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Abstract
In personalized recommendations, users often express complex logi-
cal requirements, involving the intersection of multiple preferences
over heterogeneous graphs containing users, items, and external
knowledge. Existing methods for mining logical relations face chal-
lenges in scalability and often overlook the semantics of relations,
which are essential for uncovering higher-order connections and
addressing incomplete relations within the graph. To tackle these
challenges, we propose RelRec, a novel approach that leverages
large language models (LLMs) to mine logical relations and sat-
isfy users’ logical requirements in personalized recommendation
tasks. Specifically, the framework begins with the extraction of user-
driven logical relations, followed by a rule-based logical relation
mining module that integrates both semantic and structural infor-
mation using the capabilities of LLMs. By uncovering higher-order
logical relations, our approach effectively refines the heterogeneous
graph for reasoning capacity and recommendation accuracy. Exten-
sive experiments on real-world datasets demonstrate that RelRec
significantly outperforms existing methods.
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Figure 1: Illustration of the incomplete and implicit nature
of relations in heterogeneous graphs.
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1 Introduction
Personalized recommendation systems aim to deliver relevant sug-
gestions tailored to users’ preferences and needs [2, 5]. In many
scenarios, users express complex logical requirements, such as the
intersection of multiple preferences, which can be represented as
structured queries over heterogeneous graphs comprising users,
items, and external knowledge. These graphs capture both user-
driven interactions and semantic relationships, providing a rich
foundation for reasoning. However, effectively mining logical rela-
tions within such graphs to meet complex requirements remains a
significant challenge [5, 11, 13].

Existing methods for logical relation mining in recommendation
systems [8, 13] suffer from two key limitations. First, they often rely
on computationally expensive graph traversal techniques to explore
the rule space, which limits their scalability for large-scale graphs.
Second, these methods frequently ignore the semantics of relations,
which are crucial for uncovering higher-order logical connections
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Figure 2: The overall framework of RelRec.

and addressing incomplete or implicit relations within the graph.
For instance, as shown in Figure 1,Mockingjay from The Hunger
Games series is primarily linked to the “Dystopia” genre due to
its societal critique, while its “Adventure” aspects are ignored. This
incomplete logical relation prevents the recommender system from
fully satisfying user preferences, such as those of a user interested
in both dystopian and adventure-themed content.

To tackle these challenges, we propose RelRec inspired by the re-
cent success achieved by Large Language Models (LLMs) [5, 7, 12], a
framework that leverages LLMs to mine logical relations efficiently.
Specifically, RelRec begins with a user-driven logical relation ex-
traction to identify implicit co-purchase associations. Then, we
propose a rule-based relation mining with LLMs, which incorpo-
rates both semantic and structural information. By leveraging the
powerful reasoning capabilities of LLMs, RelRec refines hetero-
geneous graphs, enabling the discovery of higher-order logical
relations for accurate personalized recommendations. The overall
framework of RelRec is illustrated in Figure 2.

Our main contributions can be summarized as follows:

• We propose a novel framework that effectively mines logical rela-
tions in heterogeneous graphs using LLMs, alleviating scalability
and semantic problems in recommendation scenarios.
• We capture higher-order logical relations by integrating user-
driven interactions with structural semantics, enhancing the
graph’s reasoning capacity for personalized recommendation.
• Extensive experiments demonstrate that RelRec significantly im-
proves recommendation accuracy with an average of 17.36%, and
can achieve scalable recommendation performance on unseen
(zero-shot) logical requirements as well.

2 Related work
Recommendation systems have long relied on the classic method of
collaborative filtering [1]. In recent years, methods that integrate

background knowledge from knowledge graphs (KGs) have gradu-
ally attracted attention. These methods improve recommendation
effects by enriching the representation of users and items [2, 17].
Different from existing methods, our research not only uses knowl-
edge graphs as a source of background knowledge, but also further
supports structured logical requirements provided by users, thereby
injecting stronger interpretability and flexibility into the recom-
mendation system.

Among the methods that use graphs to assist personalized rec-
ommendations, heterogeneous graph approaches use meta-paths to
model multi-type relationships, but require manual path design and
cannot handle incomplete [4]. Knowledge-enhanced methods [17]
incorporated external knowledge yet treated relations as discrete
labels without semantic grounding. In contrast, our framework en-
ables more flexible and semantically rich reasoning on complex and
incomplete knowledge graphs by leveraging LLMs for automatic
rule mining.

3 The RelRec Framework
3.1 User-driven Logical Relation Extraction
KGs often suffer from sparse or incomplete item-item relations,
limiting their ability to capture meaningful associations between
items [5, 8]. To address this, we extract higher-order user-driven
logical relations from the user-item graph by analyzing shared user
interactions. For instance, if two items are frequently co-purchased
by overlapping groups of users, these interactions indicate an im-
plicit connection between the items—one that may not be directly
given in the graph.

We model user-item interactions as a bipartite graph, where
users 𝑢 ∈ U and items 𝑖 ∈ I are nodes, and interactions form
edges E. Higher-order relations are identified by closed loops that
connect two users 𝑢1, 𝑢2 ∈ U and two items 𝑖1, 𝑖2 ∈ I, satisfying:

𝑖1
co-purchase
←−−−−−−−−→ 𝑖2, s.t. (𝑢1, 𝑖1), (𝑢1, 𝑖2), (𝑢2, 𝑖1), (𝑢2, 𝑖2) ∈ E . (1)
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Here, the bidirectional relation reflects shared interactions between
users 𝑢1 and 𝑢2, indicating meaningful co-purchase associations.
We compute the frequency of all such item pairs (𝑖1, 𝑖2) and select
the top 𝐾 pairs as the final user-driven logical relations.

3.2 Rule-based Relation Mining with LLMs
In personalized recommendations, capturing users’ logical require-
ments within a heterogeneous graph is crucial. However, existing
methods [8, 13] often overlook the semantics of relations. To address
this, we propose a three-step process—rule initialization, expansion,
and selection—leveraging LLMs to uncover higher-order relation-
ships, thereby addressing incomplete relations and enabling more
accurate recommendations.

Rule Set Initialization. The process begins with a breadth-first
search to identify closed paths 𝑝 in the graph. A path is defined
as a sequence of relations {𝑝 : 𝑟1, 𝑟2, . . . , 𝑟𝑛 → 𝑟 } that form a
higher-order connection to emphasize how different relations are
logically linked, where 𝑟𝑖 ∈ R and R denotes the existing relation
set from the heterogeneous graph. For example, a path could be
{𝑝1 : 𝑠𝑒𝑟𝑖𝑒𝑠 (𝑟1), 𝑔𝑒𝑛𝑟𝑒 (𝑟2) → 𝑔𝑒𝑛𝑟𝑒 (𝑟2)}, where 𝑟2 represents the
target relation being inferred, and 𝑟1, 𝑟2 represent the supporting
relations. The extracted rules are then used to form an initial rule
set S, which serves as the foundation for subsequent reasoning and
knowledge augmentation.

Rule Expansion.While the initialized rule base S effectively
captures explicit patterns, it remains constrained by the inherent
incompleteness of the graph, which is especially critical in rec-
ommendation scenarios where relations among users and items
are often sparse. To overcome this limitation, we leverage LLMs
to expand the rule set by generating plausible logical rules that
incorporate both structural and semantic information.

Specifically, given the initial rule set S and the existing relation
set R from the original graph, we design a tailored prompting strat-
egy to harness the reasoning capability of LLMs. Each rule fromS is
first verbalized into natural-language sentences by converting rela-
tion names into human-readable forms, which enhances the LLM’s
semantic understanding. For example, relations like “inv_bought”
are verbalized as “inverse of bought.” These verbalized rules, along
with user-driven logical relation (cf. Section 3.1), are placed into a
carefully crafted prompt template and fed into the LLM to generate
additional candidate rules. The detailed prompt template for rule
mining is provided in Section 4.1.

The final expanded rule set S′ is formed by combining the initial
rules S with the LLM-generated rules G as:

S′ = S ∪ G. (2)

By incorporating LLM-generated rules, our approach efficiently
uncovers higher-order semantic patterns that are otherwise missed
by traditional graph-based methods. This process eliminates the
need for exhaustive graph searches and plays a significant role in
recommendation tasks, where sparse user-item interactions can
benefit significantly from enriched logical relations.

Rule Selection. To ensure the reliability of the rule set S′, we
further propose to evaluate their quality by designing a confidence
score CON[𝑟 (x, y)], where 𝑟 (x, y) denotes entity x is connected to
entity y through the relation 𝑟 (e.g., the rule 𝑠𝑒𝑟𝑖𝑒𝑠(The Hunger
Games, Catching Fire) in Figure 1). A rule 𝑟1 (x, z1), 𝑟2 (z1, z2), . . . ,

Table 1: Statistics of the datasets used in our experiments.

Amazon-Book Last-FM MIND
Users 70,679 23,566 100,000
Items 24,915 45,123 30,577
Interactions 847,733 3,034,796 2,975,319
Entities 88,572 58,266 24,733
Relations 39 9 512
Triplets 2,557,746 464,567 148,568

𝑟𝑛 (z𝑛−1, y) → 𝑟 (x, y) is validated based on:

CON[𝑟 (x, y) ] = #{ (x, y) s.t. 𝑟1 (x, z1 ), . . . , 𝑟𝑛 (z𝑛−1, y) ∧ 𝑟 (x, y) ∈ S′ }
#{ (x, y) s.t. 𝑟1 (x, z1 ), . . . , 𝑟𝑛 (z𝑛−1, y) }

.

(3)
Here, the numerator represents the number of relations where
𝑟1, 𝑟2, . . . , 𝑟𝑛 are satisfied alongside 𝑟 (x, y) within the expanded rule
set S′. The denominator represents all possible instances where
𝑟1, 𝑟2, . . . , 𝑟𝑛 are satisfied. Rules with CON scores exceeding 0.9 are
selected to form the final relation set S∗, and the corresponding
logical relations are incorporated into the graph. This enriched
graph combines user-item interactions with higher-order logical
connections, creating a more complete structure for personalized
recommendation tasks.

3.3 Requirement-aware Recommendation
To incorporate the refined rule setS∗ into the recommendation pro-
cess, users and items are represented by their embeddings 𝒁𝑢 ∈ R𝑑
and 𝒁 𝑣 ∈ R𝑑 in a shared latent space. These embeddings are jointly
learned by combining user preferences, derived from historical user-
item interactions, and higher-order logical relations captured in the
refined rule setS∗, enabling the seamless integration of user-driven
requirements and mined logical connections.

Then, the similarity between a user 𝑢 and an item 𝑣 is defined as:

𝑝𝑢,𝑣 = 𝜎
(
𝒁⊤𝑢 𝒁 𝑣 + 𝑓 (𝑭𝑢,𝑣 ;S∗)

)
, (4)

where 𝒁⊤𝑢 𝒁 𝑣 measures the direct similarity between the user and
item embeddings, and 𝑓 (𝑭𝑢,𝑣 ;S∗) incorporates logical relations
derived from the refined rule setS∗. 𝑓 is a single-layer feed-forward
network with softmax activation. 𝜎 (·) denotes the sigmoid function,
ensuring the output is a probability score.

To train the model, we minimize the binary cross-entropy loss
over positive and negative user-item pairs:

𝐿 = − 1
|D|

∑︁
(𝑢,𝑣) ∈D

[𝑦𝑢𝑣 log(𝑝𝑢𝑣) + (1 − 𝑦𝑢𝑣) log(1 − 𝑝𝑢𝑣)] , (5)

where 𝑦𝑢𝑣 ∈ {0, 1} indicates whether user 𝑢 interacted with item 𝑣 ,
and D represents the set of all training pairs.

4 Experiment
4.1 Experimental Setup
Datasets. In this experiment, we selected three diverse and widely
used real-world datasets to evaluate the performance of our pro-
posed method: Amazon-Book, Last-FM, and MIND. We summarize
the statistics of three datasets in Table 1. These datasets cover a
range of domains, including e-commerce, music streaming, and
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Table 2: Recommendation performance on Amazon-book, Last-FM, and MIND. The best performances are highlighted in
boldface. The second-best performances are underlined.

Amazon-Book Last-FM MIND

Method H@10 H@20 N@10 N@20 H@10 H@20 N@10 N@20 H@10 H@20 N@10 N@20
RippleNet 0.070 0.109 0.031 0.040 0.390 0.482 0.201 0.233 0.092 0.123 0.054 0.061
CFKG 0.095 0.145 0.043 0.053 0.527 0.601 0.288 0.307 0.125 0.161 0.074 0.082
KGCN 0.048 0.079 0.019 0.025 0.266 0.346 0.124 0.148 0.062 0.085 0.031 0.035
MKR 0.040 0.067 0.016 0.022 0.223 0.296 0.104 0.125 0.050 0.071 0.027 0.033
GQE 0.084 0.114 0.052 0.058 0.468 0.502 0.340 0.337 0.111 0.127 0.089 0.090

LogicRec 0.100 0.141 0.059 0.070 0.558 0.622 0.389 0.405 0.131 0.156 0.099 0.106
RelRec 0.136 0.177 0.082 0.090 0.562 0.624 0.398 0.413 0.162 0.206 0.107 0.118

online news recommendation. Each dataset offers a unique context
with distinct characteristics, providing a comprehensive and robust
evaluation of RelRec across various recommendation scenarios.

Metrics.We used two metrics for evaluation: H@k (Hit Ratio at
k) measures the accuracy of the recommendations by evaluating
whether relevant items appear in the Top-k recommended list. N@k
(Normalized Discounted Cumulative Gain at k), considers both the
ranking and relevance of the recommended items.

Baselines.We adopt the following representative state-of-the-
art baselines for comparison, which include two types. (1) Knowl-
edge Graph-based Methods: These methods enhance the repre-
sentation of users and items by integrating external knowledge from
knowledge graphs. By leveraging rich relationships and informa-
tion in the graph, these methods aim to improve recommendation
accuracy and personalization. Notable methods include:
• RippleNet[14]: Propagates user preferences through the
knowledge graph to improve recommendation relevance.
• CFKG[2]: Jointly learns recommendation and knowledge
graph completion to better understand user preferences.
• KGCN[16]: Utilizes Knowledge Graph Convolutional Net-
works (KGCN) to capture inter-item relationships and ad-
dress the sparsity issue in recommendation systems.
• MKR[15]: Proposes a multi-task learning framework that
integrates knowledge graph embeddings for improved rec-
ommendation quality.

(2) Logic Query Expansion Methods: These methods focus on
refining recommendations by expanding logical queries based on
structured user inputs. They aim to improve recommendation sys-
tems by interpreting and processing complex logical queries. Key
methods include:
• GQE[6]: Uses low-dimensional embeddings to predict con-
junctive logical queries on incomplete knowledge graphs.
• Q2B[9]: Reasons over arbitrary logical queries in large, in-
complete knowledge graphs.
• BetaE[10]: Answers arbitrary first-order logic queries over
knowledge graphs while modeling uncertainty.
• FuzzQE[3]: A fuzzy logic-based query embedding frame-
work for answering first-order logic queries without requir-
ing complex training data.
• LogicRec [13]: Addresses users’ complex logical require-
ments by using logical query embedding and a multi-task
knowledge sharing mechanism.

Implementation Details. In our experiments, we intentionally
leave out 5% of KG to simulate the presence of missing facts. At the
same time, we carefully designed a prompt template to enable LLM
to perform rule mining accurately, as follows:

Simplified Prompt Template for Rule Mining

Logical rules define relationships between two entities X
and Y as logical implications, where the right-hand side is
inferred from the left-hand side.
Rule Samples: {series, genre→ genre} . . .
Generate the most important rules for 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑖 (X,Y). Re-
turn rules only, no explanations.

4.2 Results with Personalized Recommendation
The experimental results are summarized in Table 2. RelRec con-
sistently outperforms state-of-the-art baseline methods across all
datasets and evaluation metrics, demonstrating its superiority in ad-
dressing personalized recommendation tasks. Specifically, RelRec
surpasses knowledge graph-based baselines (e.g., CFKG) by incor-
porating logical queries to model users’ requirements, enabling
more precise intent modeling. Additionally, RelRec outperforms
logic query expansion methods (e.g., LogicRec) by using LLMs to
mine logical relations in heterogeneous graphs, addressing scala-
bility and semantic limitations. Moreover, our proposed RelRec’s
performance gains range from substantial (32.99% on Amazon-Book
dataset) to modest (1.33% on Last-FM dataset). This variability un-
derscores two key factors. Firstly, in highly sparse datasets, RelRec
effectively overcomes the challenges posed by knowledge graph
incompleteness. Secondly, in datasets with simpler relational struc-
tures, the limited number of logical rules generated by the LLMs
may constrain the model’s potential. Despite this limitation, RelRec
consistently outperforms the second-best model, demonstrating its
robustness across datasets with diverse characteristics.

4.3 Results with Logical Requirements
To demonstrate the effectiveness of our model over complex logical
requirements, we evaluate RelRec over varying levels of logical
complexity, which is consistent with [13]. As shown in Figure 3, the
four key logical requirements simulate diverse user preferences and
scenarios in recommendation tasks, where the symbols 𝑖 , 𝑢, and 𝑝
represent intersection (∧), union (∨), and projection, respectively.
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Table 3: Experimental results of both basic and zero-shot
logical requirements. We use H@20 as evaluation metric.

Basic Logical Req Zero-shot Req
Methods 1p 2p 2i 3i pi ip 2u up

Amazon-Book
GQE 0.071 0.055 0.170 0.256 0.165 0.070 0.081 0.079
Q2B 0.033 0.042 0.157 0.291 0.156 0.054 0.058 0.070
BetaE 0.033 0.050 0.154 0.301 0.158 0.033 0.065 0.053
FuzzQE 0.088 0.066 0.194 0.273 0.155 0.084 0.077 0.073
LogicRec 0.092 0.063 0.215 0.351 0.187 0.071 0.116 0.081
RelRec 0.160 0.100 0.301 0.405 0.198 0.106 0.158 0.087

MIND
GQE 0.008 0.025 0.265 0.271 0.373 0.029 0.097 0.035
Q2B 0.005 0.019 0.245 0.311 0.351 0.021 0.073 0.031
BetaE 0.006 0.024 0.243 0.323 0.356 0.015 0.077 0.023
FuzzQE 0.010 0.026 0.303 0.291 0.350 0.031 0.093 0.034
LogicRec 0.011 0.027 0.335 0.373 0.422 0.028 0.139 0.036
RelRec 0.071 0.066 0.409 0.455 0.417 0.085 0.197 0.084

1p 2p
⋀

pi
⋀

ip

Figure 3: Examples of the basic logical requirements (left)
and zero-shot logical requirements (right).

The experimental results, as shown in Table 3, indicate that
the proposed RelRec method consistently outperforms the second-
runner on Amazon-Book, with the improvement gains ranging
from 15.38% to 73.91%.

On the MIND dataset, LogicRec achieves competitive results and
slightly outperforms RelRec in the 𝑝𝑖 query on the MIND dataset,
likely due to its multi-task knowledge-sharing mechanism, which
effectively leverages both requirement-item and preference-item
pairs for simpler intersection-based queries. However, its reliance
on logical query embedding limits its ability to capture higher-
order relations in incomplete graphs. FuzzQE also performs well
in the 𝑖𝑝 query, leveraging its fuzzy logic mechanism to capture
approximate relations and soft reasoning, making it effective for
projection-heavy queries. However, its lack of integration for com-
plex semantic patterns restricts its performance in more intricate
scenarios. Overall, RelRec excels in capturing higher-order logical
relations and refining heterogeneous graphs through LLM-based
rule mining, enabling it to outperform LogicRec and FuzzQE inmost
scenarios. This highlights RelRec’s ability to effectively address
complex and zero-shot logical requirements for recommendations.

5 Conclusion
In this paper, we presented RelRec, a framework leveraging large
language models to mine logical relations for personalized recom-
mendations. By extracting user-driven relations and employing
rule-based logical mining with LLMs, RelRec uncovers higher-
order connections in heterogeneous graphs. In this way, we can
integrate semantics with structural information for personalized

recommendations. Experimental results show that RelRec achieves
improved recommendation accuracy along with satisfying complex
logical requirements.
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