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Abstract

Chronic kidney disease (CKD) is a life-threatening
and prevalent disease. CKD patients, especially end-
stage kidney disease (ESKD) patients on hemodial-
ysis, suffer from kidney failures and are unable to
remove excessive fluid, causing fluid overload and
multiple morbidities including death. Current so-
lutions for fluid overtake monitoring such as ultra-
sonography and biomarkers assessment are cumber-
some, discontinuous, and can only be performed in
the clinic. In this paper, we propose SRDA, a latent
graph learning powered fluid overload detection sys-
tem based on Sensor Relation Dual Autoencoder to
detect excessive fluid consumption of EKSD patients
based on passively collected bio-behavioral data
from smartwatch sensors. Experiments using real-
world mobile sensing data indicate that SRDA outper-
forms the state-of-the-art baselines in both F1 score
and recall, and demonstrate the potential of ubiqui-
tous sensing for ESKD fluid intake management.

* These authors contributed equally

Data and Code Availability Research data are not
shared due to privacy and ethical concerns, the detailed
data description, and hyper-parameter tuning are in Sec-
tion 4 and 5.1. Code and the supplemental material are
available at https://tinyurl.com/cm3vp974

1. Introduction

Chronic kidney disease (CKD) is a condition charac-
terized by a gradual loss of kidney function over time,
which impairs patients’ capacity to filter wastes from their
blood Levin et al. (2013). CKD is ranked as the 9th

biggest cause of mortality in America, and 15% of US
adults, over 37 million individuals, are estimated to have
CKD, with many more at risk. Of those diagnosed with
CKD, 750,000 Americans have the most severe form of
CKD—end stage kidney disease (ESKD), whose kidney
function falls below 15% of normal Ozieh et al. (2021).

One of the most important medical requirements for
ESKD patients is that they must follow unique dietary re-
strictions (32 oz or less total fluid intake per day) Liska
et al. (2019) to reduce the risk of fluid overload. Any ex-
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Figure 1: ESKD patients’ fluid overload causes and
symptoms.

cess fluid must be removed through dialysis, and drinking
too much fluid may make a buildup between dialysis ses-
sions, causing symptoms such as swelling, trouble breath-
ing from fluid in the lungs, heart damage, and refractory
hypertension (e.g., Figure 1). However, it is nearly im-
possible to maintain such low-level fluid intake every day
in practice, since high sodium western diets, dialysis ses-
sions, and hypotension can all induce patients to exceed
the limitation of daily fluid intake. Current fluid moni-
toring techniques Morimoto et al. (1993); Efremov et al.
(2020); Grant et al. (2003); Dasselaar et al. (2005) are
expensive, require experts, and are only administered in
clinics. Since clinicians lose sight of their patients out-
side of the clinic, most deaths happen at home and mainly
because of fluid overload Pellicori et al. (2015). There-
fore, it is critical to developing a ubiquitous fluid man-
agement system to monitor patients’ fluid consumption
and detect their fluid overload with high sensitivity, and
to enable clinical intervention between dialysis sessions
(2˜3 days) in a timely manner. However, self-report fluid
management system fails to track fluid intake reliably be-
cause of human forgetfulness and lack of motivation until
it is too late. Figure 2 shows the self-reported fluid intake
daily compliance of our participants. We observe that the
number of self-reports decreases dramatically over time,
which makes it hard to track the patient’s fluid intake and
challenging to provide ground truth for supervised train-
ing of fluid overtake prediction model over a long period.

The development of mobile sensing technologies brings
advantages in health monitoring, and the potential to
implement bio-marker and contextual marker-based ubiq-
uitous fluid intake management (FIM) systems. Existing
works Adler et al. (2020); Dong et al. (2022, 2021b);
Salem et al. (2014); Ukil et al. (2016) have shown that mo-
bile sensing techniques utilizing ubiquitous devices can
build bridges between people’s health status and their be-
haviors as characterized by fine-grained human behavioral
signatures extracted from the continuously collected mo-
bile sensing data. Intuitively, the number of steps taken,
the intensity of physical activity, the hand movements, the

Figure 2: Total self-reported fluid intake daily compli-
ance in a 4 weeks study. Blue line represents trend of num-
ber of self-reported daily fluid intake. Yellow line repre-
sents average number of self-reported daily fluid intakes.

ambient environment, physiology and other variables that
can be captured through mobile sensing may all be associ-
ated with fluid consumption. Meanwhile, the relationship
changes between all these factors may indicate an abnor-
mal situation occurred (e.g., step counts decreased, but
heartrate increased). Compare to other latest deep learn-
ing architecture, graph neural networks (GNNs) are com-
pelling tools to take all the factors (i.e., sensors data) and
their correlations into account. Existing methods Zhang
et al. (2022); Tang et al. (2022); Dong et al. (2022) show
the great power of multi-sensor modeling and classifica-
tion using GNNs. However, current solutions Tang et al.
(2022); Dong et al. (2021a) are designed to handle super-
vised tasks, which have a large number of labeled data.
Given the specificity of ESKD diseases, abnormal cases
are hard to find in daily life, even though ESKD patients
may have fluid overtake situations, they will not report
it to their healthcare providers unless there is a serious
discomfort Taber et al. (2015), which makes ESKD fluid
overload detection unrealistic to use supervised learning.
Ipso facto, developing a weakly-supervised fluid overload
detection method with high F1 and recall is important to
detect abnormal states of high-level fluid consumption
through physiological and behavioral changes, since
most abnormal situations of ESKD patients are closely
associated with fluid excess Yilmaz et al. (2016).

To address the challenges of implementing a ubiqui-
tous fluid overload detection system, such as physiolog-
ical and bio-behavioral data collection, representation of
multi-modal sensory data and their correlations, and la-
bel sparsity. 1) We deploy FluiSense Boukhechba et al.
(2022), a smartwatch application to collect and process
physiological and behavioral multi-modal sensory data
for 14 patients in a total of 496 days. 2) We propose
SRDA, a weakly-supervised latent graph learning based
sensor relation dual autoencoder (SRDA) to detect abnor-
mal fluid overload. We define abnormal fluid overload as
the anomaly, which represents ”excessive fluid consump-
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Figure 3: Overview of our fluid overload monitoring sys-
tem.
tion” in a given time window (e.g., top 5% fluid consump-
tion in 30 days). Figure 3 shows the overview of our pro-
posed system. First, we utilize the denoising graph au-
toencoders to learn the latent interdependence within mo-
bile sensor networks, since there is no pre-defined sensor
relation structure prior to the ubiquitous sensor system.
Second, we propose the dual autoencoder structure: re-
lation autoencoder and feature autoencoder, to take inner
relations between heterogeneous sensors and continuous
on-body sensor data features into integrated considera-
tion. Third, we only train SRDA on normal fluid intake
data (which can be obtained easily in daily life) and de-
tect the fluid overtake abnormals when testing by ranking
the reconstruction error as the anomaly (overload) score.
Our contributions can be summarized as follows:

(1) We present a novel weakly-supervised ubiquitous
mobile sensing method for personal-level continuous fluid
intake estimation. To the best of our knowledge, SRDA
is the first attempt for modeling ESKD patients’ fluid in-
take management in a weakly-supervised fashion, which
is more practical for ESKD patients since labeled abnor-
mal data is hard to collect.

(2) We propose a latent graph learning-based sensor
relation dual autoencoder (SRDA) to automatically learn
the relation among sensors and detect abnormal fluid
intake signals by reconstructing the structural and feature
information of multimodal input data on a normal fluid
intake dataset.

(3) We test SRDA in a real-human subject study with
14 ESKD patients collected in a kidney center. SRDA
achieves state-of-the-art performance, improves average
1.25% on F1 score, and average 1.22% on recall rate in
comparison with over 10 baseline methods, including the
state-of-the-art methods in graph anomaly detection.

2. Related work

2.1. Fluid Intake Management

Many researchers investigated the use of ubiquitous sens-
ing devices to detect fluid intake using smart objects such
as smart tables and smart containers Cohen et al. (2021).

The solutions of FIM can be classified into portable meth-
ods such as smart containers and wearable devices or
non-portable methods such as smart tables and cameras.
Zhou et al. used a smart table equipped with pressure
sensors and force sensor resistors to monitor container
weight fluctuations Zhou et al. (2015). Cippitelli et al.
monitored eating and drinking behaviors using a depth
and RGB camera positioned on the ceiling Cippitelli
et al. (2016). However, non-portable equipment for
monitoring fluid intake is incapable of providing contin-
uous monitoring of fluid intake because users may drink
fluids in locations where smart tables and cameras are
not accessible. Existing works of using wearable sensors
for FIM are largely based on gesture recognition by
using motion sensors in a controlled environment Huang
et al. (2020). A recent work Tang et al. (2022) shows
consumer-grade wearable products have the potential
fluid intake monitoring ability in a supervised learning
fashion. Different from the existing solutions, in this
study, we deploy Fluisense in real-world scenarios and
collect unlabeled multi-modal sensor data (physiological,
behavioral bio-markers) in order to enable continuous
fluid overload alerting and potential just-in-time interven-
tions for ESKD patients. To the best of our knowledge,
this is the first work using smartwatches to detect the
fluid overtake abnormals of ESKD patients using only the
normal data that can be collected in daily life.

2.2. Graph Neural Networks for Anomaly Detection

With the emerging advancement of Graph Neural Net-
works (GNNs), GNNs have been applied in graph struc-
ture/relation modeling widely. The core motivation for
using GNNs to model multivariate data anomaly detec-
tion is that GNNs can model the interdependence and in-
teractions between nodes and their neighbor nodes. For
the multivariate data anomaly detection task, two major
GNN anomaly detection approaches are presented in the
latest literature. One type is forecasting-based detection,
Cao et al. Cao et al. (2020) proposed a spectral tempo-
ral GNN based on self-attention latent correlation graph
learning and time series forecasting to identify anomalies.
Another type is auto-encoder based, in order to consider
both structural information and node attributes of input
graphs, Fan et al. presented a dual autoencoder anomaly
detection that also addressed both relations and features
reconstruction problems in a single framework Fan et al.
(2020). Despite the state-of-art results in the anomaly de-
tection achieved in existing works, the forecasting-based
methods only rely on the power of graph neural networks,
which may lead to over-smoothing problems when recov-
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Figure 4: The diagram of SRDA model with multivariate sensor data. The left part from the body sensor network to
data transformation are the feature preprocessing steps; the latent correlation layer learns the graph relation using
given features. The right part is the main model structure; it consists of two autoencoders, one structure autoencoder
reconstructs the sensor relations, and one feature autoencoder decodes the original features.

ering the features Li et al. (2019). Furthermore, most of
the GNN-based methods aim to find node anomalies over
graph/instance anomalies. In our study, we leverage the
physiological and behavioral data collected from on-body
sensor networks and train a model to profile the normal
fluid consumption behaviors of ESKD patients. We use
our proposed sensor-relation dual autoencoder framework
to detect the graph anomalies, which automatically cap-
ture the sensor relation while reconstructing the structural
and feature information in a semi-supervised fashion.

3. Methodology

3.1. Problem Formulation

Given a set of ubiquitous sensors S, the goal of our
method is to detect the abnormal fluid overload according
to top k% anomaly scores for the multimodal data RS col-
lected by S as input. In order to capture the inter-relation
within a heterogeneous sensor network, we design a la-
tent graph learning method to learn multimodal sensor
relation graph (sensor network structure) G = (X,A),
representing the latent interdependence between different
sensors S. Xt(i) = h(Rt

S(i)) presents the homogeneous
transformed input features from raw multimodal sensor
S(i) input Rt

S(i), where i ∈ N is the number of sensors,
t ∈ T shows the number of inter-dialytic instances(data
collected between each two dialysis sessions). A = (ui,j)
is the adjacency matrix, where ui,j > 0 indicates there
is an edge (weighted interaction) between sensor(node)

i and sensor(node) j. Given T instances of multimodal
sensor relation graphs G = (X,A), our approach aims
to calculate T anomaly scores AS = F (G) for each
instance graph, which is generated by our auto-encoder-
based model F with parameters θ, from reconstructing
both graph features X and structures A. The anomalies
will be selected from the top k% AS. The length of T
is the total number of days between the dialysis section
for weights change, and days of collected reports for self-
reported data during the data collection.

3.2. Overview of SRDA

Our proposed overload detection framework aims to
detect abnormal fluid intake cases by reconstructing the
features extracted from multivariate time series input and
relation structures from the dense representations pro-
duced by encoders on normal fluid intake observations.
SRDA considers both inner relations between heteroge-
neous sensors and on-body sensor data features. The
framework consists of five parts: 1) Heterogeneous Data
Transformation 2) Latent Correlation Layer 3) Struc-
ture Autoencoder 4) Feature Autoencoder 5) Overload
(anomaly) Detection. Figure 4 illustrates the overall archi-
tecture of SRDA. SRDA feeds the sensor data streams into
a latent correlation layer to learn the relationship between
different sensor data as a relation graph, then combines
the relation graph along with sensor features as inputs to
feed into the relation and feature autoencoders. After that,
the learned node embedding from the structure encoder
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with the learned node embedding from the feature encoder
generates latent variables which capture both structure
and feature information by decoders during training. The
final anomaly score is measured by the reconstruction
errors based on both sensor relation and node attribute.

3.3. Heterogeneous Data Transformation

The data collected by on-body sensors S are in the dif-
ferent frequency domains (e.g, PPG 100HZ, GPS 10HZ,
GPS node will collect fewer observations than PPG node),
which means the raw data streams RS(i) cannot be di-
rectly fed to the model. Therefore, we first apply a
heterogeneous-to-homogeneous transformation function
h to extract features from raw data:

X(i) = h(RS(i)), i ∈ {1 . . . N}. (1)

X ∈ RN×F , F is feature size. We adopt time-series fea-
tures extraction as the transformation function, and we
use tsfellibrary Barandas et al. (2020) to extract all time-
series features in tsfel website with default settings1, such
as Min, Max, Variance in the statistic domain; Absolute
energy, Entropy in temporal domain; and FFT mean coef-
ficient, Fundamental frequency in spectral-domain.

3.4. Latent Correlation Layer

To better model the relationship between different
sensors, it’s essential to connect the highly related
nodes (sensors) in a relation graph. In previous works,
researchers utilize prior knowledge (e.g., the road net-
work in traffic prediction) to construct a relation graph.
However, pre-defined knowledge is not available all the
time. In our case, we do not have the ground-truth sensors
relation structure. An intuitive way of constructing a rela-
tion graph is to select a similarity metric and set the edge
weight between two nodes to be their similarity Belkin
et al. (2006). However, the quality of downstream tasks
can be influenced by the choice of similarity metric(s). To
learn the latent relation structure, we adopt the unsuper-
vised latent correlation layer from SLAPS Fatemi and
El Asri (2021), which is inspired by, and similar to, the
pre-training strategies for GNNs Gomes et al. (2020); Hu
et al. (2020). The latent correlation graph learning from
SLAPS has been proven effective by various experiments
in Fatemi and El Asri (2021). Therefore, we use the self-
supervised denoising autoencoders from SLAPS to learn
the latent correlations between sensors based on sensor
features, which automatically emphasizes a task-specific

1. https://tsfel.readthedocs.io/en/latest/
descriptions/feature_list.html

correlation by real sensor data. The graph structure
training is separate from the overload detection training,
which practically decreased the training difficulty of an
unsupervised task given a small dataset.

The latent correlation layer as shown in figure 4 bottom
left consists of three main components to learning the la-
tent graph structure. 1) Generator: generates an initial,
non-symmetric correlation graph 2) Adjacency proces-
sor: produces symmetric, normalized adjacent graph ma-
trix. 3) Self-supervision refines the correlation graph by
predicting the node features. Given the X from the pre-
vious step as an input, the multi-layer perceptron (MLP)
generator generates the initial graph Â by:

Â = GMLP (X; θG) = kNN(MLP (X)) (2)

where Â ∈ RN×N , θ denotes the weights of MLP and the
kNN produces a sparse matrix according to the updated
node representations MLP (X) and the top k neighbors
according to the similarity between node features. The
detailed implementation of kNN can be found in Fatemi
and El Asri (2021).

Since the generated adjacent matrix Â is not normal-
ized nor symmetric, the adjacency processor function
defined as follow:

A =
1

2
D− 1

2 (P (Â) + P (Â)T )D− 1
2 (3)

where A ∈ RN×N , D is the degree matrix ∈ RN×N , and
P is non-negative range function. Through this operation,
the adjacent matrix A becomes symmetric and does not
contain a negative value.

To refine the initialized relation structure, we utilize
self-supervision to train a denoising autoencoder. In the
self-training process, we predict the node features with
learnable graph structure and noisy version node features
X̂ , where we add Gaussian noise on X . The training loss
function can be shown as:

LSE = L(Xi, GNN(X̂, A; θGNN )i) (4)

where i indicates the noise addition indices of X, and the
θGNN is the weights of a graph neural network model (i.e.
the denoising autoencoder).

After minimizing the above loss function, we can get a
self-learned adjacency matrix A for future relation recon-
struction. The learned relation adjacency matrix is ana-
lyzed and validated by the ESKD expert in section 5.3.

3.5. Structure Autoencoder

As shown in Figure 4, SRDA consists of two parts of au-
toencoder, one is a structure autoencoder for graph rela-
tion structure reconstruction, and another one is a feature

5

https://tsfel.readthedocs.io/en/latest/descriptions/feature_list.html
https://tsfel.readthedocs.io/en/latest/descriptions/feature_list.html


SRDA: MOBILE SENSING BASED FLUID OVERLOAD DETECTION FOR END STAGE KIDNEY DISEASE PATIENTS

autoencoder for sensor attributes reconstruction. For the
structure autoencoder, the goal of this module is to learn
the community node representations of the given graph G,
where the nodes in the same community will share similar
characteristics and have higher correlations which can be
decoded as structures.

An intuitive solution is to apply Graph Autoencoder
(GAE) Kipf (2016) to embed and reconstruct the relation
graph structure, where use a Graph Convolutional Net-
works (GCN) Kipf and Welling (2017) as the encoder, and
reconstruct the adjacency matrix by the latent variable ZA

encoded by GCN with parameter θ.

ZA = (I +D− 1
2AD− 1

2 )Xθ (5)

where θ ∈ RF×H , H is the output dimension of ZA ∈
RN×H . The structure decoder takes the latent variable
ZA to reconstruct the original adjacency matrix by: Â =
Sigmoid(Z · ZT ). However, GAE does not contain the
node (sensor) features reconstruction process, which is
critical in anomaly detection-like tasks. Since features
usually contain a significant amount of information and
the node features may be over-mixed with their neigh-
bors when applying GCN repeatedly, which is also known
as the over-smoothing problem in GCN Li et al. (2019).
Also, the feature reconstruction process provides the la-
tent correlation in a data-driven fashion.

3.6. Feature Autoencoder

To address the above issues in the structure-only autoen-
coder, we apply a feature autoencoder to reconstruct fea-
ture information while also capturing and refining the
structure learning by interacting with the structural latent
variable ZA. The feature autoencoder consists of two non-
linear feature transformation layers as traditional AE Ag-
garwal et al. (2015), the feature latent embedding ZF can
be formulated as:

XF2 = sigmoid((X)TWF1 + bF1) (6)

ZF = XF2
WF2 + bF2 (7)

where the W ∈ RFn−1×Fn and b ∈ RFn×Fn (n indicates
the nth layer) are weights and biases of MLP functions.
To get the final representation that covers both structure
and feature information. We interact the structural latent
embedding ZA encoder with ZF using element-wise mul-
tiplication:

ZAF = ZA ⊙ ZF (8)

ZAF ∈ RN×H . The feature reconstruction can be written
as:

X̂ = MLP (ZAF ) (9)

with MLP parameters WX and bX . Thus, the training
objective of SRDA is to minimize the sum of both recon-
struction errors:

Lrec = λ ·BCE(A, Â) + (1− λ) ·MSE(X, X̂) (10)

where the λ is a parameter to control the trade-off between
structural and feature reconstruction loss, BCE(A, Â) =
− 1

n

∑n
i=1

∑n
j=1(Aij ·logÂij+(1−Aij)·log(1−Âij)) is a

criterion that measures the Binary Cross Entropy between
the target and input adjacency matrix, and MSE (Mean
Squared Error), MSE(X, X̂) = 1

n

∑n
i=1(Xi − X̂i)

2 is a
loss function that measures the average of the squares of
the feature reconstruction errors.

3.7. Overload (anomaly) Detection

Since we train our SRDA framework on normal cases,
the patterns of abnormal situation reconstruction will
differ from the patterns we learned from the training
dataset. Therefore, we calculate the anomaly score by
the reconstruction error function that we use during the
training phase:

ASt = λ ·BCE(A, Â) + (1− λ) ·MSE(Xt, X̂t) (11)

where t stands for the tth instance. Based on the anomaly
score set AS, we select a threshold α that can distinguish
the top k% anomaly scores.

4. Study and Data Description
With the approval of the Institutional Review Board
(IRB), we recruit 14 ESKD patients from the Kidney
Clinic to participate in a study investigating the use of
wearable sensing to estimate fluid intake for four weeks.
We choose the participants from different age groups,
gender groups, and races from a fairness perspective.
Figure 5 shows the statistics of our selected participants.

We give each participant an Android smartwatch (Fos-
sil Gen 5) with the pre-installed Fluisense application
(available in the Android play store now). Table 1
summarizes the bio-behavioral features gathered through
Fluisense that are used for monitoring fluid intake. The
five sensors are represented as the five nodes in the sen-
sor relation graph. We ask the patients to log their
fluid intake through the app by choosing from a list of
predefined volumes each time they consume any liquid.
We create the self-report daily volume intake feature to
help patients monitor their fluid consumption. We also
record the weight changes between dialysis sessions as
our ground truth because ESKD patients don’t have the
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ability to remove fluid themselves. These two measure-
ments represent current clinical practice and character-
ize both objective and subjective fluid consumption Fly-
the et al. (2017); Ku et al. (2018). In practice, the self-
fluid intake amount correlated to the weight changes (with
P < 0.01, r > 0.25). 14 patients record their fluid in-
take for a total of 496 days/samples, The average inter-
dialytic weight change is 3.18 kg +/- 1.38 and the av-
erage self-reported interdyalic fluid consumption is 2.97
kg +/- 2.12. When the daily fluid intake level is higher
than 32oz, patients may experience life-threatening dan-
ger Liska et al. (2019), we analyze the portion of daily
fluid overload (fluid intake amount > 32oz) as 20.36%.

Figure 5: Participants’ statistics: we demonstrate demo-
graphic information for different groups including differ-
ent age, gender and ethnic groups.

Table 1: Multi-modal on-body sensory data description.

Modality Description

Heart Rate The number of heartbeats per minute
PPG Detects volumetric changes in blood in peripheral circulation

Step Count Measures the number of steps and distance traveled
GPS Longitude and latitude of locations

Gyroscope Senses the change in rotational angle per unit of time

Weight Changes Converts an input mechanical force such as weight
Self-Reported Intake Self-reported fluids consumed in a given period

5. Experiment
We design our experiments to evaluate SRDA on ESKD
fluid overload anomaly detection problem, focusing on
the following research questions:

• RQ1: How do SRDA and its major ablations compare
to the baseline methods?

• RQ2: How to interpret the node/sensor correlation
learned in fluid overload anomaly detection by using
SRDA?

• RQ3: What are the impacts of the major model hyper-
parameters — modules — modalities, including embed-
ding size, running time, latent graph learning, and effec-
tiveness of modalities on SRDA?

5.1. Experimental Setting

Datasets. We define our fluid-intake anomaly detection
task as finding the potential dangerous fluid overload sit-
uations. In a real-world setting, when fluid intake level
achieves 50% percentile of patients’ long-term intake, pa-
tients need to start their fluid intake control. Therefore,
we specify abnormality as a patient drinking 95%, 90%,
or 80% percentile of his/her long-term (4-weeks) recorded
water intake (i.e., 5%, 10%, 20% anomalies). Note, the
anomaly detection process is trying to help patients start
to control their fluid intake, therefore, there is no ”hard
line” for setting an anomaly. The reasons why we set per-
centage (i.e., 5%, 10%, 20%) instead of a specific num-
ber threshold (e.g., 32 oz per day) are because 1) both
weight changes and fluid intake data cannot reflect the ac-
curate fluid intake, since weight changes may involve eat-
ing solid food other than fluid consumption, and the self-
reported result may not record all the fluid intake activity
completely according to Fig. 2, 2) percentage thresholds
are more practical in long-term unsupervised fluid intake
anomaly alerting since we don’t have the real ground-truth
about how much fluid the patients consumed each day.
This detection can be used to send alerts to patients aim-
ing to reduce fluid intake and reduce the risks of health
complications associated with fluid overload.

We study the anomaly detection performance on two
types of acceptable ground truth used in real clinical prac-
tice and evaluate the model performance using Leave-one-
subject out cross-validation (LOOCV). The LOOCV is
the most common testing method in the clinical field, es-
pecially for a small sample size Wong (2015). Thus, we
split N-2 participants as the training set, N=1 as valida-
tion set, and the last N=1 as test set, the hyper-parameters
are selected using the validation set. We make predictions
on the test set (with selected hyper-parameters on train-
ing sets and validation sets, N-1 folds) and calculate the
performance metrics across all test sets without training
data leakage. Then we take the average for 10 times re-
peat experiments (i.e, LOOCV on training and validation
set first, then predict on test set).
Data Pre-processing and Data Segmentation. We col-
lected a total of 496 days of data for 14 patients. We pre-
pared the collected data for two types of tasks in two-time
granularity - 1) Weight changes anomaly alerting between
two dialysis sessions 2) Self-report fluid intake anomaly
alerting for each day. For 1, ESKD patients usually have
three dialysis sessions per week - Monday, Wednesday,
and Friday. So we calculated the weight changes between
two dialysis sessions to perform an inter-dialysis time
granularity anomaly detection. For 2, patients recorded
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Table 2: Interdialytic fluid intake anomaly detection accuracy in terms of precision(%), recall(%), and F1-score,
SRDA performed the best over all baselines especially on Recall and F1-score. All experiments are performed for 10
times on testsets and take the mean (with the hyper-parameter selected by LOOCV on training data).

Weights Change(5%/10%/20%) Self Reported(5%/10%/20%)Model Precision Recall F1 Precision Recall F1
PCA 87.94/79.75/65.97 74.19/71.17/64.72 80.43/75.10/65.33 87.52/79.35/65.63 73.99/70.97/64.52 80.14/74.81/65.06
KNN 87.68/79.15/68.06 74.19/70.77/67.14 80.38/74.66/67.59 87.26/78.75/67.72 73.99/70.56/66.94 80.08/74.37/67.32
FB 88.53/79.42/68.70 75.00/70.77/67.54 81.04/74.75/68.11 87.82/79.02/68.37 74.40/70.56/67.84 80.44/74.46/67.84
OC-SVM 90.98/82.60/71.42 51.81/51.21/52.02 63.64/60.37/57.22 90.82/82.48/71.37 52.02/51.41/52.22 63.66/60.42/57.32
Deep-SVDD 89.12/81.72/67.14 75.81/73.59/65.93 81.65/77.19/66.52 88.41/80.34/65.63 75.20/72.18/64.52 81.06/75.86/65.06
COPOD 87.52/79.35/66.02 73.99/70.97/64.92 80.14/74.81/65.46 89.00/83.47/67.83 76.01/75.20/67.34 81.68/78.77/67.58
SUOD 87.99/80.61/71.42 83.47/80.44/72.38 85.67/80.53/69.20 87.99/80.61/69.14 83.47/80.44/74.40 85.67/80.53/71.26
CoLA 88.81/80.35/69.37 89.72/80.85/68.75 89.26/80.59/69.06 88.37/81.05/67.66 89.31/81.05/67.54 88.84/81.05/67.60
SRDA w/o GAE 88.39/80.98/67.42 83.67/80.65/72.98 85.97/80.81/69.92 87.99/80.61/67.09 83.47/80.44/72.78 85.67/80.53/69.65
SRDA w/o AE 90.23/81.78/70.78 28.83/30.65/35.48 39.00/37.62/37.96 89.31/80.73/70.02 28.63/30.44/37.68 38.69/37.32/37.68
SRDA 89.25/81.54/72.45 90.12/81.85/71.77 89.68/81.70/72.10 90.14/82.22/67.55 90.93/82.06/77.02 90.52/82.14/71.02

their fluid intake right after they have a drink, soup or
other types of fluid consumption. We calculated the to-
tal fluid intake amount for each day as ground-truth, to
have a daily time granularity detection. The experiments
performed on different time granularity can prove the sys-
tem had the potential to use and alert fluid overtake in an
out-of-clinic situation.

For the different modality sensor stream data we col-
lected from smartwatches, all the data were recorded si-
multaneously. We checked there was no missing data in
a single sensor. To have a reliable data input, we fil-
tered and denoised each signal. For instance, we apply
NeuroKit2 Makowski et al. (2021) to filter the PPG sig-
nals and take out all frequencies that definitely not com-
ing from the heart. For heartrate (HR) we excluded data
points below 20bpm or above 250pm. For motion data,
like a gyroscope, we filter and process it through a low
pass filter to remove the noises. For GPS, we leverage the
distance information according to the GPS signals in ev-
ery time window as a general-purpose input feature. After
data pre-processing, we input the processed data into the
SRDA pipeline. All the baseline functions are using the
same input data.

Baseline. We compare SRDA with 10 popular and re-
cent advanced anomaly detection baselines, represent-
ing two types of anomaly detection models; 1) Statis-
tical machine learning: PCA Shyu and Chen (2003),
KNN Angiulli (2002), FB Lazarevic and Kumar (2005),
and OC-SVM Schölkopf et al. (1999), 2) Deep learning
and GNNs: Deep-SVDD Ruff et al. (2018), COPOD Li
et al. (2020), SUOD Zhao et al. (2021), CoLA Liu et al.
(2021), AE Aggarwal et al. (2015), and GAE Aggarwal
et al. (2015). The AE and GAE can be considered as two
ablations of SRDA (i.e., SRDA w/o GAE and SRDA w/o

AE), which represent SRDA without structure reconstruc-
tion and without feature reconstruction, respectively.

• PCA, Principal Component Analysis Shyu and Chen
(2003), captures most of the variance in data by finding
a low-dimensional projection and calculates the projec-
tion reconstruction error as anomaly scores.

• KNN, K Nearest Neighbors Angiulli (2002), calculates
the anomaly score as the distance from coming in-
stances to their kth nearest neighbors.

• FB, Feature Bagging Lazarevic and Kumar (2005), de-
tects anomalies by fitting a number of detectors on sub-
samples of the dataset using a meta-estimator.

• OC-SVM, One Class SVM Schölkopf et al. (1999), es-
timates the distribution boundary of most observations
and labels the instances which lie far from the boundary.

• Deep-SVDD, Deep-Support Vector Data Descrip-
tion Ruff et al. (2018), encloses instances of network
representations in a minimized volume hypersphere, de-
tects anomalies based on the distance to the center of the
learned sphere.

• COPOD, Copula-Based Outlier Detection (CO-
POD) Li et al. (2020), is an outlier detection system
based on empirical copula models that are parameter-
free and highly interpretable.

• SUOD, is a large-scale unsupervised outlier detection
training and prediction acceleration framework Zhao
et al. (2021) with sets of regular outlier detection algo-
rithms (e.g., LOF, IForest, COPOD, etc).

• CoLA, is a state-of-art contrastive self-supervised
learning-based GNN method Liu et al. (2021) for graph
anomaly detection.

• AE, Autoencoder Aggarwal et al. (2015), consists of an
encoder and decoder, which reconstruct the data sample
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from the low-dimensional latent variable. Considered
as ablation of our method w/o structure reconstruction.

• GAE, Graph Autoencoder Kipf (2016), reconstructs
graph structures via GCN encoders and decoders. Con-
sidered as ablation of our method w/o feature recon-
struction.

Metrics. We choose precision(P), recall(R), and F1-
Score(F1) as our evaluation metrics over our method and
all the baseline models. Note that our anomaly detection
tasks are performed on unbalanced datasets, so the choice
of these metrics is fair and suitable for the unbalanced
data setting. Specifically, P = TP

TP+FP , R = TP
TP+FN ,

and F1 = 2×P×R
P+R , where TP, TN, FP, FN are true pos-

itives, false positives, false positives, and false negatives.
To detect anomalies, we label top k% anomaly scores as
anomalies, and the threshold α is set to (100 − k%)th

anomaly score.
Training setting. We perform a cross-validation grid
search to select the best-required hype parameters for all
models that involve in training (e.g., number of neighbors,
different sets of detectors). For models with GCN, we set
the number of GCN layers to 2. For SRDA, the learn-
ing rate is select from {5e-2, 5e-3, 5e-4, 5e-5}, epoch
size {10, 20, 50, 100, 200, 300}, embedding size {20,
40, 60, 80, 100}, trade-off parameter λ {0, 0.2, 0.4, 0.6,
0.8, 1}. The training processing of latent graph learn-
ing models follows Fatemi and El Asri (2021). Most of
the implementations of baseline functions are provided by
Python libraries PyOD Zhao et al. (2019) and PyGOD Liu
et al. (2022). For baselines that do not support multivari-
ate time-series data (e.g., deep-SVDD), we concatenate
different modalities into one. We use the same top k%
anomaly percentage for all baselines. All experiments are
performed on an 8GB NVIDIA RTX 3070 GPU. For base-
lines that involve GNNs, we use the same latent graph
layer to learn the correlations in the sensor graph.
5.2. RQ1: Performance Analysis

We compare SRDA with the 10 most popular and recent
advanced anomaly detection baselines in table 2, where
AE and GAE can be considered as two ablations of our
method (i.e., w/o structural AE and w/o feature AE).
The experimental results show that the proposed SRDA
outperforms all baselines in both interdialytic weights
change and self-reported fluid intake anomaly detection
tasks. Specifically, 1) In terms of F1 score, SRDA out-
performs or is comparable to the baselines regarding all
5%, 10%, and 20% anomalies on both tasks. For weights
change, SRDA has 0.47%, 1.01%, 3.12% higher F1 score
than the next best baseline on 5%, 10%, 20% anomaly
tasks respectively, and 1.89%, 1.34%, -0.33% higher F1

score on self-reported fluid intake. 2) While there are
three baselines(OC-SVM, Deep-SVDD, SUDO, CoLA,
and GAE) that have comparable performance to SRDA in
precision, SRDA surpass all the baselines in recall per-
spective over all tasks (average 1.22% above). It shows
that our model can find the anomalies more comprehen-
sively, which is critical in our fluid overload anomaly find-
ing tasks to provide interventions for more possible sus-
picious cases. 3) ColA has slightly worse performance
than SRDA, CoLA is a state-of-art graph anomaly detec-
tion method, but not designed specifically for our task (it
is trained in a node-wise fashion, not for normal/abnormal
data points). 4) SRDA w/o GAE and SRDA w/o AE are
two ablations of our study. Our model outperforms both
ablations proving that both structural and feature autoen-
coders have positive effects on the final prediction re-
sults. Especially for GAE that only encodes and decodes
the structural information, it shows extremely bad per-
formance regarding recall rate (e.g., -68.00% on weights
change 5% anomaly task). 5) When anomaly propor-
tion increases, the performance decreases on all models.
The rationale behind this is that when we label enlarged
anomalies percentage in the dataset, normal indicators and
symptoms become indistinguishable from abnormal ones
since the amount of water consumption does not exceed
much by the recommended values.

Note that, the essential problem we want to solve in this
research is to identify as many and early as possible when
the abnormalities possibly happen so the providers and
dependents can receive alerts or provide intervention in
time. Therefore, the recall and F1 scores are the most im-
portant metrics for the fluid overtake alert system. Based
on the large amount of EKSD patients worldwide, We be-
lieve that even small enhancement in F1 and recall score
is meaningful for the fluid overtake alert system. In this
sense, mobile sensing with provided sensors clearly is a
feasible solution for fluid intake monitoring. The labeled
sample size is small, but the result shows that one bene-
fit of applying our weakly-supervised learning approach
here is it can learn the pattern of limited data.

5.3. RQ2: Sensor Correlation Analysis

Graph relation structure learned by the latent correlation
layer highlights the relationship between sensor nodes and
explains the structure of each of how a sensor’s neigh-
bors model the sensor’s behavior. We draw a sensor re-
lation plot depicted in Figure 6. Understanding the sen-
sor relation plot increases the interpretability of the pro-
posed model and validates our model on automatically
constructing the relation graph.
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Figure 6: Self-learned sensor correlation matrix via the
trained latent correlation layer in SRDA, step count and
GPS, PPG, and heart rate are highly correlated.

From the sensor relation heatmap, physiological
biomarkers like ”PPG” and ”heartrate” are highly cor-
related (0.665). This finding proves how validated our
approach is because heart rate is known to be extracted
from PPG (by estimating the beat-to-beat intervals from
the PPG signal). Some behavior biomarkers like ”Step-
Count” is related to the ”gyroscope” (0.317) and ”GPS”
(0.797), which is intuitively reasonable since both the an-
gle of the gyroscope will change periodically and the lo-
cation will change when walking or doing other activi-
ties. In addition, the motion sensor ”gyroscope” is highly
correlated with almost all the other sensors since all the
sensors may change when wearable devices detect a mo-
tion change. ”Step” has a low correlation with ”heartrate”,
which is a little bit surprising, but it’s reasonable since
our SLAPS only select top k (k=2 in our test) closest sen-
sors in it’s kNN operation. Therefore, the result only indi-
cates the ”heartrate” has a relatively lower correlation to
”Step” compare to ”gyroscope” and ”GPS”. The SRDA
self-learned sensor relation graph was presented to three
hospital experts and they verified the self-learned relation
as valid with the discussion above.

5.4. RQ3: In-depth Studies

Hyperparameters. The embedding size is critical for
autoencoder-based solutions since it reflects the effective-
ness of information compression. We selected embedding
sizes starting from 20 to 100 on the self-reported fluid-
intake anomaly detection task. As shown in in Figure 7(a),
our model is not very sensitive to embedding size change
when predicting high-level fluid intake, and maintains the
state-of-arts performance over all embedding dimensions.
The model performs slightly better when the embedding
size becomes larger.

To further understand the efficiency and feasibility of
our proposed method, we compare the running time of

Figure 7: Hyperparamter sensitivities. The left figure il-
lustrated the impact of embedding size to F1 score given
different weight changes; the right figure illustrates the
empirical inference time comparison.

SRDA with all the other deep learning-based anomaly de-
tection approaches.

We measure the run time of all compared algorithms
on Intel i7 7700k processors, 16 GiB of RAM and 8GB
NVIDIA RTX 3070 GPU. We train all the models to con-
verge on 20% anomaly weights to change datasets and
recorded the training time. From Figure 7(b), although
all other deep models are faster than SRDA since SRDA
need to train an additional graph correlation layer (same
for GAE and CoLA), our model has a comparable run-
ning speed with the normal GAE. Note, our SRDA frame-
work does not rely on more hyper-parameters than the ba-
sic ones for classic GNN models like GCN and GAE. The
inference time is similar for all the baseline models, which
is a more practical metric for patients (near 0.3s).

Latent graph learning. The latent graph learning mod-
ule is an essential part of SRDA model. Thus, the effect of
different graph correlation learning modules is interesting
ablation of our study. We compare four different latent
correlation layers in the interdialytic weight change task:
1) SLAPS (i.e., the layer we used in SRDA) 2) Cosine
similarity 3) Euclidean distance 4) All connected graph
(i.e., all edge weights are equal to one). For the sake of
fairness, all the hyper-parameter settings used in the dual
autoencoder module part are the same.

Table 3: Performance effects of different latent graph
learning layers, SLAPS maintains the highest perfor-
mance while Euclidean distance metrics performed worse
than fully connected graphs.

Layer Precision Recall F1

Cosine 89.22/81.13/71.27 89.92/81.45/70.56 89.57/81.29/70.91
Euclidean 88.79/80.72/68.90 89.11/81.05/68.15 88.73/80.88/68.52
Connected 88.79/80.31/70.88 89.52/80.65/70.16 89.15/80.48/70.51

SLAPS 89.25/81.54/72.45 90.12/81.85/71.77 89.68/81.70/72.10
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As shown in Table 3, SLAPS latent graph learning per-
formed the best over all the other types of graph struc-
ture constructors. The performance of pair-wise similarity
graph construction methods highly depends on the met-
rics it selected. For instance, the cosine similarity can
show better results compared to the euclidean distance,
and the euclidean distance sometimes even has worse per-
formance than all connected graph settings. Therefore, a
self-learning correlation layer is necessary in our method
and can be generalized to other problem settings.

Figure 8: F1 score of the modality ablation studies. Each
bar presents the performance when one of the five sen-
sor types (as shown in Table 3) is removed and the whole
training process was applied on the remaining sensors.

Effectiveness of different modalities. To explore how
different sensor modalities contribute to the final overload
detection result. We further conducted a modality/feature
ablation study. For the five feature types - Heart Rate,
PPG, Step Count, GPS, and Gyroscope (as presented in
table 3), we removed one of them and re-ran the whole
model using the remaining four sensor types on 20%
anomaly weight change task. Figure 8 summarized the
results above. We found that all modalities are impor-
tant in the fluid overload anomaly detection task, among
them, PPG and Step Count sensors were the most impor-
tant, and removing them lead to the biggest performance
drop. While removing the GPS sensor has the least effect.
This finding indicates that both behavior and physiologi-
cal data are essential in fluid monitoring.

6. Conclusion
In this work, we present a novel weakly-supervised wear-
able sensing fluid intake anomaly detection framework to
address the health problem in the growing kidney patient
population. The proposed solution leverages the power
of low-cost ubiquitous mobile sensing and graph neural
networks to effectively model the collected multi-modal
sensory data and detect potential fluid intake anomalies.
Our findings show that mobile sensing techniques (e.g.,
GPS, PPG, Gyroscope, etc.) can be used to design

accurate, ubiquitous, and unobtrusive fluid management
systems, and they can be used in addition to the clinical
examination, hemodynamic monitoring, and weight
assessment that dialysis patients undergo three times
weekly. But still, long-term experiments are needed to
determine the clinical importance of the mobile sensing
monitoring system. Besides, in section 5.4, we explore
which sensor modalities are more useful in fluid overtake
anomaly detection. It can inspire future fluid management
research on these sensors.

From the performance analysis, the experiment results
show that our proposed solution improved the detection of
fluid intake anomalies by 1.25% on F1 on average. In ad-
dition, SRDA achieves a higher recall rate of 1.22% than
the state-of-the-art baseline methods, which indicates that
SRDA has the capability of capturing more abnormal sit-
uations, which is critical for ESKD patients’ life-saving
fluid control regimes. The in-depth sensor relation and
ablation analysis provide a view of how physiological and
behavioral sensors correlate with each other and validate
the feasibility of our solution. We acknowledge our cur-
rent solution still has limitations due to 1) limited patient
sample size and sensors used, 2) ignoring temporal infor-
mation, and 3) lack of ground-truth anomaly proportion.
We believe the data we collected and the proposed method
are meaningful in end-stage kidney patients’ fluid control
and will address the limitations in future work. In addi-
tion, our fluid intake anomaly detection solution can pro-
vide continuous and unobtrusive fluid management solu-
tions to many health conditions in which fluid intake and
potentially other types of vital monitoring is essential.

Institutional Review Board (IRB) The study is ap-
proved by the Institutional Review Board (IRB): IRB-
HSR/UVA Study Tracking #: HSR200294.
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