include six intuitive user types, each having typical patterns on both daily activities and

ego-network structures. In addition, we also find these clustering results highly indicative of

user churn and can be directly leveraged to generate type labels for users in an unsupervised

manner (Section 5.5.2).

To enable interpretable churn prediction, we propose to jointly learn user types and user

churn. Specifically, we design a novel deep learning framework based on LSTM [239] and

attention [240]. Each LSTM is used to model users’ temporal activities, and we parallelize

multiple LSTMs through attention to focus on particular user types. Extensive experiments

show that our joint learning framework delivers supreme performances compared with base-

lines on churn prediction with limited user activity data, while it also provides valuable

insights into the reasons behind user churn, which can be leveraged to fundamentally im-

prove retention (Section 5.5.3).

Note that, although we focus on the example of Snapchat data, our ClusChurn frame-

work is general and able to be easily applied to any online platform with user behavior data.

A prototype implementation of ClusChurn based on PyTorch is released on Github6.

The main contributions of this work are summarized as follows:

1. Through real-world large-scale data analysis, we draw attention to the problem of

interpretable churn prediction and propose to jointly model user types and churn.

2. We develop a general automatic new user clustering pipeline, which provides valuable

insights into different user types.

5http://www.businessofapps.com/data/snapchat-statistics
6https://github.com/yangji9181/ClusChurn
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3. Enabled by our clustering pipeline, we further develop a prediction pipeline to jointly

predict user types and user churn and demonstrate its interpretability and supreme

performance through extensive experiments.

4. We deploy ClusChurn as an analytical pipeline to deliver real-time data analysis and

prediction to multiple relevant teams within Snap Inc. It is also general enough to be

easily adopted by any online systems with user behavior data.

5.5 MODEL: CLUSTER-ENHANCED CHURN PREDICTION (CLUSCHURN)

5.5.1 Large-Scale Data Analysis

To motivate our study on user clustering and churn prediction, and gain insight into proper

model design choices, we conduct an in-depth data analysis on a large real-world dataset

from Snapchat. Sensitive numbers are masked for all data analysis within this paper.

Dataset We collect the anonymous behavior data of all new users who registered their

accounts during the two weeks from August 1, 2017, to August 14, 2017, in a particular

country. We choose this dataset because it is a relatively small and complete network,

which facilitates our in-depth study on users’ daily activities and interactions with the whole

network. There are a total of 0.5M new users registered in the specific period, and we also

collect the remaining about 40M existing users with a total of approximately 700M links in

this country to form the whole network.

ID Feat. Name Feat. Description

0 chat received # textual messages received by the user

1 chat sent # textual messages sent by the user

2 snap received # snap messages received by the user

3 snap sent # snap messages sent by the user

4 story viewed # stories viewed by the user

5 discover viewed # discovers viewed by the user

6 lens posted # lenses posted to stories by the user

7 lens sent # lenses sent to others by the user

8 lens saved # lenses saved to devices by the user

9 lens swiped # lenses swiped in the app by the user

Table 5.4: Daily activities we collect for users on Snapchat.

We leverage two types of features associated with users, i.e., their daily activities and ego-

network structures. Both types of data are collected during the two-week time window since

each user’s account registration. Table 5.4 provides the details of the daily activities data
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we collect, which are from users’ interactions with some of the core functions of Snapchat:

chat, snap, story, lens. We also collect each user’s complete ego-network, which are formed

by her and her direct friends. The links in the networks are bi-directional friendships on the

social app. For each user, we compute the following two network properties and use them

as a description of her ego-network structures.

• Size: the number of nodes, which describes how many friends a user has.

• Density: the number of actual links divided by the number of all possible links in the

network. It describes how densely a user’s friends are connected.

As a summary, given a set of N users U , for each user ui ∈ U , we collect her 10-dimensional

daily activities plus 2-dimensional network properties, to form a total of 12-dimensional time

series Ai. The length of Ai is 14 since we collect each new user’s behavioral data during the

first two weeks after her account registration. Therefore, Ai is a matrix of 12× 14.

Daily Activity Analysis Figure 5.8 (a) shows an example of daily measures on users’

chat received activities. Each curve corresponds to the number of chats received by one user

every day during the first two weeks after her account registration. The curves are very noisy

and bursty, which poses challenges to most time series models like HMM (Hidden Markov

Models), as the critical information is hard to be automatically captured. Therefore we

compute two parameters, i.e., µ, the mean of daily measures to capture the activity volume,

and l, the lag(1) of daily measures to capture the activity burstiness. Both metrics are

commonly used in time series analysis [241].

(a) Daily Measures (b) Aggregated Measures

Figure 5.8: Activities on chat received in the first two weeks. Y-axis is masked
in order not to show the absolute values.

Figure 5.8 (b) shows the aggregated measures on users’ chat received activities. Every

curve corresponds to the total number of chats received by one user until each day after her
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account registration. The curves have different steepness and inflection points. Motivated

by a previous study on social network user behavior modeling [242], we fit a sigmoid function

y(t) = 1
1+e−q(t−φ) to each curve, and use the two parameters q and φ to capture the shapes

of the curves.

a weak positive correlation 0.02 (with p-value < 0.001). This
means lenders slightly benefit from the strategy of decentralizing
their bids.

5. PREDICTING THE LOAN SUCCESS
In Prosper, listings for which at least 100% of the requested

amount is collected, are considered “fundable” (successful) and
they translate into an active loan. However, listings which do not
reach full funding are considered unsuccessful (“not fundable") and
no loan is created. Out of the loans that are funded, some are repaid
on time and others are cancelled or their borrowers default on them.

In this section, we examine a simple model that predicts whether
a listing is going to be funded or not, and whether it will be paid
back or not. A similar study is conducted at [11] and [20], where
the authors focus on borrower and listing attributes. Their goal is to
provide a ranking of the relative importance of various fundability
determinants, rather than providing a predictive model. However,
our goal here is different as we do not just want to make our pre-
dictions based on some large number of features but are instead
interested in modeling how the temporal dynamics of bidding be-
havior predicts the loan outcome (funded vs. not funded and paid
vs. not paid). Thus we are interested in how much signal is in "how
the market feels" as opposed to traditional features such as credit
grade or debt-to-income ratio.

We started our analysis by looking at the time series history of
loan listings. In other words, we examine the progression of the
total amount bid on a given loan as a function of time. We used a
time scale from 0 to 1, in which time 0 is when the listing receives
the first bid and time 1 is when it gets the last bid. Let Ai be the
total amount bid for listing i and

P
jk aj = Ak, where aj is the

amount of money bid at the j-th bid, so Ak is the total amount of
money bid till the k-th bid. For each listing, we looked at YR = Ak

Ai
as a function of time. Figure 9 shows the four main types of curves
we observed. This observation led us to the hypothesis that the total
amount bid on a given listing follows a sigmoid curve as a function
of time. As a result, we fit a sigmoid (logistic) curve to each listing
time series, defined by

y(t) =
1

1 � e�q(t��)
,

and we used least squares to find the optimal q and �. Parameter
q controls how quickly the function rises while � controls the time
(x-value) at which the rise occurs.

For each listing’s fit, we calculated the R-squared error. The
average R-squared error is 0.9, which shows that overall we do a
good job of fitting the data. This is not our main goal, however. We
wish instead to use the shape parameters, q and � of a listing’s bid
history to predict whether or not this listing will be funded and paid
back.

Some examples of our fitting can be seen in Figure 10. ith dot
depicts the total fraction of collected money at the time of ith bid
of that particular listing and the smooth curves are the fitted logistic
curves. While q is a measure of the steepness of the curve, � tells us
where the inflection point of the sigmoid curve is located. Mainly,
all the listings fall into one of the four curve types as shown in
Figure 9. For low q and high �, the curve has a less steep sigmoidal
shape. For high q and high �,the curve has an exponential shape.
For low q and low �, the curve has diminishing returns shape and
for high q and low �, the curve has a steep sigmoidal shape.

Figure 11 shows a plot of q versus � both for funded (purple
triangles) and non-funded (blue circles) listings. The two classes
are mostly distinguishable, especially in the middle range of values
for both q and �. This is similar for loans that have been paid back

Figure 9: Main curve types that were observed when we plot
total fraction of collected money as a function of time for each
listing.

Figure 10: Real instances of what Figure 9 illustrates. Each dot
is a bid of that particular listing, smooth curves are the fitted
logistic curves.

(green triangles) and those that have not (red circles) as shown in
Figure 12.

In order to verify the importance of q and � in predicting the
success of a listing, we constructed a logistic regression prediction
model that uses these two quantities as features. As discussed in
Section 3, funded listings have significantly larger number of bids
than the non-funded ones. So, we also included the total number
of bids, Nb as a parameter which helps the model. Table 5 shows
the summary of the regression model that predicts the success of
a listing. According to the table of coefficients, both q and � are
significant predictors of success of a listing. For every one unit
change in q, the log odds of success (versus non-success) increases
by 0.063. For a one unit increase in � the log odds of a listing
being successful decreases by 0.7162. In other words, the higher
the steepness of the curve, the more likely a listing will be funded
and the sooner the curve spikes (negative � coefficient) the better.
So, observing a steep sigmoidal curve for the progression of the
total amount bid for a listing is a good sign of its success.

We used cross validation to understand how well the regression
model works, i.e., we split the available data into five buckets,
trained our regression model on four of them, tested the accuracy on
the remaining one and repeated this procedure for each test bucket.
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Figure 5.9: Main curve shapes captured by sigmoid functions with different
parameter configurations.

Figure 5.9 shows 4 example shapes of curves captured by the sigmoid function with dif-

ferent q and φ values.After such feature engineering on the time series data, each of the 12

features is described by a vector of 4 parameters f = {µ, l, q, φ}. We use Fi to denote the

feature matrix of ui and Fi is of size 12× 4.

Network Structure Analysis In addition to daily activities, we also study how new users

connect with other users. The 0.5M new users in our dataset directly make friends with

a subset of a few million users in the whole network during the first two weeks since their

account registration. We mask the absolute number of this group of users and use κ to

denote it.

We find these κ users very interesting since there are about 114M links formed among

them and 478M links to them. However, there are fewer than 700M links created in the
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whole network of the total about 40M users in the country. It leads us to believe that there

must be a small group of well-connected popular users in the network, which we call the core

of a network, and in fact, this core overlaps with a lot of the κ direct friends of new users.

(a) Overlapping of core and the κ users (b) Degree distribution of the κ users

Figure 5.10: Most of the κ users are within the core.

To validate this assumption, we define the core of social networks as the set of users

with the most friends, i.e., nodes with highest degrees, motivated by earlier works on social

network analysis [243]. Figure 5.10 (a) shows the percentage of the κ users within the core

as we increase the size of the core from the top 1% nodes with highest degrees to the top

10%. Figure 5.10 (b) shows the particular degrees of the κ users drawn together with all

other nodes, ordered by degrees on the x-axis. As we can see, 44% of the κ users are among

the top 5% nodes with highest degrees, and 67% of them have 10% highest degrees. This

result confirms our hypothesis that most links created by new users at the beginning of their

journeys are around the network core. Since the κ direct friends do not entirely overlap with

the core, it also motivates us to study how differently new users connect to the core, and

what implications such differences can have on user clustering and churn prediction.

5.5.2 Interpretable User Clustering

In this section, we study what the typical new users are like on Snapchat and how they

connect to the social network. We aim to find an interpretable clustering of new users

based on their initial behaviors and evolution patterns when they interact with the various

functions of a social app and other users. Moreover, we want to study the correlations

between user types and user churn, so as to enable better churn prediction and personalized

retention.

We also note that, besides churn prediction, interpretable user clustering is crucial for the
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understanding of user behaviors so as to enable various product designs, which can ultimately

lead to different actions towards the essentially different types of users. Therefore, while we

focus on the end task of churn prediction, the framework proposed in this work is generally

useful for any downstream applications that can potentially benefit from the understanding

of user types, such as user engagement promotion.

Challenges Automatically finding interpretable clustering of users w.r.t.multi-dimensional

time series data poses quite a few challenges, which makes the canonical algorithms for

clustering or feature selection such as k-means and principal component analysis impractical

[244].

Challenge 1: Zero-shot discovery of typical user types. As we discuss in Section

5.4, users are often heterogeneous. For example, some users might actively share contents,

whereas others only passively consume [245]; some users are social hubs that connect to

many friends, while others tend to keep their networks neat and small [246]. However, for

any arbitrary social app, is there a general and systematic framework, through which we

can automatically discover the user types, without any prior knowledge about possible user

types or even the proper number of clusters?

Challenge 2: Handling correlated multi-dimensional behavior data. Users interact

with a social app in multiple ways, usually by accessing different functions of the app as

well as interacting with other users. Some activities are intuitively highly correlated, such as

chat sent and chat received, whereas some correlations are less obvious, such as story viewed

and lens sent. Moreover, even highly correlated activities cannot be simply regarded as the

same. For example, users with more chats sent than received are quite different from users in

the opposite. Therefore, what is a good way to identify and leverage the correlations among

multiple dimensions of behavior data, including both functional and social activities?

Challenge 3: Addressing noises and outliers. User behavior data are always noisy

with random activities. An active user might pause accessing the app for various hidden

reasons, and a random event might cause a dormant user to be active for a period of time as

well. Moreover, there are always outliers, with extremely high activities or random behavior

patterns. A good clustering framework needs to be robust to various kinds of noises and

outliers.

Challenge 4: Producing interpretable clustering results. A good clustering result is

useless unless the clusters are easily interpretable. In our scenario, we want the clustering

framework to provide insight into user types, which can be readily turned into actionable

items to facilitate downstream applications such as fast-response and targeted user retention.
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Methods To deal with those challenges, we design a robust three-step clustering framework.

Consider a total of two features, namely, f1 (chat received) and f2 (chat sent), for four users,

u1, u2, u3 and u4. Figure 5.11 illustrates a toy example of our clustering process with the

details described in the following.

Step 1: Single-feature clustering. For each feature, we apply k-means with Silhouette

analysis [238] to automatically decide the proper number of clusters K and assign data

into different clusters. For example, as illustrated in Figure 5.11, for chat received, we

have the feature of four users {f1
1 , f

1
2 , f

1
3 , f

1
4}, each of which is a 4-dimensional vector (i.e.,

f = {u, l, q, φ}). Assume K chosen by the algorithm is 3. Then we record the cluster

belongingness, e.g., {l11 = 1, l12 = 1, l13 = 2, l14 = 3}, and cluster centers {c1
1, c

1
2, c

1
3}. Let’s also

assume that for chat sent, we have K = 2, (l21 = 1, l22 = 1, l23 = 1, l24 = 2) and {c2
1, c

2
2}. This

process helps us to find meaningful types of users w.r.t.every single feature, such as users

having high volumes of chat received all the time versus users having growing volumes of

this same activity day by day.

Figure 5.11: A toy example of our 3-step clustering framework.

Step 2: Feature combination. We convert the features of each user into a combination of

the features of her nearest cluster center in each feature. Continue our toy example in Figure

5.11. Since user u1 belongs to the first cluster in feature chat received and first cluster in

feature chat sent, it is replaced by x1, which is a concatenation of c1
1 and c2

1. u2, u3 and u4

are treated in the same way. This process helps us to largely reduce the influence of noises

and outliers because every single feature is replaced by that of a cluster center.
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Step 3: Multi-feature clustering. We apply k-means with Silhouette analysis again

on the feature combinations. As for the example, the clustering is done on {x1,x2,x3,x4}.
The algorithm explores all existing combinations of single-dimensional cluster centers, which

record the typical values of combined features. Therefore, the multi-feature clustering re-

sults are the typical combinations of single-dimensional clusters, which are inherently inter-

pretable.

Results

Clustering on single features. We first present our single-feature clustering results on

each of users’ 12-dimensional behaviors. Figure 5.12 provides the detailed results on lens sent

as an example. The results on other features are slightly different regarding the numbers of

clusters, shapes of the curves, and numbers of users in each cluster. However, the method

used is the same and they are omitted to keep the presentation concise.

Mean

La
g(
1)

!

q

(a) Parameter dist. (b) Activity patterns.

Figure 5.12: 4 types of users shown with different colors.

Figure 5.12 (a) shows the four parameters we compute over the 14-day period on users’

lens sent activities, as they distribute into the four clusters detected by the k-means algo-

rithm. The number of clusters is automatically selected with the largest average Silhouette

score when k is iterated from 2 to 6, which corresponds to clusters that are relatively far away

from each other while having similar sizes. Figure 5.12 (b) shows the corresponding four

types of users with different activity patterns on lens sent. The first type of users (red) have

no activity at all, while the second type (green) have stable activities during the two weeks.
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Type 3 users (blue) are only active in the beginning, and type 4 users (black) are occasion-

ally active. These activity patterns are indeed well captured by the volume and burstiness

of their daily measures, as well as the shape of the curves of their aggregated measures.

Therefore, the clusters are highly interpretable. By looking at the clustered curves, we can

easily understand the activity patterns of each type of users.

Clustering on network properties. For single-feature clustering on network properties,

as we get four clusters on ego-network size and three clusters on density, there is a total of

4 × 3 = 12 possible combinations of different patterns. However, when putting these two

features of network properties together with the ten features of daily activities through our

multi-feature clustering framework, we find that our new users only form three typical types

of ego-networks. This result proves the efficacy of our algorithm since it automatically finds

that only three out of the twelve combinations are essentially typical.

Figure 5.13 illustrates three example structures. The ego-networks of type 1 users have

relatively large sizes and high densities; type 2 users have relatively small ego-network sizes

and low densities; users of type 3 have minimal values on both measures.

(a) Type	1 users (b) Type	2 users (c) Type	3 users

Figure 5.13: Examples of 3 types of ego-network structures.

Through further analysis, we find that these three types of new users clustered by our

algorithm based on the features of their ego-networks have strong correlations with their

positions in the whole social network. Precisely, if we define network core as the top 5%

users that have the most friends in the entire network, and depict the whole network into

a jellyfish structure as shown in Figure 5.14, we can exactly pinpoint each of the three

user types into the tendrils, outsiders, and disconnected parts. Specifically, type 1 users

are mostly tendrils with about 58% of direct friends in the core; type 2 users are primarily

outsiders with about 20% of direct friends in the core; type 3 users are mostly disconnected

with almost no friends in the core. Such result again proves that our clustering framework

can efficiently find important user types.

83



tendrilsoutsiders

core

disconnected

Figure 5.14: The whole network depicted into a jellyfish shape.

Clustering on all behaviors. Combining new users’ network properties with their daily

activities, we finally come up with six cohorts of user types, which is also automatically

discovered by our algorithm without any prior knowledge. Looking into the user clusters,

we find their different combinations of features quite meaningful, regarding both users’ daily

activities and ego-network structures. Subsequently, we are able to give the user types

intuitive names, which are shown in Table 5.5. Figure 5.15 (a) shows the portions of the six

types of new users.

We define a user churns if there is no activity at all in the second week after account

registration. To get more insight from the user clustering results and motivate an efficient

churn prediction model, we also analyze the churn rate of each type of users and present the

results in Figure 5.15 (b). The results are also very intuitive. For example, All-star users

are very unlikely to churn, while Swipers and Invitees are the most likely to churn.

ID Type Name Daily Activities Ego-network Type
0 All-star Stable active chat, snap, story & lens Tendril
1 Chatter Stable active chat & snap, few other acts Tendril
2 Bumper Unstable chat & snap, few other acts Tendril
3 Sleeper Inactive Disconnected
4 Swiper Active lens swipe, few other acts Disconnected
5 Invitee Inactive Outsider

Table 5.5: 6 types of new users and their characteristics.

Note that, our new user clustering results are highly intuitive, and in the meantime provide

a lot of valuable insights. For example, the main differences between All-star users and

Chatters are their activities on story and lens, which are the additional functions of Snapchat.

Being active in using these functions indicates a much lower churn rate. The small group of

Swipers is impressive too since they seem to only try out the lenses a lot without utilizing
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(a) Portions (b) Churn rates

Figure 5.15: Portions and churn rates of the six new user types. The y-axis is
rescaled to not show the absolute values.

any other functions of the app, which is related to an entirely high churn rate. Quite a lot

of new users seem to be invited to the app by their friends, but they are highly likely to quit

if not interacting with their friends, exploring the app functions or connecting to core users.

Insights like these are highly valuable for user modeling, growth, retention and so on.

Although we focus our study on Snapchat data in this paper, the clustering pipeline we

develop is general and can be applied to any online platforms with multi-dimensional user

behavior data. The code of this pipeline has also been made publicly available.

5.5.3 Fast-Response Churn Prediction

Motivated by our user type analysis and the correlations between user types and churn,

we aim to develop an efficient algorithm for interpretable new user churn prediction. Our

analysis of real data shows that new users are most likely to churn in the very beginning

of their journey, which urges us to develop an algorithm for fast-response churn prediction.

The goal is to accurately predict the likelihood of churn by looking at users’ very initial

behaviors, while also providing insight into possible reasons behind their churn.

Challenges New user churn prediction with high accuracy and limited data is challenging

mainly for the following three reasons.

Challenge 1: Modeling sequential behavior data. As we discuss in Section 5.5.1.1, we

model each new user by their initial interactions with different functions of the social app as

well as their friends, and we collect a 12-dimensional time series Ai for each new user ui ∈ U .
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However, unlike for user clustering where we leverage the full two-week behavior data of each

user, for fast-response churn prediction, we only focus on users’ very limited behavior data,

i.e., from the initial few days. The data are naturally sequential with temporal dependencies

and variable lengths. Moreover, the data are very noisy and bursty. These characteristics

pose great challenges to traditional time series models like HMM.

Challenge 2: Handling sparse, skewed and correlated activities. The time series

activity data generated by each new user are multi-dimensional. As we show in Section

5.5.2, such activity data are very sparse. For example, Chatters are usually only active in

the first four dimensions as described in Table 5.4, while Sleepers and Invitees are inactive

in most dimensions. Even All-star users have a lot of 0’s in certain dimensions. Besides

the many 0’s, the distributions of activity counts are highly skewed instead of uniform and

many activities are correlated, like we discuss in Section 5.5.2.1.

Challenge 3: Leveraging underlying user types. As shown in our new user clustering

analysis and highlighted in Figure 5.15 (b), our clustering of new users is highly indicative

of user churn and should be leveraged for better churn prediction. However, as we only get

access to initial several days instead of the whole two-week behaviors, user types are also

unknown and should be jointly inferred with user churn. Therefore, how to design the proper

model that can simultaneously learn the patterns for predicting user types and user churn

poses a unique technical challenge that cannot be solved by existing approaches.

Methods and Results We propose a series of solutions to treat the challenges listed above.

Together they form our efficient churn prediction framework. We also present comprehensive

experimental evaluations for each proposed model component. Our experiments are done

on an anonymous internal dataset of Snapchat, which includes 37M users and 697M bi-

directional links. The metrics we compute include accuracy, precision, and recall, which

are commonly used for churn prediction and multi-class classification [247]. The baselines

we compare with are logistic regression and random forest, which are the standard and

most widely practiced models for churn prediction and classification. We randomly split

the new user data into training and testing sets with the ratio 8:2 for 10 times, and run all

compared algorithms on the same splits to take the average performance for evaluation. All

experiments are run on a single machine with a 12-core 2.2GHz CPU and no GPU, although

the runtimes of our neural network models can be largely improved on GPUs.

Solution 1: Sequence-to-sequence learning with LSTM. The intrinsic problem of user

behavior understanding is sequence modeling. The goal is to convert sequences of arbitrary

lengths with temporal dependences into a fixed-length vector for further usage. To this

86



end, we propose to leverage the state-of-the-art sequence-to-sequence model, that is, LSTM

(Long-Short Term Memory) from the family of RNN (Recurrent Neural Networks) [239, 117].

Specifically, we apply a standard multi-layer LSTM to the multi-dimensional input A. Each

layer of the LSTM computes the following functions

it = σ(Wi · [ht−1, xt] + bi) (5.8)

ft = σ(Wf · [ht−1, xt] + bf )

ct = ft ∗ ct−1 + it ∗ tanh(Wc · [ht−1, xt] + bc)

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(ct)

where t is the time step in terms of days, ht is the hidden state at time t, ct is the cell state

at time t, xt is the hidden state of the previous layer at time t, with xt = a·t for the first

layer, and it, ft, ot are the input, forget and out gates, respectively. σ is the sigmoid function

σ(x) = 1/(1 + e−x). Dropout is also applied to avoid overfitting. We use Θl to denote the

set of parameters in all LSTM layers.

A linear projection with a sigmoid function is connected to the output of the last LSTM

layer to produce user churn prediction as

ŷ = σ(WcoT + bc). (5.9)

We use Θc to denote the parameters in this layer, i.e., Wc and bc.

Unlike standard methods for churn prediction such as logistic regression or random forest,

LSTM is able to model user behavior data as time series and capture the evolvement of user

activities through recognizing the intrinsic temporal dependencies. Furthermore, compared

with standard time series models like HMM, LSTM is good at capturing both long term and

short term dependences within sequences of variable lengths. When the lengths are short,

LSTM acts similarly as basic RNN [117], but when more user behaviors become available,

LSTM is expected to excel.

Figure 5.16 (a) shows the performances of compared models. The length of the output

sequence of LSTM is empirically set to 64. In the experiments, we vary the amounts of user

behavior data the models get access to and find that more days of behavior data generally

lead to better prediction accuracy. We can also see that new users’ initial activities in the

first few days are more significant in improving the overall accuracy. A simple LSTM model

can outperform all compared baselines with a substantial margin. The runtime of LSTM

on CPU is within ten times of the runtimes of other baselines, and it can be significantly
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improved on GPUs.

(a) Single LSTM (b) Activity embedding

(c) Parallel LSTMs (d) User type prediction

Figure 5.16: Comprehensive experimental results on our churn prediction frame-
work compared with various baseline methods.

Solution 2: LSTM with activity embedding. To deal with sparse, skewed and corre-

lated activity data, we propose to add an activity embedding layer in front of the standard

LSTM layer. Specifically, we connect a fully connected feedforward neural network to the

original daily activity vectors, which converts users’ sparse activity features of each day

into distributional activity embeddings, while deeply exploring the skewness and correla-

tions of multiple features through the linear combinations and non-linear transformations.

Specifically, we have

e·t = ψH(. . . ψ2(ψ1(a·t)) . . .), (5.10)
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where

ψh(e) = ReLU(W h
e Dropout(e) + bhe ). (5.11)

H is the number of hidden layers in the activity embedding network. Θe is the set of

parameters in these H layers. With the activity embedding layers, we simply replace A by

E for the input of the first LSTM layer, with the rest of the architectures unchanged.

Figure 5.16 (b) shows the performances of LSTM with activity embedding of varying

number of embedding layers and embedding sizes. The length of the output sequence of

LSTM is kept as 64. The overall performances are significantly improved with one single

layer of fully connected non-linear embedding (LSTM+1 ), while more layers (e.g., LSTM+2 )

and larger embedding sizes tend to yield similar performances. The results are intuitive

because a single embedding layer is usually sufficient to deal with the sparsity, skewness,

and correlations of daily activity data. We do not observe significant model overfitting due

to the dropout technique and the large size of our data compared with the number of model

parameters.

Solution 3: Parallel LSTMs with joint training. To further improve our churn predic-

tion, we pay attention to the underlying new user types. The idea is that, for users in the

training set, we get their two-week behavior data, so besides computing their churn labels

y based on their second-week activities, we can also compute their user types t with our

clustering framework. For users in the testing set, we can then compare the initial behaviors

with those in the training set to guess their user types, and leverage the correlation between

user types and churn for better churn prediction.

To implement this idea, we propose parallel LSTMs with joint training. Specifically, we

assume there are K user types. K can be either chosen automatically by our clustering

framework or set to specific values. Then we jointly train K sub-LSTMs on the training set.

Each sub-LSTM is good at modeling one type of users. We parallelize the K sub-LSTMs

and merge them through attention [240] to jointly infer hidden user types and user churn.

As shown in Figure 5.17, for each user, the input of a sequence of activity embedding

vectors E is put into K sub-LSTMs in parallel to generate K typed sequences :

sk = LSTMk(E). (5.12)

To differentiate hidden user types and leverage this knowledge to improve churn prediction,

we introduce an attention mechanism to generate user behavior embeddings by focusing on

their latent types. A positive attention weight wk is placed on each user type to indicate
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Figure 5.17: Parallel LSTMs with user type attention.

the probability of the user to be of a particular type. We compute wk as a similarity of

the corresponding typed sequence sk and a global unique typing vector vt, which is jointly

learned during the training process.

wk = softmax(vTt sk). (5.13)

Here softmax is taken to normalize the weights and is defined as softmax(xi) = exp(xi)∑
j exp(xj)

.

The user behavior embedding u is then computed as a sum of the typed sequences weighted

by their importance weights:

u =
K∑
k=1

wksk. (5.14)

The same linear projection with sigmoid function as in Eq. 5.9 is connected to u to predict

user churn as binary classification.

ŷ = σ(Wcu + bc). (5.15)

To leverage user types for churn prediction, we jointly train a typing loss lt and a churn

loss lc. For lt, we firstly compute users’ soft clustering labels Q as

qik =
(1 + ||fi − ck||2)−1∑
j(1 + ||fi − cj||2)−1

. (5.16)

qik is a kernel function that measures the similarity between the feature fi of user ui and the

cluster center ck. It is computed as the probability of assigning ui to the kth type, under

the assumption of Student’s t-distribution with degree of freedom set to 1 [248].

We use wik to denote the attention weight for user ui on type tk. Thus, for each user ui,
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we compute her typing loss as the cross entropy on qi· and wi·. So we have

lt = −
∑
i

∑
k

qik log(wik). (5.17)

For lc, we simply compute the log loss for binary predictions as

lc =
∑
−yi log ŷi − (1− yi) log(1− ŷi), (5.18)

where yi is the binary ground-truth churn label and ŷi is the predicted churn label for user

ui, respectively.

Subsequently, the overall objective function of our parallel LSTM with joint training is

l = lc + λlt, (5.19)

where λ is a hyper-parameter controlling the trade-off between churn prediction and type

prediction. We empirically set it to a small value like 0.1 in our experiments.

Figure 5.16 (c) shows the performances of parallel LSTMs with and without joint training

(PLSTM + vs. PLSTM ). The only difference between the two frameworks is that PLSTM

is not trained with the correct user types produced by our clustering framework. In the

experiments, we vary the number of clusters and sub-LSTMs and find that joint training is

always significantly helpful. The performance of parallel LSTMs with joint training peaks

with 3 or 6 sub-LSTMs. While the number 3 may accidentally align with some trivial clusters,

the number 6 actually aligns with the six interpretable cohorts automatically chosen by our

clustering framework, which illustrates the coherence of our two frameworks and further

supports the sanity of splitting the new users into six types.

Besides churn prediction, Figure 5.16 (d) shows that we can also predict what type a

new user is by looking at her initial behaviors rather than two-week data, with different

precisions and recalls. Our algorithm is good at capturing All-star, Sleeper and Invitee, due

to their distinct behavior patterns. Swiper and Bumper are harder to predict because their

activity patterns are less regular. Nonetheless, such fast-response churn predictions with

insights into user types can directly enable many actionable production decisions such as

fast retention and targeted promotion.
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CHAPTER 6: CONCLUSIONS

In my doctoral research, I systematically studied the organization, modeling, and applica-

tion of multi-facet context-rich graphs under the novel framework of contextualized projec-

tions. The future of graph data mining lies in the principled integration of graph data with

various other types of data, including temporal, spatial, textual, visual contents and much

beyond. Guided by this vision, my long-term research goal is to foster a wholesome ecosys-

tem of multi-facet graphs, where appropriate semantic contexts can be recognized according

to specific graph mining tasks to build up the backbone of contextualized projections, upon

which graph data can be generated and stored with the corresponding topology and context,

and subsequent task-specific learning and inference can be conducted in a principled and ef-

ficient paradigm. Below are some specific future directions worth exploring as the extension

beyond my past research on multi-facet graph mining with contextualized projections.

Multi-disciplinary open knowledge extraction and exploitation. By leveraging the

interconnections among data, network models are distinct and complementary to all models

over unary data. Existing practices are mainly around semi-supervised learning based on

the homophily and data manifold assumptions, with graph smoothness regularizations for

traditional tasks like the ranking and classification of images and documents. However, these

tasks are often single-disciplinary, that is, they do not sufficiently explore and model the

interactions among multi-disciplinary contexts and structures in a joint way. For example,

a well-trained computer vision model can identify the image of a store, and the leverage

of an image similarity graph can help reduce the required amount of labeled training data.

However, through the integration of models from other disciplines, surrounding attributes

like opening times and texts like place names can be used to further infer the category of

the store (e.g., retail, restaurant, bar). Moreover, graphs derived from multiple disciplines

like social networks and sensor networks can be further leveraged to infer the popularity of

and traffic conditions around the place. Most importantly, the context and graph models

can be combined to collectively infer the different properties of interconnected objects in

closed loops to harvest the mutual enhancement among different disciplines (e.g., spatial-

temporal signals from physical GPS sensors in smartphones can aid the entity disambiguation

and event detection within textual data from social platforms, whereas entities and events

automatically detected from texts like reviews and tweets can in turn provide meaningful

details about the places), which I believe is the key to bridge the gap between domain-

specific and general AI. My future research on multi-facet graph mining will exactly address

the challenges in the principled fusion of multi-disciplinary models for graph-based collective
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learning, via techniques like multi-facet contextualized data completion, structured reasoning,

and representation learning.

Context-aware deeper insights into network dynamics. Traditional theoretical anal-

ysis and modeling of graph data are mainly focused on raw graphs (i.e., graphs without

contexts like node attributes and link types). Nonetheless, the studies are fruitful regarding

the insights into network dynamics underlying interconnected objects (e.g., spectral analy-

sis, stochastic block models, invariance theory). Due to the surge of deep learning, graph

theoretical studies are brought back for the deeper understanding and interpretable improve-

ments of popular neural network based graph embedding models like DeepWalk and GCN.

However, the studies are still around raw graphs and less useful for graphs with rich con-

texts. While it is intuitive that nodes with different contexts can interact in rather different

patterns (e.g., social leaders and cancer cells often form dense cores centered around them

while new users and benign cells often only weakly connect to those cores), little theoretical

effort has been made to understand the indications between network context and topology, to

answer essential and important questions like: Do node attributes help network embedding?

(seemingly straightforward, the answer might be counterintuitive due to insights from graph

invariance theory and recent empirical observations that both show random node features

to be competitive to real node attributes in certain scenarios); When do GCNs excel (or

collapse) on text-rich networks? (deeper modeling into non-categorical node attributes like

texts might uncover the weaknesses of current GCN architectures, particularly the uniform

linear aggregation of direct neighbors, and thus hint on novel context-driven GCN design

principles); Can structures and contexts be aligned? (Assuming both structures and contexts

of networks are generated by a unique underlying mechanism, powerful nonlinear neural em-

bedding models should allow us to compute the high-level shared network representations

across structures and contexts, from where contexts can be translated to structures and vice

versa, which leads to crystal clear understanding towards network dynamics). Driven by

these puzzles, my future research on multi-facet graph mining will thus also aim at combin-

ing theoretical insights and empirical observations for interpretable network modeling in the

context-rich setting, with the end goal of establishing a principled mapping between complex

structures and multi-facet contexts on networks.

Cube-empowered large-scale interactive graph mining. In many applications, acquir-

ing knowledge from data is an interactive process where people and machines need to col-

laborate with each other. There is great potential in leveraging my CubeNet system to

facilitate such a human-in-the-loop process: (1) machines accept user-selected data, perform
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network analysis along different facets and granularities, and provide summarized knowledge

with visualizations (e.g., contrastive network pattern mining); and (2) users make sense of

the resultant patterns and visual clues, adjust their data selection schemas, and provide feed-

backs to guide the machines to extract more useful knowledge. Along this line, my future

research on multi-facet graph mining will address challenges such as the design of large-scale

cube materialization strategies and systems that return user-desired results in real or near-

real time, cube-tailored user-friendly visualization techniques and interaction interfaces, as

well as effective policy learning for intelligent cube exploration upon user feedbacks.

Graph model efficiency and privacy in distributed settings. While the deep integra-

tion of multi-facet contexts from different data sources through collective learning in the

network setting is powerful and intriguing, the unrestricted modeling and exchanging of

multi-disciplinary data may be prone to training efficiency bottlenecks and collective attacks

that seriously threaten systems’ robustness and users’ privacy. For example, structural in-

formation such as specific graph patterns shall be leveraged to enable specific information

exchange channels, but it can also compromise data privacy through the comparison between

auxiliary graphs and anonymized graphs (i.e., membership inference). Even without the ac-

cess to actual data, since structural information is largely captured by nowadays powerful

neural network models like generative adversarial networks, properly designed adversarial

attackers can still accomplish model inversion and leakage attacks against collaborative deep

learning. Worse still, the leakage of privacy data such as user identities and user-item in-

teractions on one domain (e.g., social networks) can easily propagate to other collectively

modeled domains (e.g., e-commerce, cyber-physical and even financial), which is then ex-

tremely dangerous and concerning. To prevent such attacks from happening, my future work

on multi-facet graph mining will also strive to guarantee data privacy along the development

of effective (intimidating) data mining methods. Particularly, I plan to achieve this through

two powerful security principles, i.e., differential privacy (DP) and secure multi-party compu-

tation (MPC), both of which have hardly been studied in the network data mining scenario.

By enforcing DP on single-source graph models, I target on the optimal trade-off between

model utility and data privacy, and by integrating MPC techniques into the computations

across multiple sources, I aim to achieve secure data and knowledge exchange and prevent

leakage propagation. The efficiency and privacy guarantees of both systems should be the-

oretically constructed and empirically validated, through the collaboration with researchers

from security and encryption.
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