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Abstract

Online health communities (OHCs) provide an essential
platform for patients with similar health conditions to share
experiences and offer moral support. However, many time-
sensitive questions from patients often remain unanswered
due to the multitude of threads and the random nature of
patient visits in OHCs. Traditional recommendation sys-
tems solely based on similarity for recommendations cannot
be directly applied in OHCs. They tend to overlook the
influence of patients’ dynamically changing features (e.g.,
health stages), affecting their ability to provide meaningful
responses to questions. To address this, we propose a novel
recommender system scenario designed for OHCs, which dif-
fers from traditional recommender systems in several ways.
Firstly, it’s challenging to model the social support factors
that form helper-seeker links in OHCs. Secondly, the im-
pact of patients’ historical activities is complex to quantify.
Lastly, ensuring recommended helpers have the requisite ex-
pertise is crucial. To overcome these challenges, we develop
a Monotonically regularlzed diseNTangled Variational Au-
toencoders (MINT) model. This model formulates interac-
tions between seekers and helpers as a dynamic graph, using
encoded historical activities as node features. We also in-
troduce a graph-based disentangle VAE to capture patient
features and a monotonic regularizer to ensure the logical
pairing of seekers and helpers. Our extensive experiments
show the effectiveness of our approach.

1 Introduction

Online health communities (OHCs) have emerged as a
growing platform for patients and their families to ac-
quire knowledge about illnesses, facilitate the exchange
of information and experiences, and connect with indi-
viduals who have undergone similar health challenges
[17]. Unlike general online communities, OHCs can
take diverse forms, including blogs, forums, and so-
cial media platforms , enabling patients to engage
in various forms of asynchronous social communication.
Within OHCs, patients have access to various discus-
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Figure 1: The dynamic activities of patients in OHCs.
Patient A went through more health stages and visited
more threads that would help Patient B and Patient C
answer their questions on corresponding threads.

sion threads (e.g., During Surgery and During Chemo
in Fig. |1y where they can seek advice on illness-related
questions or help others by sharing their own experi-
ences and emotions. However, due to the asynchronous
nature of OHCs and the randomness of patient visits,
there is often a long waiting time for many questions
to be answered. To enhance communication efficiency
and effectiveness within OHCs, it is crucial to develop
a recommender system that can connect patients seek-
ing urgent health-related advice (i.e., solution seekers)
with experienced patients or healthcare providers (i.e.,
problem helpers).

Most existing recommendation algorithms
have made success in modeling collaborative filtering
relationships between users and items. However, recom-
mending appropriate problem helpers to solution seek-
ers requires capturing the affinity between users and
their health stages, as well as their interactions with
visited threads. These aspects go beyond what classical
user-item algorithms can effectively capture. Another
research avenue is primarily focused on recom-
mending friends within social networks. By leveraging
existing social relationships, these approaches frame the
recommendation problem as a link prediction task. For
instance, researchers propose to model the users’
historical interests and build implicit relationships by
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computing the similarity for friendship recommenda-
tions. However, the helper recommendation task in
OHCs cannot be adequately addressed as a simple link
prediction problem, as a more intricate logical rela-
tionship exists between solution seekers and problem
helpers. Specifically, recommended helpers in OHCs
must possess specific experience with the relevant illness
to effectively respond to the queries posed by seekers.
Consequently, the helper recommendation task cannot
be satisfactorily solved solely by the conventional link
prediction problem. A more intricate logical relation-
ship exists, where the suitability of a helper to address
a seeker’s questions depends on their particular experi-
ence. For instance, as depicted in Fig. even though
both patient B and patient C have previously visited
the thread Just Diagnosed before and may appear simi-
lar, patient B can not adequately address the questions
posed by patient C' in the thread To do list for Surgery.

Given the distinctive recommendation scenario in
OHCs, the straightforward adaptation of existing rec-
ommendation algorithms to pair “problem helpers”
with “solution seekers” faces several significant obsta-
cles. 1). Difficulty in modeling the implicit interac-
tion between problem helpers and solution seekers due
to heterogeneous factors. Unlike traditional user-item
recommender systems, the interactions between prob-
lem helpers and solution seekers in OHCs are influenced
by diverse and heterogeneous factors, including histori-
cal activities and experienced health stages. These fac-
tors intricately shape the nature of patient interactions,
making the modeling of social support within OHCs a
complex task. 2). Difficulty in distinguishing the influ-
ence of historical activities in OHCs to comprehensively
characterize patients. Patients tend to have a combina-
tion of static and evolving features, encompassing inher-
ent knowledge about their illness as well as dynamically
acquired knowledge through their interactions with var-
ious threads over time. Properly discerning the im-
pact of historical activities is crucial for comprehensive
patient characterization, as it necessitates considering
both time-invariant and time-varying features. How-
ever, disentangling these features during the modeling
process poses a significant challenge. 8). Difficulties
in ensuring the competence of predicted helpers in ad-
dressing seekers’ questions. In OHCs, relying solely on
similarity measures between patients is inadequate for
accurate seeker-helper recommendations, as there exist
logical seniority orders [23] as Fig. [1| shows. The exist-
ing recommendation algorithms are currently unable to
incorporate such logical seniority in a straightforward
manner. Additionally, employing a simple filter based
on primary patients is suboptimal for an end-to-end sys-
tem, as different patients possess varying levels of exper-

tise, making it time-consuming to filter for each seeker
before making recommendations.

To cope with these challenges, we develop
a novel approach called Monotonically regularlzed
diseNTangled VAE (MINT) for the recommendation
of problem helpers to solution seekers in OHCs. MINT
is specifically designed to overcome the identified ob-
stacles by incorporating three key components. Specifi-
cally, we formulate the interactions between seekers and
helpers as a dynamic graph to deal with the first chal-
lenge and consider the modeled historical information
as patient node features. To tackle the second chal-
lenge, we propose graph-based Disentangled VAE to
learn time-varying and time-invariant features. Lastly,
to solve the third challenge, we design a monotonic reg-
ularization to enforce the correspondence between time-
varying features and the senior level and leverage a se-
nior constraint to guarantee the senior logic between
seekers and predicted helpers.

¢ A novel framework to model the social support
between patients based on a dynamic graph.
This graph-based representation allows us to capture
the complex and heterogeneous nature of social sup-
port in OHCs, with the modeled historical informa-
tion serving as essential patient node features.

e A graph-based Disentangled VAE to charac-
terize the time-invariant and time-varying fea-
tures. This disentanglement facilitates a comprehen-
sive understanding of patients’ features, capturing the
dynamic evolution of their knowledge while preserv-
ing the stable aspects of their expertise.

e A monotonic regularizer and a seniority level
constraint to guarantee the logic between seek-
ers and predicted helpers. The monotonic regu-
larizer enables learned time-varying features to mono-
tonically correlate with user’s seniority. The seniority
constraint guarantees the recommended helpers pos-
sess the sufficient expertise to assist seekers.

e Extensive experiments to validate the effec-
tiveness of MINT. The results show the superiority
of our proposed model over the comparison methods
by 17% and 9% on the two real-world datasets.

2 Related work

Recommender System based graph. Graph Neu-
ral Networks (GNNs) offer a promising solution by ef-
fectively leveraging the underlying graph structure of
the user-item interactions, which have been widely em-
ployed in recommender systems. GNNs can be applied
not only in static recommendation scenarios [10,24] but
also in sequential scenarios to capture the temporal dy-
namics of user preferences and item interactions. By
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representing users and items as nodes in a graph and
the sequential interactions as edges in the graph, GNN
layers can learn the temporal dependencies and evolu-
tion of the nodes [3}6,[28,29]. This enables the model
to effectively capture the evolution of user preferences
and transitions between items. Furthermore, in order
to learn different factors that influence user-item in-
teractions, disentangled graph methods are proposed.
They combine the principles of collaborative filtering,
which utilizes user-item interactions, with disentangle-
ment learning, which aims to disentangle underlying fac-
tors of variations in the data [25]. Zheng et al. propose
CLSR to improve recommendations by understanding
both short-term and long-term user interests [31]. How-
ever, only considering static user profiles is inadequate
for directly modeling the dynamic accumulation of ex-
periences in their anti-cancer process. Therefore, it is
not suitable for recommendations in OHCs.

Instead of recommending specific products or items,
friend recommendations, also known as social recom-
mendations is another important aspect in the realm of
online social media, as highlighted by [5[12,/18]. The
intricate information embedded in social networks can
be harnessed to enhance the learning process by con-
sidering the social effects among users. This type of
recommendation can enhance social interactions, fos-
ter community engagement, and expand users’ social
circles. Although the method proposed in [21] using
graph-based method models user interests or features to
compute user similarity for matching purposes, they are
not applicable to seeker-helper recommendation scenar-
ios as they neglect to incorporate logical seniority orders
among patients.

Online Health Communities: Online health com-
munities (OHCs) can naturally be formed as a het-
erogeneous network of user, patient, and discussion
threads [13}/14], which have offered platforms for ac-
quiring health-related information. There are various
OHC:s related to different diseases [1},/2,/16], and a sub-
stantial number of patients seeking healthcare assis-
tance. To enhance the service provided to patients,
several approaches have been developed to mine and
analyze patients’ activities within OHCs. [4] focus on
capturing patients’ sentiments expressed in their dis-
cussions to identify reliable medical knowledge. In or-
der to further aid healthcare organizations in support-
ing patients, Gao et al. [7,/8] propose to infer patients’
health stages based on their online activities. In [23],
helpers in OHCs tend to possess more specialized ex-
pertise compared to seekers and propose explicitly as-
sessing their level of expertise. Despite its significance,
few methods have addressed the problem of recommen-
dation within OHCs. Recently, health-related recom-
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Figure 2: Overall Framework. (a) represents the
dynamic graph that captures the interactions between
patients. Nodes denote the patients; edge denotes the
helper answering the questions on particular threads
at some time. (b) shows the modeling process of
the historical activities of patients to obtain time-
invariant and time-varying features. (c) depicts the
monotonic regularizer and seniority level constraint to
guarantee the logical seniority orders. (d) shows the
recommendation under logical constraint

mender systems have widely emerged to assist patients.
A recent approach [27] models patients’ health histories,
interests, and needs to recommend suitable threads to
patients. Aiming to suggest doctors to patients who
are best suited to provide relevant and suitable answers
to their inquiries, Liu et al. [15] develope a health rec-
ommender system by leveraging doctors’ profiles and
analyzing their past conversations. However, they fail
to consider the social support network among patients,
which is often broader in scope, more abundant, adapt-
able, and accessible than the support offered by health-
care professionals. It helps individuals share their expe-
riences anytime and anywhere.

3 Proposed Method

3.1 Problem Formulation To model the unique
communication dynamics among patients in OHCs, we
introduce a dynamic social support graph denoted as
G ={Gy, - ,Gr}. Each snapshot graph G; = (U, E})
captures the interactions between patients up to time t,
as illustrated in Fig. a). Here, U; represents the set
of nodes (i.e., patients), E; denotes the edges formed
when helpers respond to questions posed by seekers
on specific threads at time ¢, and E; C Uy x Uy, S
denotes the set of seeker-helper pairs. The interac-
tions between patients are significantly influenced by
heterogeneous historical activities within OHCs, such
as the threads they have visited and their experienced
health stages. Upon gaining experience, she would ac-
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quire the ability to assist patients B and C in resolv-
ing their issues. To capture the influence of historical
activities on patient interactions, we incorporate them
as node features u; at each time point ¢. Specifically,
we denote the ordered thread sequences that patients
have visited as vi.p = (v1,-+-,v4,--- ,v7), and the
health stage sequences that patients have gone through
as hi.p = (hy, - ,he, -+ ,hr). For instance, as de-
picted in Fig. [1] patient A visited the thread Diagnosed,
when she was in the health stage Just Diagnosed. And
when she progressed to the health stage Chemother-
apy, she developed an interest in the thread Intrathecal
chemo. The embeddings of the thread sequences and
health stage sequences can be represented as vi.p =
(v, Ve, vp) and hyp = (hy,--- ,hy,---  hyp),
respectively. Here, v; € R'Pv denotes the embed-
ding of the thread visited by patients at time ¢, and
h, € R™Pr represents the embedding of the health
stage experienced by patients at time t. The dimen-
sions of the thread and health stage embeddings are
denoted as D, and Dy, correspondingly. Thus, at each
time ¢, the embeddings of patient nodes can be com-
puted as u; = concat|[vs, hy], where u; € R™*(Duv+Dn)
The patient node embedding sequence is denoted as
upr = (ug, -+ ,u, -+ ,up), which records the ordered
historical activities of patients. In addition, we assign a
quantitative value to represent the seniority of the pa-
tient at time ¢, which means the patient’s knowledge
and experience of the disease, expressed as s; € R for
the seniority levels of seekers and o; € R for the seniority
levels of helpers at time ¢. This value can be calculated
based on factors such as the number of threads visited,
the number of health stages experienced, and the dura-
tion of their presence on OHCs. Similarly, we can obtain
a sequence of seniority level s;.pr = (s, .. .y 8T)
and o1.p = (01,...,0¢,...,0r) for different time.

Given the visited thread sequence v1.7, health stage
sequence hy.7, senior level sequence s1.7, and the social
support dynamic graph G, the objective is to recom-
mend suitable helpers for addressing seekers’ questions.
However, this problem poses significant challenges that
make it highly complex to tackle: 1). Difficulty in mod-
eling the interactions between problem helpers and solu-
tion seekers due to heterogeneous reasons. 2). Difficulty
in differentiating the time-invariant and time-varying in-
fluence of historical information vy.¢, h1.7, and sy.p. 3).
Difficulty in guaranteeing the logical seniority orders be-
tween predicted helpers and seekers.

« 5 Sty

3.2 The Objective of seeker-helper modeling
To tackle the first challenge, we introduce a framework
based on graph G that models patient relationships.
Node features U record patients’ historical activities,

while edges E represent their participation in shared
threads as either seekers or helpers, as depicted in Fig.
a). For the second challenge, we employ a graph-
based Disentangled VAE to capture both time-invariant
and time-varying patient features by using historical
thread sequences vy.; and health stage sequences hi.r,
as shown in Fig. b). To address the third challenge,
we introduce a monotonic regularizer to ensure that
the patient’s time-varying feature z,.7 aligns with their
seniority level sj.p. A seniority level constraint is
applied to these time-varying features to characterize
the roles of helper and seeker, detailed in Fig. [2c-d).

To effectively train our comprehensive model, we
aim to maximize the evidence lower bound (ELBO) loss
of the graph-based Disentangled VAE, denoted as Lgy;
(refer to Eq.(3.2)), which enables the learning of both
time-varying and time-invariant features. In order to
capture the stability of time-varying features over short
time periods, we incorporate a smoothness constraint,
denoted as Lgp, (refer to Eq.), which minimizes
the Lo distances between embeddings of adjacent time
steps. In addition to minimizing the Bayesian Person-
alized Ranking (BPR-loss) Ly, (detailed in Eq.(3.4)),
which is computed based on the time-invariant features
of patients, we minimize a monotonic regularization
Lreq (detailed in Eq.) to enforce the time-varying
features to have monotonic relation with seniority level.
Moreover, in order to guarantee that the recommended
helpers can have the ability to solve the seekers’ prob-
lems, a seniority-level constraint is introduced. The
overall objective function is shown as follows:

(3.1) m@lnﬁ = aﬁdis + ’Y»Csmo + )\Epr’ + 5£Tega

St.st <o, te€[l:T]

where «, v, A, B are non-negative trade-off weights
for each corresponding components. These weights
determine the relative contribution of each component
to the overall optimization process. © is the set of all
parameters that need to be optimized in the objective

function Eq. (3.1).

3.3 Graph-based disentangled variational au-
toencoder The graph-based disentangled variational
autoencoder (VAE) model [30] is designed to char-
acterize patients based on their visited threads and
experienced health stages, as well as the social sup-
port graph. In this model, we assume that the se-
quence of patient node embeddings, denoted as uj.; =
(ug, -+ ,uy,- -+ ,ur), is generated from a latent variable
x that can be factorized into two disentangled variables:
the time-invariant features x (representing patients’ in-
trinsic knowledge) and the time-varying features zq.p
(representing patients’ state after visiting threads at
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different time points). The prior distribution of the
time-invariant features x is defined as a standard Gaus-
sian distribution: x ~ N(0,1). The time-varying fea-
tures zi.p follow a sequential prior, where z;|z.; ~
N (e, diag(a?)). Here, [ue, diag(o7)] = fo(z<t), and g
and diag(c?) are the parameters of the prior distribu-
tion conditioned on all previous time-varying features
Z.¢. The model parameter 6 can be parameterized as
a recurrent network, such as LSTM or GRU, where the
hidden state is updated over time. We define the gen-
erating distribution of patient features conditioned on
the time-invariant features x and time-varying features
z; as follows:

p(arr,z1.r, %, Grr) = p(x) [ [ p (e | x, 20, G1) (24| 2<1)
=1

ut|zt7 X, Gt ~ N(,uu,h diag(ai,t))

where [11y¢, diag(o2 ;)] = ge(2¢,%|Gy). During the infer-
ence process, the graph-based Variational Autoencoder
employs variational inference to approximate the pos-
terior distributions. Specifically, we approximate the
posterior distributions as follows:

X|Gr ~ N (o, diag (03)) . 2e ~ N (e, diag (07))

[,uita dlag(ai)] = h6(u1!T)7 [,uu,tv diag(gi,t)] - h7l(u§t)'

& and 7 correspond to the recurrent encoder functions hs
and h,, for computing the approximated posterior dis-
tributions, respectively. Specifically, the time-invariant
features are conditioned on the entire sequence and en-
coded using hg, whereas the time-varying features are
inferred using h,, and conditioned only on previous time
points. Thus, our inference model can be factorized as:
T

(I(leT,X | 111:T7G1:T) = Q(X | 111:T,G1;T) Hq (Zt | ugt)

t=1
The loss of graph-based disentangled VAE in (3.1) is a

‘Eimeistep—wise negative variational lower bound:
3.2

T
‘Cdis = EQ(ZI:T,X|H1:T,G1;T) l:_ Zt:l logp (llt | Zt, X, Gt):|
+ KL (¢ (x| ur.r,Grr) |lp (x| Gi.1))
’ KL
+> . KL(q(z | uce) Ip (zellp (2 | 2<0))

Additionally, the smoothing constraint in Equation
(3.1) can be written as follows:
(3-3) Lsmo = ||zt — zt—1||§

We capture the interactions between patients in terms
of question-answering dynamics within the social sup-

port graph. The adjacency matrix of the social support
graph is defined as follows:

0 R
A=y V)

where the interaction matrix Ry € R™*™ represents
the connections between patients within the social sup-

port graph. Each entry of R is assigned a value of
1 if there is an interaction between the correspond-
ing pair of patients, otherwise, it is 0. To initialize
the patient nodes on the graph, we use the obtained
time-invariant features x as the embeddings for the 0-
th layer, denoted as e(®) = x. Subsequently, the pa-
tient embeddings at the [-th layer can be expressed as:
e = (D’%AD*%) e~ | where D"2AD 2 is used
to compute the symmetrically normalized matrix. D
represents a 2m x 2m degree matrix. Each entry D;;
in D corresponds to the number of nonzero entries in
the i-th row vector of the adjacency matrix A. As a
result, the final time-invariant features of patients can
be represented as: e = + ZiOL e,

3.4 Recommending under logical seniority or-
ders The learned patient embeddings e capture both
the intrinsic time-invariant information and collabo-
rative signals. To differentiate between seekers and
helpers, we utilize e, € R**P» and e, € R®*Ps where
a <m,b<m,D,, and D, represent the dimensionality
of the time-invariant features. Moreover, the roles of
seekers and helpers are determined by their activities,
specifically whether they answer or ask questions on the
threads within OHCs. The BPR-loss in Eq. can
be expressed as:

(3.4) Lipr = — Z(a,#)es Ino (a4 — o)

where 7 = e(a)e(+)T calculates the similarit
a,+ — ©p "€q y score

between a seeker and a positive sampled helper, 7, —

T
ez(ga)ec(f) computes the similarity between seekers and

negatively sampled patients. However, while the BPR-
loss can learn the similarities between seekers and
helpers, it does not guarantee that the recommended
helpers possess sufficient experience to assist the seek-
ers. In order to address this, we introduce a mono-
tonic regularizer to enforce a monotonic correlation be-
tween the time-varying features z; and the seniority
level. To derive the regularizer, we refer to the stan-
dard definition of monotonicity [19]: if f(z) > f(y),
then = > y, where x and y represent any latent vari-
ables. However, directly computing such a non-linear
relationship is challenging. Instead, we penalize the fol-
lowing term in the objective as an equivalent formula-
tion: max (0, — (f(x) — f(y)) - (x —y)). Take seekers as
an example, in our specific context, the monotonic cor-
relation is implemented through the regularizer term
Lycq, which is defined as:

(3.5) Lyeg = Zi ReLU|[(s¢ — s¢e—1) * ([ze—1]i — [2¢]:)]
where n represents the embedding size of time-varying
features and i denotes each entry of the embeddings,
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ReLU [9] is the activation function. For helpers, s
can be replaced by o. The regularizer, which ensures
the monotonic correlation, can be incorporated into
the feature learning loss given in Eq. (3.2). This ad-
dition strengthens the training objective by encourag-
ing the desired monotonic behavior in the time-varying
features. Building upon the monotonically regularized
time-varying features, we further introduce a seniority-
level constraint to enforce the logical ordering between
the recommended helpers and seekers. That is, at the
same time t, each dimension of the helpers must be
larger than each dimension of the corresponding seek-
ers. This constraint between the pairs seeker p and the
helper ¢ is formulated as: [z, ]; < [24,]; , Where [z, ],
[24,¢]; denote the i-th entry of the time-varying features
for seeker and helper, respectively. A computable form
of this constraint can be written as:

(3.6) Leons = Z Z([Zpﬂf]i - [Zq,t]i)
{p,q}es i

We put Leons into L.y, which is used to train
the model together. By enforcing the time-varying
features to monotonically increase with the seniority
level, this constraint ensures that the recommended
helpers possess the necessary capabilities to address the
problems of the seekers.

4 Experiments

Our proposed method, MINT, is evaluated on two real-
world OHC datasets along with four state-of-the-art
comparison methods. Furthermore, we analyze the
trade-off between efficiency and accuracy, providing in-
sights into the balance achieved by our approach. Sen-
sitivity analysis and ablation studies are also performed
to examine the impact of hyperparameters and differ-
ent components of the proposed method. Lastly, a case
study was conducted, highlighting the necessity of the
recommendation for seekers in OHCs.

4.1 Dataset and Data preparation The Breast
Cancer Community is one of the largest OHCs, serv-
ing as a valuable resource for patients to gain disease
knowledge, seek and offer social support, and connect
with others in similar health stages [7]. Patient inter-
actions within the community occur in various threads
consisting of questions and answers. The dataset, cov-
ering 2014 to 2018, captures patients’ evolving health
stages as they engage with different threads over time.
In totoal, this community contains 3,948 patients, 719
seekers, 3,827 helpers, and 16, 360 interactions.

The Bladder Cancer Community, another promi-
nent OHC, focuses on bladder cancer information ex-
change. Its dataset, spanning 2006 to 2021, parallels the
Breast Cancer Community dataset in terms of informa-

tional features. In both cases, we excluded threads with
fewer than ten patient visits and omitted non-helpful
interactions. Patients’ thread visits and interactions
were organized chronologically. In totoal, this commu-
nity contains 296 patients, 189 seekers, 243 helpers, and
9,867 interactions.

We also filtered out irrelevant replies and identified
helper and seeker roles based on patients’ activities,
such as asking and answering questions and offering
both professional and emotional support. Importantly,
patients’ roles are not static. Initially, early-stage
cancer patients are more likely to be seekers, but over
time or upon recovery, they often transition to helpers.
The datasets were divided into training, validation, and
testing sets at an 80%, 10%, and 10% ratio, respectively.

4.2 Experiment Setup

4.2.1 Comparison methods. To demonstrate the
effectiveness of our proposed MINT method, we con-
ducted comparisons with state-of-the-art methods from
three distinct categories. 1) Traditional method: BPR-
MF [20] is a well-established recommendation algorithm
known for its strong performance across various recom-
mendation tasks. 2) Sequential methods: SASRec [11]
has shown promising performance in sequential recom-
mendation tasks, particularly in scenarios where tempo-
ral dependencies and complex patterns are crucial. 3)
Graph-based methods: NGCF [24] and LightGCN [10]
leverage the bipartite graph structure of user-item in-
teractions to learn user and item embeddings, facili-
tating effective recommendations. DGCF [25] seeks to
overcome limitations in traditional methods by explic-
itly modeling and disentangling different aspects of user
preferences and item features, but ignores the temporal
information. GraFRank [21] stands as the pioneering
work in exploring the utilization of GNNs for model-
ing social user-user interactions and recommendations.
It effectively captures expressive user representations
through the integration of multiple feature modalities
and user-user interactions.

4.2.2 Implementation Details. In the MINT
model, we used two LSTMs to encode time-varying fea-
tures and one LSTM coupled with a single-layer per-
ceptron for time-invariant features. The decoder in-
cluded two-layer perceptrons with non-linear transfor-
mations. Patient embeddings were created by concate-
nating visited thread and health stage embeddings into
a 16-dimensional space. The dimensions of both time-
varying features z; and time-invariant features x were
set to 8. A graph layer of 3 was found to yield the
best results. For training, we used a batch size of 256
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Table 1: Experimental results on Breast Cancer Community Dataset and Bladder Cancer Community

Dataset with respect to four evaluation metrics.

“N” is the abbreviation of NDCG (Normalized

Discounted Cumulative Gain), and “H” is the abbreviation of HIT.

Method Breast Cancer Community Dataset Bladder Cancer Community Dataset
Na3 Ha3 NGa@s5 H@s N@10 H@10 MRR N@3 Ha3 Nas5 Ha5 N@10 H@10 MRR

MF 0.0151 0.0204 0.0177 0.0267 0.0220 0.0402 0.0215 0.1672 0.2110 0.1972 0.2836 0.2345 0.3991 0.1998
SASRec 0.0144 0.0149 0.0162 0.0194 0.0223 0.0388 0.0241 0.2156 0.2604 0.2304 0.2959 0.2400 0.3254 0.2217
NGCF 0.0096 0.0124 0.0113 0.0165 0.0145 0.0264 0.0144 0.1809 0.1298 0.3212 0.1862 0.5274 0.2542 0.1820
LightGCN 0.0139 0.0177 0.0167 0.0245 0.0225 0.0425 0.0220 0.2556 0.3249 0.2941 0.4200 0.3295 0.5272 0.2781
DGCF 0.0132 0.0122 0.0152 0.0138 0.0201 0.0366 0.0149 0.3511 0.2960 0.4383 0.4240 0.5652 0.6329 0.4418
GraFRank 0.0187 0.0248 0.0216 0.0321 0.0267 0.0458 0.0258 0.4618 0.5522 0.4380 0.5881 0.4851 0.6135 0.4467
Ours 0.0244 0.0281 0.0270 0.0345 0.0327 0.0526 0.0278 0.4861 0.5396 0.5120 0.6029 0.5505 0.7194 0.5071

and employed the Adam optimizer with learning rate:
0.001. The hyperparameter A for BPR-loss was set
at 1, and the smoothing coefficient v was set at 0.1.
The sensitivity of parameters a and [ is discussed in
Sec. {5 In comparison, baseline models like BPR-
MF, NGCF, DGCF, LightGCN, and GrafRank were
primarily focused on collaborative filtering and did not
account for patients’ historical activities. To maintain
a fair comparison, we integrated LSTM to capture this
historical information for initial feature representations
in these models. In SASRec, the maximum sequence
length was set to 10, roughly equivalent to the average
number of patient interactions. The model also used
16-dimensional embeddings, a batch size of 256, and
the Adam optimizer with a learning rate of 0.001. For
graph-based models, the layer parameter was set to 3,
in line with recommendations in their respective papers.
DGCEF’s disentanglement factors were set to 4.

4.2.3 Evaluation Metrics. We adopt Mean Recip-
rocal Rank (MRR), Normalized Discounted Cumula-
tive Gain (NDCG@K), and HITQK as main evalua-
tion metrics [26]. Specifically, the MRR, measures the
rank of the ground truth entity relative to all other
entities. NDCG@QK evaluates the relevance of recom-
mended entities based on their positions in the ranking
list, considering the discounted cumulative gain. Lastly,
HIT@K indicates the proportion of correct recommen-
dations within top K positions.

4.3 Results The comprehensive performance eval-
uation of both the compared methods and the pro-
posed method, MINT, is presented in Table [1| for both
datasets. During the validation phase, MINT achieved
the highest performance on the Breast Cancer Com-
munity dataset when the parameters a and 3 were set
to 0.01 and 0.001, respectively. For the Bladder Cancer
Community dataset, the best performance was obtained
with parameter values of « = 0.001 and 8 = 0.01. Statis-
tical analysis reveals that the performance improvement
achieved by the proposed method over each compari-
son method is statistically significant at a significance

Table 2: Ablation Study on the two OHC datasets.
Method

Breast Cancer Community

NDCG@5 HIT@5 NDCG@10 HIT@10

w/ V 0.0192 0.0274 0.0248 0.0449

w/o S 0.0196 0.0275 0.0253 0.0429

Ours 0.0270 0.0345 0.0327 0.0526
Method Bladder Cancer Community

NDCG@5 HIT@Q5 NDCG@10 HIT@10

w/ V 0.4971 0.5753 0.5301 0.6735

w/o S 0.5012 0.5793 0.5331 0.6747

Ours 0.5120 0.6029 0.5505 0.7194

level of 5%, except for the prediction results on the on-
line Bladder Cancer Community dataset, where HIT@3
does not show significant improvement.

MINT excels across various evaluation metrics, out-
pacing other methods. Specifically, it shows rela-
tive gains of 17.33% and 9.52% across all metrics for
the Breast Cancer and Bladder Cancer Community
datasets, respectively. NGCF, a graph-based approach,
fares the worst, likely due to the negative impact of
non-linear activation functions and feature transforma-
tion matrices on prediction performance. BPR-MF un-
derperforms compared to LightGCN, highlighting the
benefit of incorporating high-order information. SAS-
Rec outdoes BPR-MF by considering time-serial fea-
tures but falls short of MINT because it lacks a com-
prehensive graph neural network and has a limited fo-
cus on temporal factors. DGCF and GrafRank perform
well by modeling features from various angles, yet they
don’t surpass MINT. GrafRank, despite its attention
mechanisms for capturing diverse content, ranks high-
est among comparison algorithms but still falls behind
MINT. Its limitations are evident in the complex task of
seeker-helper recommendations in OHCs and in its in-
ability to effectively use historical information to inform
patient interactions.

4.4 Ablation Study We further conduct the abla-
tion study to investigate the importance of each com-
ponent of MINT. We present two variants of the pro-
posed MINT: (1) For the first ablated model, instead of
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Figure 3: The sensitivity of parameter o and 3 for
MINT. When tuning «, 8 was fixed to 0.001 for Breast
Cancer OHC and 0.01 for Bladder Cancer OHC. When
tuning «, B was fixed to 0.01 for Breast Cancer OHC
and 0.001 for Bladder Cancer OHC.

modeling the time-invariant and time-varying features
of patients, we only learn the time-varying features with
VAE and apply monotonic regularization, noted as w/
V. (2) For the second ablated model, we do not use the
monotonic regularizer and seniority level constraint to
enforce the learning process of time-varying features,
noted as w/o S. Table |2| shows performance metrics
such as NDCG@5, HIT@5, NDCGQ@10, and HIT@Q10
for three models in both Breast Cancer and Bladder
Cancer Communities. The results indicate that remov-
ing any components from our proposed MINT model
leads to performance degradation. Using only the VAE
without incorporating time-invariant and time-varying
features fails to capture patients’ intrinsic knowledge,
which is crucial for calculating similarity. While the
w/o S model performs comparably on the Bladder Can-
cer Community dataset, as seen in Table it lacks
a monotonic regularizer and seniority-level constraint.
This limitation makes it difficult to ensure that the rec-
ommended patient is actually equipped to answer the
question, leading to consistent underperformance com-
pared to the default settings.

4.5 Impact of Hyper-parameters In our parame-
ter analysis, we focus on the sensitivity of two key co-
efficients, o and (3, and their impact on MINT’s perfor-
mance. The performance metrics used are NDCG@10
and HIT@10, and the results are presented in Fig.
For the Breast Cancer Community dataset, initial set-
tings of § = 0.001 and o = 0.01 show consistent results
across varying parameter values, confirming the model’s
robustness. Similarly, the Bladder Cancer Community
dataset reveals optimal performance when « and [ are
individually set to 0.001 and 0.01.The ablation study
in Table [2| underscores the importance of disentangled
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Stages: Diagnosed

2

# threads: 122

ID: 58
Top 1
L op 3
Ground truth ﬁ_‘
Helper a? HF ‘
ID: 120 1D: 92 ID: 156
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Stages: Recovery
# threads: 361

Stages: Surgery
# threads: 221

Stages: Radical
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Figure 4: ‘Years’, ‘Stages’, and ‘#thread’ respectively
represent how long the patient has been on OHC, the
health stage during questioning or answering, and the
number of threads visited.
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Figure 5: The visualization of the seeker and helper
representations under logical seniority orders.

feature learning and seniority-level constraints in the
MINT model. While BPR-Loss is a foundational com-
ponent, these additional features ensure that the model
doesn’t solely focus on similarity measures, but also
considers the hierarchical relationships between seekers
and helpers. This is crucial for real-world applications.
Overall, these added components significantly enhance
the performance and relevance of the MINT approach.

4.6 Case Study MINT not only excels in perfor-
mance but also ensures that recommended helpers are
capable of assisting seekers. Fig. [ presents a case study
featuring a patient (ID: 58) who joined the OHC a year
ago and is in Diagnosed health stage. MINT success-
fully identifies the best-suited helper (patient ID: 120)
who has recovered from the illness with rich anti-cancer
experience. Thus, he is the most suitable helper with
the highest seniority. In Fig. [5 visualizations of seeker
and helper representations confirm that MINT main-
tains the seniority order between recommended helpers
and seekers, demonstrating the effectiveness in match-
ing appropriate helpers with seekers.

5 Conclusion

To address the critical need for reliable healthcare in-
formation in OHCs, we design a seeker-helper recom-
mender system specifically tailored for OHCs. Un-
like traditional user-item recommendation methods, our
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framework captures the complex social dynamics among
patients and utilizes the diverse data available in OHCs.
The proposed model introduces a Graph-based Disen-
tangled VAE that handles both static and evolving pa-
tient information. We also include a monotonic reg-
ularizer to ensure the stable evolution of time-varying
features. A seniority-level constraint is integrated to
maintain a logical expertise hierarchy among users. By
incorporating these elements, our recommender system
effectively tackles OHC-specific challenges and identifies
experienced helpers to answer seekers’ questions.
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