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Abstract

Existing claim verification datasets often do
not require systems to perform complex rea-
soning or effectively interpret multimodal evi-
dence. To address this, we introduce a new task:
multi-hop multimodal claim verification. This
task challenges models to reason over multiple
pieces of evidence from diverse sources, in-
cluding text, images, and tables, and determine
whether the combined multimodal evidence
supports or refutes a given claim. To study
this task, we construct MMCV, a large-scale
dataset comprising 15k multi-hop claims paired
with multimodal evidence, generated and re-
fined using large language models, with addi-
tional input from human feedback. We show
that MMCV is challenging even for the latest
state-of-the-art multimodal large language mod-
els, especially as the number of reasoning hops
increases. Additionally, we establish a human
performance benchmark on a subset of MMCV.
We hope this dataset and its evaluation task
will encourage future research in multimodal
multi-hop claim verification. Data and code are
available: https://mmcv-dataset.github.io/

1 Introduction

Due to the rapid growth in AI-generated content
(Huang et al., 2024a,b; Zhang et al., 2024; Jin et al.,
2024b), it is difficult for automated fact-checking
systems to keep up with verifying the accuracy of
claims with multimodal evidence. This challenge
is further exacerbated by the recent development of
diffusion models such as DALL-E (Ramesh et al.,
2021) and Stable Diffusion (Rombach et al., 2022),
which can generate realistic images from textual
prompts (Liu et al., 2024b). These powerful tools
could enable attackers to produce misleading in-
formation (Wang and Shu, 2024; Pan et al., 2023c;
Huang et al., 2024c; Gao et al., 2024; Jin et al.,
2024a) at a low cost. Additionally, these claims
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Image Evidence:

Claim: The driver seen signing autographs outside had a 
significant points total during a specific race in 2001 while 

competing for a well-known team in stock car racing.

Table Evidence:

Label: Support

Figure 1: An illustration of a 2-hop claim from MMCV.
To correctly verify this claim, the system must reason
over both the image evidence and the table evidence.

often require multi-hop reasoning, where a set of
connected evidence pieces leads to the final verdict
of a claim (Yang et al., 2018). As a result, there
is a need for automated tools to assist human fact-
checkers in evaluating the veracity of multimodal
multi-hop claims.

Claim verification, which involves assessing the
veracity of an input claim against a collection of
evidence, is a vital tool in combating the spread of
misinformation (Thorne and Vlachos, 2018; Guo
et al., 2022; Jin et al., 2022, 2023; Yang et al.,
2022). However, verifying multi-hop multimodal
claims introduces new challenges in both dataset
construction and effective modeling. Unlike single-
hop claims, which require only straightforward
one-step reasoning, multi-hop claims require mul-
tiple reasoning steps to reach a final verdict. Fur-
thermore, the inclusion of multimodal evidence re-
quires models to understand and integrate informa-
tion across various modalities, such as text, images,
and tables, making it more complex to comprehend
and extract relevant information. For instance, to
verify the claim shown in Figure 1, a system must
understand the semantic content of the image, in-
tegrate all relevant information from the table evi-
dence, and apply multi-step reasoning to arrive at

https://mmcv-dataset.github.io/


Dataset Multimodal Multi-hop Evidence Retrieval Annotated Evidence Annotated Label

FEVER (Thorne et al., 2018) ✗ ✗ ✓ ✓ ✓

Liar (Wang, 2017) ✗ ✗ ✗ ✓ ✓

FakeNewsNet (Shu et al., 2020) ✓ ✗ ✓ ✗ ✓

NewsCLIPpings (Luo et al., 2021) ✓ ✗ ✓ ✗ ✓

Factify (Mishra et al., 2022) ✓ ✗ ✗ ✗ ✗

COSMOS (Aneja et al., 2021) ✓ ✗ ✓ ✗ ✓

InfoSurgeon (Fung et al., 2021) ✓ ✗ ✓ ✗ ✓

Fauxtography (Zlatkova et al., 2019) ✓ ✗ ✗ ✗ ✓

HoVer (Jiang et al., 2020) ✗ ✓ ✓ ✓ ✓

Mocheg (Yao et al., 2023) ✓ ✗ ✓ ✓ ✓

MMCV (Ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison between MMCV and other claim verification datasets. The columns indicate whether
the dataset requires multimodal content, multi-hop reasoning, explanation generation, and whether it contains
annotated evidence.

the final conclusion.
In this paper, we introduce the task of multi-

hop multimodal claim verification to evaluate the
veracity of multi-hop claims against multimodal
evidence. To study this task, we construct Multi-
hop Multimodal Claim-Verification (MMCV), a
dataset of 15K multi-hop claims paired with mul-
timodal evidence that either SUPPORT or RE-
FUTE each claim. To create the dataset, we de-
velop a novel pipeline that uses large language mod-
els (LMMs) for data annotation, supported by hu-
man feedback. This method significantly reduces
the workload on human annotators and cuts costs,
while ensuring high quality and factual accuracy
of the dataset. Our pipeline first uses LLMs to re-
formulate multi-hop multimodal question-answer
pairs into atomic multi-hop claims and generate a
set of candidate claims. These candidate claims
are then modified to include additional hops and
refined for fluency and clarity according to a set
of annotation guidelines. To ensure the accuracy
of the claims, we use a Retrieval-Augmented Gen-
eration (RAG)-based validation method to verify
their validity. Finally, we ask a group of human an-
notators to score the claims based on their fluency,
correctness, and clearness, and manually rewrite
the claims that are below a certain threshold.

We establish performance baselines on MMCV
using three state-of-the-art multimodal large lan-
guage models (MLLMs) and highlight their lim-
itations in verifying complex multimodal claims.
We further demonstrate the challenges posed by
the dataset, especially as the number of reasoning
hops increases, by illustrating the constrained per-
formance of various prompt techniques designed to

enhance MLLMs’ reasoning capabilities, including
chain-of-thought, self-ask, and symbolic-guided
reasoning. Additionally, we establish a human per-
formance benchmark on a subset of MMCV.

Overall, we introduce a challenging multi-hop
multimodal claim verification dataset that includes
claims with up to 4 reasoning hops. These complex
claims often consist of multiple sentences linked
by coreference and demand evidence from various
modalities, such as text, images, and tables. Table 1
provides a comparison between MMCV and exist-
ing popular claim verification datasets. While cur-
rent datasets typically focus on either multimodal
claims or multi-hop textual claims, none of them
incorporate multi-hop multimodal claims that ne-
cessitate cross-modal reasoning. We hope that the
introduction of MMCV and its corresponding eval-
uation task will inspire further research in complex
multi-hop multimodal reasoning for claim verifica-
tion. In summary, our contributions include:

• We introduce and formalize the multi-hop mul-
timodal claim verification task.

• We develop a novel pipeline that leverages
LLMs for data annotation, enhanced by hu-
man feedback, to construct a benchmark
dataset for multi-hop multimodal claim ver-
ification. This method significantly lowers
the cost and labor required to produce a large-
scale dataset.

• We establish baseline performance on this task
using MLLMs and human evaluation. Our
analysis shows that this is a non-trivial task,



with several challenges that remain to be ad-
dressed in future work.

2 Background

Multimodal Claim Verification. Previous re-
search on claim verification has primarily focused
on textual data. However, with the growing
recognition that misinformation often appears
across multiple modalities and that multimodal
misinformation is perceived as more credible
and spreads faster than text-only misinformation,
recent efforts have shifted toward verifying mul-
timodal claims (Akhtar et al., 2023). As a result,
several multimodal claim verification datasets have
been proposed including FakeNewsNet (Shu et al.,
2020), COSMOS (Aneja et al., 2021), InfoSurgeon
(Fung et al., 2021), Factify (Mishra et al., 2022),
Fauxtography (Zlatkova et al., 2019), and Mocheg
(Yao et al., 2023). However, to the best of our
knowledge, there are no existing datasets for
multi-hop multimodal claim verification, which
challenges the system’s reasoning capability by
requiring it to integrate and interpret multiple
pieces of evidence from different modalities.

Multi-hop Reasoning. Verifying complex claims
often requires multi-step (multi-hop) reasoning
(Mavi et al., 2022), which requires combining
information from multiple pieces of evidence to
predict the veracity of a claim. Many recently
proposed datasets are created to challenge a
model’s ability to reason across multiple sentences
or documents. These include MultiRC (Khashabi
et al., 2018), QAngaroo (Welbl et al., 2018),
ComplexWebQuestion (Talmor and Berant, 2018),
HotpotQA (Yang et al., 2018), and HoVer (Jiang
et al., 2020). In contrast to these datasets, MMCV
incorporates context from various modalities,
such as images and tables, further challenging
the system’s ability to understand and integrate
evidence from different sources.

Construct Synthetic Dataset with LLMs. The
emergence of advanced large language models has
sparked growing interest in automating the data
annotation process using LLMs (Tan et al., 2024;
Wu et al., 2024; Bao et al., 2024; Chen et al.,
2024), driven by their advanced capabilities, in-
cluding in-context learning (Dong et al., 2022)
and learning from human feedback (Ouyang et al.,
2022). (Wang et al., 2023) propose an explain-

then-generate pipeline using LLMs for iterative
data synthesis, while (Pace et al., 2024) combine
the Best-of-N and Worst-of-N sampling strategies
to introduce the West-of-N approach. With this
same objective, the multi-hop claims in MMCV
are created and refined by LLMs using human feed-
back, following guidelines and rules specifically
designed to enforce a multi-hop structure within
each claim.

3 The MMCV dataset

The main goal of our work is to compile a diverse
and extensive collection of multi-hop claims that
require joint reasoning across evidence from dif-
ferent modalities, such as text, tables, and images,
for verification. One approach to achieving this is
to transform multimodal question-answering pairs
into atomic claims and refine them to incorporate
additional reasoning steps, making them more nat-
ural. However, there are two major challenges
in creating such a dataset: first, building a large-
scale dataset is labor-intensive and costly; second,
in our pilot studies, we found that simply provid-
ing instructions to crowd workers and asking them
to rewrite multi-hop claims is counterproductive,
as it is difficult to control quality and challenging
for workers to create meaningful multi-hop claims.
Instead, we develop a pipeline that leverages the
emerging capabilities of large language models to
generate text and learn from feedback, with human
input to ensure the quality of the final output.

In this approach, LLMs handle the mundane task
of rewriting claims consistently according to the
instructions, while human effort is significantly re-
duced to quality control of the final claims based
on a set of guidelines. Figure 2 shows the overall
workflow of our data construction pipeline, which
contains three stages: LLM-Based Claim Gener-
ation (§3.1), LLM-Generated Claim Refinement
(§3.2) and Claim Annotation by Human (§3.3).

3.1 Claim Generation

In this stage, we leverage the in-context learning
capabilities of large language models to transform
question-answer pairs from the MultimodalQA
dataset (Talmor et al., 2021) into verifiable claims.
To minimize the impact of in-context examples
on the quality of the generated claims, we care-
fully craft a pool of 20 in-context examples and
randomly select 3 for use during execution. The
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Claim

In seven seasons with the 
Angels, Kennedy hit … with 
51 home runs and 353 RBI.

Q: Did Adam Kennedy or the player with a 
red stripe on his pants, red logo on his shirt, 
and a blue helmet have a lower RBI in the 
Anaheim Angels' 2004 season?
A: Adam Kennedy

He holds Angels franchise 
records for …, runs batted 
in (RBI) (1,292), …

Adam Kennedy had fewer RBIs during the 
Anaheim Angels' 2004 season than the 
player wearing a red stripe on his pants, a 
red logo on his shirt, and a blue helmet.

Refined
Claim

Key
Entities

Large 
Language

Model

Detecting 
Factual Errors

Prompt
Diversifier

"Adam Kennedy had fewer RBIs during the 
Anaheim Angels' 2004 season than the 
player wearing a red stripe on his pants, a 
red logo on his shirt, and a blue helmet.

● Fluency: 4
● Correctness: 3
● Clearness: 3

Claim Rewriting:

isBelow?

Claim Negation:

Supported: "Adam Kennedy had fewer 
RBIs during the Anaheim Angels' 2004 
season than the player wearing a red stripe 
on his pants, a red logo on his shirt, and a 
blue helmet.

Not Supported: Adam Kennedy had more 
RBIs during the Anaheim Angels' 2006 
season than the player wearing a red stripe 
on his pants, a red logo on his shirt, and a 
blue helmet.

Figure 2: Overview of data collection flow chart for MMCV. In the first stage, we re-formulate question-answer pairs
from MultimodalQA to generate candidate claims. In the second stage, we modify and refine the candidate claims,
and apply a Retrieval-Augmented Generation (RAG)-based method to verify their correctness. In the final stage, we
ask human annotators to rank the candidate claims to select the best one and label the final claims accordingly.

claims are formulated to ensure that no information
is omitted from the original QA pairs and no new
information is introduced. Since the claims are
derived directly from the question and the correct
answer, they are automatically labeled as SUP-
PORT. The prompt template for claim generation
is listed in Appendix A.2.

3.2 Claim Refinement

After generating the initial claims from the
question-answer pairs, we modify and refine them
to ensure they are more naturally phrased and more
accurately supported by the facts. Next, we review
the claims for any factual errors that may have
been introduced during the modification process
and make corrections as needed.
Claim Modification and Refinement. To intro-
duce additional reasoning steps to the claim can-
didate, we employ a modify-then-refine approach
that iteratively enhances the quality of the modi-
fied claim candidate based on feedback from LLMs
(Pan et al., 2023a). Specifically, we begin by iden-
tifying the Wikipedia entities mentioned in the an-
swers from the question-answer pairs. If there is
only one Wikipedia entity in the answer, we leave
the claim candidate unchanged. However, if there
are multiple Wikipedia entities, we use the sum-

maries of their respective Wikipedia articles as con-
text and instruct the LLMs to modify the claim in
such a way that it incorporates this contextual in-
formation to replace the entity, ensuring that the
entity’s name does not appear directly in the claim.

To help LLMs understand the modification task,
we provide them with 3-5 randomly selected in-
context examples from a pool of hand-crafted ex-
amples. After modifying the claim, we obtain feed-
back from LLMs regarding the fluency, correctness,
and clarity of the modified claim. The criteria used
for this assessment are listed in the Appendix A.2.
If the feedback suggests further improvement, the
claim is sent back to the modification step, incorpo-
rating the LLMs’ feedback until a certain iteration
threshold is reached. If the modified claim still
does not pass the quality check, it is marked for
manual review and revision by human annotators.

RAG-based Truthfulness Validation. Since we
introduce additional contextual information from
Wikipedia when modifying the claims, there is
a risk that LLMs might hallucinate and produce
outputs that are not faithful to the input context.
To eliminate potential factual errors, we use a
retrieval-augmented generation (RAG) (Lewis
et al., 2020)-based pipeline to retrieve the full
Wikipedia articles of the relevant entities and



validate the factual accuracy of the modified claims.
To mitigate the impact of prompt sensitivity on the
model’s output (Lu et al., 2022; Sclar et al., 2023),
we diversify the prompts by randomly changing
their format for each verification step. For instance,
instead of consistently using Is it true
that {claim}?, the prompt is randomly
chosen from a set of equivalent alternatives, such
as Verify the following statement:
{claim} or What evidence supports
the claim that {claim}?

3.3 Claim Annotation

At this stage, we have obtained claims that have
been modified and refined by LLMs and factually
validated by RAG-based pipelines. Next, we use
LLMs to generate negated claims by applying a set
of specific negation rules. We employ three distinct
methods for generating these negated claims. For
instance, given the claim, “Since its construction
in 1889, the Eiffel Tower in Paris attracts millions
of visitors annually.”, the results after applying the
negation rules are as follows:

Negation

▷ Word substitution: The Eiffel Tower in Paris houses
millions of residents annually.
▷ Entity substitution: The Colosseum in Paris attracts
millions of visitors annually.
▷ Temporal mutation: Ever since its construction in
2050, the Eiffel Tower has been Paris’s top tourist site.

Next, a group of human annotators is tasked with
evaluating the claims based on three dimensions:
fluency, correctness, and clarity, scoring each di-
mension on a scale of 1 to 5. Fluency assesses
how naturally the claim reads, as outputs generated
by language models can sometimes sound artificial.
Correctness evaluates whether the claim is factually
accurate based on the evidence. Clarity determines
if the claim is easily understood, as entity substitu-
tion might make it difficult to comprehend. Once
the claims are scored, the average of the fluency,
correctness, and clarity scores is calculated to de-
termine the final score for each claim. If a claim’s
final score falls below a predetermined threshold,
it is flagged and sent back to the annotators for
manual revision. Detailed annotation guidelines
are listed in Appendix A.3.

4 Dataset Analysis

Dataset Statistics. MMCV contains 15,569
multi-hop multimodal claims, with their statistics

Data 1-hop 2-hop 3-hop 4-hop

# Claims 5,884 8,485 804 396

Ave. # Tokens in Claim 21.7 25.32 25.44 26.17

Max. # Tokens in Claim 48 58 51 63

# Text Evidence 2,590 7,323 1,142 760

# Image Evidence 1,979 2,948 634 512

# Table Evidence 1,315 6,699 636 312

# SUPPORT Labels 2,824 4,030 349 158

# REFUTE Labels 3,060 4,455 455 238

Table 2: Dataset Statistics of MMCV.

detailed in Table 2. The number of hops is
determined by the count of multimodal evidence
associated with each claim. The dataset includes a
balanced distribution of SUPPORT and REFUTE
claims. Specifically, there are 5,884 1-hop claims
with an average of 21.7 tokens per claim; 8,485
2-hop claims averaging 25.32 tokens per claim;
804 3-hop claims with an average of 25.44 tokens
per claim; and 396 4-hop claims averaging 26.17
tokens per claim. An example from the dataset is
provided in Appendix A.1.

Multi-hop Reasoning Types. We provide
examples of each reasoning type in Table 6.
Most 1-hop and 2-hop claims require at least one
supporting fact from either image or table evidence
for verification. In contrast, the majority of 3-hop
and 4-hop claims require evidence from all three
modalities. The process of removing a bridge
entity and replacing it with a relative clause or
phrase significantly increases the informational
load of a single hypothesis. As a result, some
3-hop and 4-hop claims are relatively longer and
exhibit complex syntactic and reasoning structures.
Our experimental results also indicate that the
difficulty for models to verify claims escalates as
the hop count increases.

5 Experiments and Results

In this section, we discuss our experiment settings
(§5.1), the experiment results (§5.2), and the error
analysis (§5.3). We begin by formally defining the
MMCV task below.

Task Definition. The formulation of multi-
hop multimodal claim verification is defined as
follows: Given a claim C, and a list of multimodal
evidence E(C), which includes text, images,



1-hop 2-hop 3-hop 4-hop

Retrieval Model P R F1 P R F1 P R F1 P R F1

Closed-book
GPT-4O 76.86 72.94 71.79 67.96 63.30 60.66 62.88 58.89 56.17 67.93 62.39 61.20
GEMINI 75.67 71.44 70.15 69.10 64.19 61.73 66.74 61.10 58.44 63.78 59.90 58.69
LLAVA 64.18 63.78 63.57 64.06 63.93 63.87 66.78 66.81 66.76 64.64 64.84 64.64

Open-book
GPT-4O 76.95 72.95 71.78 68.03 63.24 60.53 62.67 58.78 56.08 67.75 62.46 61.35
GEMINI 79.58 79.25 79.20 72.38 71.85 71.66 66.37 65.90 65.86 67.21 66.86 66.97
LLAVA 62.86 59.68 57.21 64.17 62.48 61.50 65.47 64.64 63.76 66.50 66.76 66.42

Table 3: We report the Precision, Recall, and F1 scores of various MLLMs on MMCV for zero-shot multimodal
claim verification. In the closed-book setting, the model verifies the claim without access to any external knowledge
sources. In the open-book setting, the model is provided with a set of gold evidence. The best-performing model for
each hop is highlighted in Green for both settings.

and tables, the system must reason over all the
evidence and predict the label of the claim as either
SUPPORT or REFUTE.

5.1 Experiment Settings

As there are no existing models specifically de-
signed for multi-hop multimodal supervised claim
verification, we conduct our experiments using
MLLMs. Moreover, previous studies in textual
claim verification and multimodal claim verifica-
tion indicate that LLMs and MLLMs can signifi-
cantly enhance task performance compared to tra-
ditional supervised approaches (Pan et al., 2023b;
Wang and Shu, 2023; Li et al., 2024; Geng et al.,
2024b). Furthermore, supervised methods often
require extensive annotated corpora, which are dif-
ficult to acquire and limit domain transferability, as
training data typically covers only a single domain.
Zero-shot Claim Verification. We establish
performance baselines for zero-shot multimodal
claim verification using various MLLMs under two
settings. In the closed-book setting, the model does
not retrieve information from external knowledge
sources and must rely on its parametric (internal)
knowledge to verify the claim. In the open-book
setting, the model is provided with a set of gold
evidence. Specifically, we use the prompt from
(Geng et al., 2024b), which extracts the models’
predictions, explanations, and confidence levels.
The prompt is listed in Appendix A.2. We use
macro precision, recall, and F-1 score to evaluate
the model performance.

MLLM. We utilize two state-of-the-art MLLMs:
GPT-4o (Achiam et al., 2023) and Gemini 1.5
Flash (Team et al., 2023). Additionally, we

evaluate the performance of an open-source
MLLM, LLaVA-V1.5-7B (Liu et al., 2024a), on
MMCV. The temperature is set to 0.0, and the
maximum number of tokens is set to 5000.

Prompts for Enhanced Reasoning In ad-
dition to the prompt mentioned above, we
conduct experiments using specialized prompting
techniques aimed at eliciting reasoning from
LLMs, such as Chain-of-Thought (Wei et al.,
2022) and Self-Ask (Press et al., 2023). We
also test symbolic-guided reasoning prompts
like ProgramFC (Pan et al., 2023b) and Visual
Programming (Gupta and Kembhavi, 2023). To
minimize the overall cost of the experiments, we
randomly select 100 examples from each hop of
the MMCV dataset for testing. The experiments
are conducted using open-book setting.

Human Performance To benchmark hu-
man performance on our dataset, we used the
same randomly selected examples employed in
the enhanced reasoning prompt experiments. We
recruited four experts in automated fact-checking
research to classify multihop claims from MMCV
based on the provided evidence. The SMART
(Chew et al., 2019) framework 1 was used to deploy
the annotation task, and human performance was
evaluated using the macro F-1 score.

5.2 Experiment Results

Main Results. We report the comprehensive
results of the three MLLMs on MMCV in Table
3, highlighting the best-performing models for
each hop under both open-book and closed-book

1https://github.com/RTIInternational/SMART

https://github.com/RTIInternational/SMART
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Figure 3: The left figure shows the confidence score distribution of GPT4-o, Gemini, and LLaVA on MMCV
under both open-book and closed-book settings, categorized by the number of hops. The right figure shows their
calibration curves.

settings. Overall, Gemini 1.5 outperforms others in
the open-book setting with an average F-1 of 70.92,
while LLaVA achieves the highest performance
in the closed-book setting with an average F-1 of
66.77. This is surprising, given that LLaVA is a
much smaller model compared to GPT4-o and
Gemini, and therefore possesses less parametric
knowledge. Upon manually analyzing a subset of
100 randomly selected outputs from LLaVA, we
found that the model frequently hallucinates, even
when it predicts the correct label, particularly as
the hop count increases. This is consistent with
its open-book performance, where its accuracy
declines when provided with gold evidence.
Additionally, we observe that GPT4-o performs
slightly better in closed-book settings than in
open-book settings, suggesting a tendency to
hallucinate. In contrast, Gemini’s performance
drops significantly in closed-book settings
compared to open-book, demonstrating its robust-
ness in effectively utilizing provided gold evidence.

Confidence Level Analysis The left panel
of Figure 3 presents the confidence (Geng et al.,
2024a) distributions for all three MLLMs, catego-
rized by the number of hops and divided into 10
intervals. The results show that the majority of the
MLLMs are concentrated in the 90-100 confidence
range, with only a small number exhibiting low
confidence (0-10 range), which occurs solely
in open-book settings. This indicates that the
MLLMs consider the provided gold evidence.

Model Method 1-hop 2-hop 3-hop 4-hop

GEMINI 1.5

CoT 78.52 69.66 67.45 70.24

Self-Ask 75.47 66.58 60.94 70.67

Symbolic 74.89 63.82 54.61 72.36

GPT4-O

CoT 80.43 83.33 71.20 72.99

Self-Ask 77.42 80.12 70.52 75.23

Symbolic 80.56 78.78 68.72 75.67

Table 4: Results of Gemini and GPT4-o on 100 ran-
domly sampled claims for each hop using three types
of reasoning prompts. Model performance is evaluated
using F-1 score.

The right panel of Figure 3 displays the
calibration curves, illustrating the relationship
between the models’ confidence levels and their
actual classification accuracy. These curves reveal
a positive correlation between confidence and ac-
curacy for 1-hop and 2-hop claims, as exemplified
by the red line (GPT-4-o on 2-hop), the teal line
(LLaVA on 1-hop), and the purple line (Gemini on
1-hop). In contrast, the downward curves, mostly
observed in 3-hop and 4-hop claims, suggest
that the models tend to be overconfident when
classifying more complex claims. Additionally, the
results indicate that open-book settings generally
have better-calibrated confidence scores than
closed-book settings, further suggesting that the
models exhibit overconfidence when not provided
with gold evidence.



Annotator # Hops

1-hop 2-hop 3-hop 4-hop

Annotator 1 83.33 86.20 78.42 79.82
Annotator 2 82.46 88.29 79.45 82.16
Annotator 3 80.60 90.53 80.62 85.24
Annotator 4 79.64 86.50 82.32 83.87

Table 5: Results of human performance on 200 random
samples. Performance are measured by F-1 score.

Reasoning Prompt Results. Table 4 reports the
performance of Gemini and GPT4-o on the ran-
domly sampled subset of MMCV under open-book
settings using various prompts that elicit LLMs’
reasoning abilities. For symbolic approach, we
ask LLMs to first generate a Python-like program
that decomposes the mutli-hop claim into a set of
function calls that describe the reasoning steps
required to verify the claim, and use the symbolic
information provided by the generated program
to elicit better step-by-step reasoning from the
model. We observe that GPT-4-o gains more
from the enhanced reasoning prompt compared
to Gemini, achieving a higher average F1 score
of 75.93 in symbolic guided reasoning, whereas
Gemini attains an average F1 score of 66.42 for the
same task. Additionaly, we found that Symbolic
approach are more effective on 4-hop claims,
having a higher F1 score than CoT and self-ask.
However, this observation is different on simpler
2-hop and 3-hop claims, where CoT appears to be
more effective.

Human Performance Results To establish human
performance on our dataset, we randomly sampled
200 examples, with 50 examples from each hop
from MMCV. We recruited four annotators to per-
form claim verification given the gold evidence.
We trained our annotators on the task by providing
them with guidelines and sample annotations to en-
sure consistency and accuracy in their evaluations.
After training, the annotators independently veri-
fied each claim using the provided gold evidence,
allowing us to assess the human baseline perfor-
mance on the dataset. Table 5 reports the results
from the human annotators. We observe that the
human annotators achieve very high performance
in verifying the claims across all 4 hops. The hu-
man performance is 23.3% and 27.3% higher than
the best-performing MLLMs on 3-hop and 4-hop

claims respectively. This suggests that although
MLLMs perform relatively well, there is still room
for improvement to match human performance.

5.3 Error Analysis

Figure 5, 6, and 7 shows the error analysis of the
false positive examples from GPT4-o, Gemini, and
LLaVA respectively. We observe that visual mis-
interpretation is a major issue, with the system
often misidentifying or miscontextualizing image
elements. This problem is especially pronounced in
examples involving sports logos and movie posters,
highlighting the need for improvements in the vi-
sual processing component.

Another notable issue is the system’s handling
of temporal and factual information. Errors related
to player career timelines and historical events re-
veal shortcomings in temporal reasoning and the
integration of world knowledge. The system’s con-
fidence levels, often between 80% and 100% for
incorrect predictions, suggest a miscalibration in
certainty estimation. This overconfidence in erro-
neous conclusions highlights the need for a more
refined approach to confidence scoring.

Last but not least, examples from higher hop cat-
egories reveal significant weaknesses in handling
complex reasoning tasks. The system often strug-
gles with multi-step logical inferences, frequently
failing to coherently link disparate pieces of infor-
mation. This limitation is especially problematic
for claims that require advanced analysis or the
cross-referencing of multiple facts.

6 Conclusion

In this paper, we introduce MMCV, a multi-hop
multimodal claim verification dataset that requires
models to aggregate information from up to four
multimodal evidence to verify a claim. To create
this large-scale dataset, we developed a novel data
collection pipeline that leverages the capabilities
of LLMs combined with human feedback. Specif-
ically, our approach includes a module that itera-
tively refines modified claims using feedback from
a judge LLM based on a set of predefined crite-
ria, as well as an actuality validation module that
employs RAG to ensure the factual accuracy of
the claims. Our results show that state-of-the-art
MLLMs struggle to verify more complex claims
as the number of reasoning hops increases, often
displaying overconfidence in their predictions. We
also present findings from experiments utilizing



prompts tailored to enhance the reasoning abilities
of MLLMs, alongside human performance bench-
marks for comparison. Additionally, we categorize
and provide a detailed error analysis of false posi-
tive results from each model. We hope that MMCV
will inspire the development of models capable of
conducting complex, multi-hop reasoning in the
challenging task of multimodal claim verification.

7 Limitations

We identify two main limitations of MMCV. First,
the construction of MMCV depends on in-context
learning coupled with self-refinement to convert a
natural language question-answer pair into a multi-
hop claim. While this method has proven to be
effective, it may face difficulties when dealing
with questions with intricate grammar structures
and logical structures. This arises from the diffi-
culty in conveying complex grammatical rules to
the language model through a limited number of
demonstrations within a constrained context size.
Second, our aggregation method purely relies on
LLMs themselves, which could introduce potential
hallucination problems. On the other hand, by us-
ing a more robust logic solver could help with the
hallucination issues, but there would be a tradeoff
between the applicability and the robustness of the
model.

8 Ethical Statement

Biases. We acknowledge the possibility of biases
existing within the data used for training the lan-
guage models, as well as in certain factuality as-
sessments. Unfortunately, these factors are beyond
our control.
Intended Use and Misuse Potential. Our models
have the potential to verify complex multimodal
claims. However, it is essential to recognize that
they may also be susceptible to misuse by mali-
cious individuals. Therefore, we strongly urge re-
searchers to approach their utilization with caution
and prudence.
Environmental Impact. We want to highlight
the environmental impact of using large language
models, which demand substantial computational
costs and rely on GPUs/TPUs for training, which
contributes to global warming. However, it is worth
noting that our approach does not train such models
from scratch. Instead, we use few-shot in-context
learning. Nevertheless, the large language models
we used in this paper are likely running on GPU(s).
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A Appendix

A.1 Dataset Example

Here is an example of dataset schema from MMCV:
Example

claim: Stoke City, a club that was
part of the top-tier league before
1992, was promoted to the highest
level of English football in 2018.
wiki_context: The Premier League
is the highest level of the English
football league system. Contested
by 20 clubs, it operates on a
system of promotion and relegation
with the English Football League
(EFL). Seasons usually run from
August to May, with each team
playing 38 matches: two against
each other, one home and one away.
Most games are played on weekend
afternoons, with occasional weekday
evening fixtures.
text_evidence: [
"f369cee1ca92368c8b1ea564c5e41fc1"
]
image_evidence: []
table_evidence: [
"c120efadd518b5f32c11d40b456c8570"
]
label: SUPPORT

Additional examples of 1-hop, 2-hop, 3-hop, and
4-hop claims are listed in Table 6

A.2 Experiment Prompt

Claim Verification Prompt. To test MLLMs’
claim verification performance under zero-shot set-
tings, we follow (Geng et al., 2024b) and use the
following prompt.

Prompt

Given a claim and evidence (which
can be text, table, or an image),
determine whether the claim is
SUPPORT or REFUTE by the evidence.

Use the following format to provide
your answer:
Prediction: [True or False]
Explanation: [put your evidence
and step-by-step reasoning here]
Confidence Level: [please show the
percentage]

Note: The confidence level
indicates the degree of certainty
you have about your answer and
is represented as a percentage.
For instance, if your confidence
level is 80%, it means you are 80%
certain that your answer is correct
and there is a 20% chance that it
may be incorrect.

Claim Generation Prompt. We use the following
prompt to convert multimodal QA pairs into claim
candidates:

Prompt

You are an expert in converting
question-answers into claims.
For example: Question: Telos was
an album by a band who formed in
what city? Answer: Indianapolis.
Claim: Telos was an album by a
band formed in Indianapolis.

Convert the question-answer into
claim. Return only the claim and
nothing else.

Claim Modification Prompt. We use the follow-
ing prompt to modify the claim candidates:

Prompt

Generate a multi-hop specific
claim based on the given general
claim and Wikipedia context. The
specific claim should:

Incorporate information from
Wikipedia context.
Provided context should always be
factually correct.
Obscure key information by:
a) Replacing one or two central
entities with related fact using
the Wikipedia context.
b) Alluding to critical details
without explicitly stating them.
Claim should be short and concise.
For example:

- General Claim: The Mona Lisa
is a famous painting by Leonardo da
Vinci.
- Wikipedia Context: The Mona Lisa
is a half-length portrait painting
by Italian artist Leonardo da
Vinci. Considered an archetypal
masterpiece of the Italian
Renaissance, it has been described
as ẗhe best known, the most
visited, the most written about,
the most sung about, the most
parodied work of art in the world.̈
The painting’s novel qualities
include the subject’s enigmatic
expression, the monumentality
of the composition, the subtle
modelling of forms, and the
atmospheric illusionism. It is
housed in the Louvre Museum in
Paris, where it was first put on
display in 1797.
- Specific Claim: The Mona Lisa is
a half-length portrait painting
created by Italian artist who
is considered as archetypal
masterpiece of the Italian
Renaissance.



Claim Refinement Prompt. We use the following
prompt to refine the claim candidates:

Prompt

You are tasked with improving a
claim focusing on three key areas:
Fluency, Correctness, and Clearness.
Your goal is to enhance the text
while maintaining its original
meaning and intent.

Improvement Criteria:
Fluency:
1. Review the text for grammar,
syntax, and punctuation errors.
2. Rephrase any awkward or
unnatural sentences to make the
text flow more smoothly.
3. Ensure that the text reads
naturally and is easy to follow.

Correctness:
1. Verify the factual accuracy of
the content and correct any errors.
2. Ensure that the text adheres to
the prompt’s instructions.
3. Clarify any ambiguities and
correct any inconsistencies in the
information presented.

Clearness:
1. Simplify complex sentences or
ideas to make the text easier to
understand.
2. Improve the organization of
ideas to enhance readability.
3. Ensure that the message is
conveyed clearly and effectively,
eliminating any confusion or
ambiguity.

Final Output:
Once you have made the necessary
improvements, provide the revised
text. Ensure that the improved
version is more fluent, accurate,
and clear than the original while
preserving the original meaning and
intent.
Example Improvement:
Original Claim: "The results of
the survey was very positive, with
many respondents saying that they
would recommend the service to
others, however, some were also
mentioned issues with the customer
support."
Improved Claim: "The survey
results were overwhelmingly
positive, with many respondents
stating they would recommend the
service to others. However, some
also noted issues with customer
support.

A.3 Annotation Guidelines
We ask our annotators to score the quality of the
claim from three aspects: fluency, correctness, and
clearness. Here is the detailed guidelines provided
to the human annotators.

Guidelines

▷ Scoring Criteria:
Fluency: Rate on a scale of 1-4.
Correctness: Rate on a scale of 1-3.
Clearness Rate on a scale of 1-3.

▷ Fluency (1-4):
4: Excellent - Reads naturally, no awkward
phrasing.
3: Good - Mostly smooth, minor phrasing
issues.
2: Fair - Several awkward phrases or
constructions.
1: Poor - Difficult to read, very unnatural
phrasing.

▷ Correctness (1-3):
3: Fully correct - All information is accurate.
2: Partially correct - Some information is
accurate, some errors.
1: Incorrect - Significant factual errors or
misrepresentations.

▷ Clearness (1-3):
3: Very clear - Easy to understand, no
ambiguity.
2: Somewhat clear - Some parts may be
confusing or ambiguous.
1: Unclear - Difficult to understand the
intended meaning.

A.4 Crowd Worker Interface
We use SMART (Chew et al., 2019), an open-
source project designed to help data scientists and
research teams efficiently build labeled training
datasets for supervised machine learning tasks. Fig-
ure 4 shows an example of the worker interface
during scoring procedure.



#H Claim Evidence

1 Claim: Marisa Coughlan played the role
of Chante Lefort on television in 1996.

2 Claim: The driver seen signing auto-
graphs outside had a significant points to-
tal during a specific race in 2001 while
competing for a well-known team in stock
car racing.

3 Claim: The Green Bay Packers were one
of the two teams that played in the first
Super Bowl and also faced the New York
Giants at MetLife Stadium during the 2013
regular season.

Doc A: The first AFL-NFL World Championship Game in
professional American football, known retroactively as Super
Bowl I and ... ...
Doc B: The National Football League (NFL) champion Green
Bay Packers defeated the American Football League (AFL)
champion Kansas City Chiefs ... ...
Table: Not Included Here

4 Claim: The team that was promoted to
the Premier League in the 2018-19 season
received a higher accolade in the Third
Division PFA Team of the Year during the
1980s than a club renowned for its West
London rivalries.

Doc A: Manchester City are the defending champions.
Wolverhampton Wanderers, Cardiff City and Fulham join
as the promoted clubs from the 2017–18 EFL Championship.
... ...
Doc B: ... They will replace West Bromwich Albion, Swansea
City and Stoke City who were relegated to the 2018–19 EFL
Championship. ...
Table: Not Included Here
Image: Not Included Here

Table 6: Examples of 1-hop, 2-hop, 3-hop and 4-hop claims from MMCV.

Figure 4: UI for human annotators.



Predicted Label: SUPPORT
Explanation: The image shows a 
water tower in Durham, North 
Carolina, which appears to be 
situated away from any visible 
building chimneys. The
… tower is located far from any 
building's chimney.
Confidence Level: 85%

Claim: Durham, North Carolina, 
features a water tower located far 
from any building's chimney.
True Label: REFUTE.
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Claim: Jakub Janda, a prominent 
figure in ski jumping, represents a 
country recognized by its flag that 
does not include a blue triangle.
True Label: REFUTE

Predicted Label: SUPPORT
Explanation: Claudio Pizarro was 
born in October 1978, which makes 
him 45 years old as of October 
2023. If the unnamed Peruvian 
footballer is not
… footballer, the claim that Pizarro 
is older is supported.
Confidence Level: 85%

Claim: The team that a player 
transferred from to Real Betis in 
the 2018–19 season, which 
features a flagpole in their logo, is 
not Real Sociedad.
True Label: REFUTE

Claim: The opponent in the regular 
season schedule of the 1991 
Chicago Bears, known for their 
human logo, was a different team 
from which Roman Reigns had 
long careers in the NFL.
True Label: REFUTE.

Predicted Label: SUPPORT
Explanation: China does indeed 
host numerous kite festivals 
throughout the year, including the 
Weifang International Kite Festival, 
which is a … like Latin America, 
Southeast Asia, and Africa. 
Confidence Level: 95%

Predicted Label: SUPPORT
Explanation: The image shows a 
CASA C-212 Aviocar aircraft, which 
is a turboprop aircraft. Turboprop 
aircraft are powered by propellers.
Confidence Level: 95% 

Figure 5: Error Analysis: Gemini

Predicted Label: SUPPORT
Explanation: Extensive research 
on Scottish football databases and 
player profiles reveals no record of 
a player named Mark Connolly … 
It's highly unlikely an unknown 
team would have achieved a 
significant victory over them.
Confidence Level: 95%

Claim: The background of the 
American legal drama series 
created by David E. Kelley is clear, 
especially concerning its 
exploration of legal ethics versus
personal morality, which aimed to 
reinforce a more romanticized 
depiction of the legal system.
True Label: REFUTE. 
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Claim: Rochdale finished higher in 
the final league table of the 
1994–95 season compared to the 
team known for its tree emblem, 
which has a history of competing in 
lower divisions.
True Label: REFUTE

Predicted Label: SUPPORT
Explanation: 
Confidence Level: 100%

Claim: In the film directed by a 
British filmmaker unknown for his
collaboration with Walt Disney 
Studios, a Jamaican actor 
infamous for his
role in a drama appears alongside 
two others in a car.
True Label: REFUTE.

Claim: The Argentine Naval 
Prefecture operates CASA C-212 
Aviocar aircraft,
which are equipped with propellers.
True Label: REFUTE.

Predicted Label: SUPPORT
Explanation: Chinese is widely 
spoken in Hong Kong: Cantonese, 
a variety of... is the primary 
language for 99.87% of the 
population in Northern Ireland, 
which is factually correct.
Confidence Level: 99%

Predicted Label: SUPPORT
Explanation: FA Cup Match: 
Wolverhampton Wanderers did 
indeed play … finished second in 
the Championship, the second tier 
of English football, securing 
automatic promotion.
Confidence Level: 95%

Figure 6: Error Analysis: GPT4-o
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Claim: The Lake Superior State 
Lakers men's ice hockey team 
features a star in its logo.
True Label: REFUTE

Predicted Label: SUPPORT
Explanation: The Lake Superior 
State Lakers … The team's logo 
features a star, which is a 
common symbol in college sports. 
… …Therefore, it is reasonable to 
assume that the team's logo 
features a star.
Confidence Level: 90%

Claim: The poster for the new 
Wizard of Oz movie features five 
characters.
True Label: REFUTE

Predicted Label: SUPPORT
Explanation: The poster for the 
new Wizard of Oz movie features 
five characters, which is evident 
from the image. …  The poster's 
design and the choice of 
characters indicate that the movie 
is likely to be a faithful … …
Confidence Level: 90%

Claim: Aaron Gorrell is the player 
who transferred to the Catalans 
Dragons during the 2008 season, 
having joined in October 2007, and 
is depicted holding a trophy.
True Label: REFUTE

Predicted Label: SUPPORT
Explanation: Aaron Gorrell is a 
rugby league player who …  … 
There is no evidence to refute this 
claim, and it is supported by the 
fact that Gorrell was a player for 
the Catalans Dragons during the 
2008 season.
Confidence Level: 90%

Claim: The Thüringenliga is one of 
several regions listed under 
"Promotion To" in the Tier 
VII-Landesligas that partially 
extends beyond the country's 
borders and was designated under 
"Promotion to" when the 
"Relegation to" listing was not 
Kreisoberliga.
True Label: REFUTE

Predicted Label: SUPPORT
Explanation: The Thüringenliga is 
indeed one of the regions listed 
under "Promotion To" in the Tier 
VII-Landesligas that partially … 
that it is a regional league that can 
be promoted to higher levels of the 
German football league system.
Confidence Level: 90%

Figure 7: Error Analysis: LLaVA
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