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Abstract

Current neuroimaging studies frequently use complex machine learning models to classify human fMRI data, distinguishing healthy
and disordered brains, often to validate new methods or enhance prediction accuracy. Yet, where prediction accuracy is a concern,
our results suggest that precision in prediction does not always require such sophistication. When a classifier as simple as logistic
regression is applied to feature-engineered fMRI data, it can match or even outperform more sophisticated recent models. Classi-
fication of the raw time series fMRI data generally benefits from complex parameter-rich models. However, this complexity often
pushes them into the class of black-box models. Yet, we found that a relatively simple model can consistently outperform much
more complex classifiers in both accuracy and speed. This model applies the same multi-layer perceptron repeatedly across time
and averages the results. Thus, the complexity and black-box nature of the parameter rich models, often perceived as a necessary
trade-off for higher performance, do not invariably yield superior results on fMRI.

Given the success of straightforward approaches, we challenge the merit of research that concentrates solely on complex model
development driven by classification. Instead, we advocate for increased focus on designing models that prioritize the explain-
ability of fMRI data or pursue applicable objectives beyond mere classification accuracy, unless they significantly outperform
logistic regression or our proposed model. To validate our claim, we explore possible reasons for the superior performance of our
straightforward model by examining the innate characteristics of fMRI time series data. Our findings suggest that the sequential
information hidden in the temporal order may be far less important for the accurate fMRI classification than the stand-alone pieces
of information scattered across the frames of the time series.
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1. Introduction

Novel approaches for analyzing human brain fMRI data are
rapidly being developed. Often their aim is to deepen our under-
standing of the inner workings of the human brain with the aim
of identifying biomarkers of brain disorders. Machine learn-
ing (ML) techniques have been widely used to improve diag-
nostic sensitivity in a range of disorders including (Liu et al.,
2021a; Bondi et al., 2023; de Filippis et al., 2019; Warren and
Moustafa, 2023), or to predict an individuals sex and age (Ye-
ung et al., 2023) or behavioral assessment. However, advanced
approaches often suffer from a lack of fMRI data explainabil-
ity due to difficulties associated with both ML models inter-
pretability and the high dimensionality and low signal to noise
ratio of the data itself.

Current ML models working with the brain fMRI data
have been used to analyze time series data as well as func-
tional connectivity. Time series fMRI captures the dynamics
of blood-oxygenation-level-dependent (BOLD) signals in the
brain (Kundu et al., 2017), which correlate with the brain activ-
ity. While fMRI images are captured at the voxel level in the
3D space, they are often summarized (parcellated) by averag-
ing the signals within brain regions or networks. These regions

1Corresponding author. E-mail address: ppopov1@gsu.edu

can be derived either from an anatomical atlas (Desikan et al.,
2006; Schaefer et al., 2017) (region of interest (ROI) parcella-
tion), resulting in separate, typically non-overlapping parcels or
from the data itself, e.g., by using independent component anal-
ysis (Fu et al., 2019) (ICA parcellation) resulting in overlapping
whole brain networks. Functional network connectivity (FNC)
captures the correlations of activity between brain regions (van
den Heuvel and Hulshoff Pol, 2010); it is typically derived by
computing Pearson cross-correlation matrices from the fMRI
time series.

Historically, the majority of models for fMRI data were de-
signed to work with the FNC data (Khosla et al., 2019; Rish
et al., 2009; Shen et al., 2010; Arbabshirani et al., 2013). Some
of the earlier attempts to utilize the ML models for brain dis-
orders classification were applying classic techniques, such
as logistic regression (Cox, 1958), support vector machines
(Boser et al., 1992), naïve bayes, or k-nearest neighbor (Fix
and Hodges, 1989), to the FNC data computed either from the
voxel-level or parcellated fMRI time series. These approaches
typically made conclusions about the links between brain func-
tion and brain disorders via the analysis of the most discrimi-
native features in the data. More recently, deep learning tech-
niques such as convolutional neural networks (CNNs) (Kawa-
hara et al., 2017), graph neural networks (Kan et al., 2022a),
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and transformer (Kan et al., 2022b) modules, have been used to
take into account additional prior knowledge about the brain,
such as topological relations between the FNC components
(Kawahara et al., 2017; Bannadabhavi et al., 2023). However
the new models have similar, or even greater challenges with
providing interpretable results.

At the same time, the advances of deep learning techniques
allowed the development of models that work with fMRI time
series. Some recent models have even made attempts to
work directly with the volume unparcellated fMRI time series
(Huang et al., 2021; Malkiel et al., 2022; Kim et al., 2023). In
line with the latest trends in machine learning, Caro et al. (2023)
recently introduced a huge foundation model for fMRI analysis.
Many models also focus on directly learning the functional re-
lationship in fMRI time series with a flexible model rather than
using Pearson correlation. This idea is illustrated in dynam-
ics of recent models of fMRI time series that focus on learning
the effective connectivity matrices rather than rigidly estimat-
ing them (Mahmood et al., 2021; Kan et al., 2022a; Mahmood
et al., 2022, 2023). In these cases, the effective FNC can be
learned for a specific classification task; potentially providing
a more interpretable and discriminative functional connectivity
profile. However, in this paper we show that logistic regression
trained on statistically derived FNC data results in classification
performance comparable to or surpassing that of more complex
and recent models. In this context, working with the fMRI time
series appears to be more challenging in terms of model archi-
tecture design and rewarding for data explainability.

In this work we present a relatively simple model based on
multi-layer perceptron (MLP) for classification on the fMRI
time series that we call meanMLP. We show in extensive com-
parisons that our model is capable of accurate fMRI classifi-
cation. More interestingly, our model’s performance is com-
parable, and often even superior, to that of much more intri-
cate models for fMRI time series in terms of both accuracy and
speed. The use of the MLP-only architecture was initially in-
spired by the recent spark in interest to the models with little
inductive bias, i.e. the models with less restrictive characteris-
tics embedded in their architecture. As such, in the recent works
the MLP-only architectures were tested on the vision problem
(Tolstikhin et al., 2021; Bachmann et al., 2023) and found to be
quite efficient compared to more conventional CNN and Trans-
former architectures. In this context, meanMLP represents an
MLP-only architecture for the time series classification, which
can be viewed as a trivialized version of RNN architecture with
no information flow between the input time points. The classi-
fication success and simplicity of our model puts it in a close
reference to the linear models for time forecasting recently ex-
plored by Zeng et al. (2022).

Considering the classification success of our simplistic ap-
proach, we believe that a greater emphasis in the future ML re-
search in application to neuroimaging should be put on matters
beyond classification accuracy, e.g., the problem of fMRI data
explainability. To support this idea, and to find an explanation
for our model’s success, we explored the properties of the fMRI
time series. By analyzing the influence of different preprocess-
ing techniques and time-shuffling on the models’ performance,

we provide empirical evidence that the dynamical information
embedded in the temporal order may be far less important for an
accurate fMRI classification than it is commonly believed, and
sufficiently discriminative features in the data might be simply
dispersed across the frames of the time series.

2. Methods

In this section we introduce our baseline model that turned
out surprisingly strong, the other models we used in our experi-
ments for comparisons, the fMRI datasets and their preprocess-
ing pipeline, and the experiment designs we used to evaluate
and analyze our models and the data they work with.
Data and Code Availability. The model implementations and
the experimental setup used in our work can be found at https:
//github.com/neuroneural/meanMLP. This work does not
introduce any new datasets; all datasets used in our work are
properly referenced further in the text.

2.1. Models

In our work we benchmarked a total of 11 models, 7 of
which were specifically designed for classification on fMRI
data (Mahmood et al., 2020, 2022; Kawahara et al., 2017; Kan
et al., 2022a,b; Bedel et al., 2023; Mahmood et al., 2023). Here
we will first briefly review the models that work with fMRI
time series, starting with introducing our model, and then move
to the models that work with the FNC input.

2.1.1. meanMLP model

Figure 1: Schematic view of the forward pass of the meanMLP model. Note:
different time points in the input data propagate through the same MLP block
with the same weights, what is often referred to as parameter tying.
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A schematic view of the meanMLP model is shown in Fig. 1.
meanMLP model consists of a notably simple two layer MLP,
with dropout rate and hidden state size d as hyperparameters.
To describe the model more rigorously, let a single fMRI time
series sample be {x, y}, x ∈ RT×k, y ∈ RC , where T is the number
of time points, k is the input feature size (#ROIs/#ICs), and C
is the number of classes. In the meanMLP model, each time
point xt ∈ Rk, t ∈ {1, 2, . . . ,T } is processed by the same MLP
independently. The following set of equations summarizes the
model’s forward propagation:

a(0)
t = Dropout

(
ReLU

(
Layer Norm

(
W(0)xt + b(0)

)))
,

W(0) ∈ Rd×k, b(0) ∈ Rd;

h(1)
t =W(1)a(0)

t + b(1),

W(1) ∈ RC×d, b(1) ∈ RC;

hmean =
1
T

T∑

t=1

h(1)
t ;

ŷ = Softmax(hmean).

Here ŷ ∈ RC is the model’s prediction for the sample x.
We notice that the mean operation used to calculate hmean

makes the model permutation invariant on and thus insensitive
to the time order in the data; it is possible to reshuffle the data
along the time axis with no effect on model’s output. Also, the
mean operation likely allows the model to even out the noise in
the otherwise fairly noisy fMRI time series; a similar technique
was used before by Dvornek et al. (2017) in an LSTM design
for fMRI classification.

2.1.2. Existing models for fMRI time series
Last decade advancements in deep learning have led to the

development of various models for brain fMRI data that utilize
RNNs, CNNs, and Transformer modules (Valliani et al., 2019).
In our work we use a few of such models to compare the per-
formance of meanMLP model.
Long Short-Term Memory (LSTM) is a long-history recurrent
neural network widely used for the sequence data, such as time
series (Hochreiter and Schmidhuber, 1997). In our work we use
it to compare the meanMLP model with some relatively simple
and general models. In our implementation of an LSTM clas-
sifier we used an LSTM block (Hochreiter and Schmidhuber,
1997) followed by a fully connected (FC) layer that performed
classification on the last output embedding of LSTM block, or
concatenated first and last embedding in bidirectional LSTMs
(bidirectionality was treated as a hyperparameter).

meanLSTM, a modification of the LSTM model, follows the
same design, with the exception of using a mean output LSTM
embedding for classification. Such averaging is supposed to
bridge meanMLP and LSTM models, placing meanLSTM and
its expected behavior somewhere in between these two. We
note that this design is more similar to the LSTM design for
fMRI classification presented in (Dvornek et al., 2017), which
may be more known in the neuroimaging society compared to
the more traditional design above.

Transformer model, another general architecture we used in
model comparisons, received a significant attention in the last
decade that uses self-attention mechanism (Vaswani et al.,
2017). In our implementation we used a BERT-like transformer
encoder architecture (Devlin et al., 2019) for classification on
fMRI time series. We used a transformer encoder, preceded by
an FC layer and ReLU that transformed the input fMRI features
at each time point to the input embeddings of the encoder, and a
sine-wave positional encoding block. On top of the encoder we
added an FC layer for classification on the first output encoder
embedding.

Similarly to the meanLSTM model, meanTransformer mim-
ics the Transformer model architecture, with the exception of
using the mean output encoder embedding for classification.
Mutual information local to context (MILC) model intro-
duced in (Mahmood et al., 2020) is a classification-focused
model for fMRI time series that uses CNN modules. MILC
utilizes a 1D CNN encoder to extract representations of time
windows obtained by sliding a window of fixed length across
time of fMRI time series. The outputs of the CNN are passed to
a bidirectional LSTM, followed by an attention module that as-
signs weights for the LSTM outputs. A weighted sum of LSTM
outputs is then used in classification. An interesting feature of
the MILC model is that it allows for pre-training of the CNN en-
coder on unrelated fMRI data, that helps to improve the overall
model performance.
Directed Instantaneous Connectivity Estimator (DICE)
(Mahmood et al., 2022), another model for the fMRI time se-
ries, takes a different approach by focusing on not only the
classification performance, but also the data explainability. In
DICE, the each features’ time series is passed through a bidi-
rectional LSTM to infer the feature’s embedding at each time
point. These embeddings are then passed through a self-atten-
tion mechanism to retrieve the spatial relations between em-
beddings at each time point. Finally, the DICE model utilizes
a global temporal attention module to derive a task-specific
global directed network connectivity (DNC), which is more
task-related compared to statistically derived FNC matrices,
and allows for better interpretablility. Besides that, global DNC
is also used in classification.
Glacier, a transformer-based model (Mahmood et al., 2023),
implements an approach quite similar to DICE, both in goals
and design. However, where DICE utilizes LSTM for deriving
latent states of brain regions at each time point, Glacier uses
a transformer encoder. In the end, this model also estimates a
global DNC matrix that shows more task-related interactions.
BOLD Transformer (BolT) is another transformer-based mo-
del for fMRI time series (Bedel et al., 2023). Unlike vanilla
transformers that process the whole time series globally, BolT
implements a hierarchical approach by splitting the time se-
ries into overlapping windows and passing them through cas-
cade of transformers. Apart from better efficiency at process-
ing long time series, such approach allows it to derive features
in a local-to-global manner by fusing and transforming tokens
from neighboring windows until a global token is derived. This
global token then can be used both for classification and as a
reference for detection of the most predictive time points, which
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Table 1: Information on the datasets used in the experiments. ICA parcellated datasets have 53 features at each time point; Schaefer 200 ROI parcellated datasets
have 200 features.

Dataset Category Parcellation Subjects Time length # classes

FBIRN (Keator et al., 2016) Schizophrenia ICA 311 140 2
COBRE (Çetin et al., 2014) Schizophrenia ICA 157 140 2

BSNIP (Tamminga et al., 2014) Schizophrenia ICA 589 230 2
ABIDE (Di Martino et al., 2014) Autism ICA 869 295 2

OASIS (Rubin et al., 1998) Alzheimer ICA 823 156 2
ADNI (Petersen et al., 2010) Alzheimer ICA 499 194 2
HCP (Van Essen et al., 2013) Sex ICA 833 1185 2

UK Biobank (UKB-S) Sex ICA 35852 490 2
UK Biobank (UKB-SA) Sex⊗Age bins ICA 35852 490 20

FBIRN Schizophrenia Schaefer 200 311 160 2
ABIDE Autism Schaefer 200 871 316 2

HCP Sex Schaefer 200 752 1200 2

can be further investigated to derive explanations on data.
SwiFT, a Swin transformer-based model (Kim et al., 2023), is
another type of hierarchical transformer developed for volume
(unparcellated) fMRI time series. SwiFT extends the architec-
ture of sliding window visual transformers (Liu et al., 2021b) to
process 4D fMRI data. Similar to BolT, its hierarchical struc-
ture is designed to capture longer sequential features more ef-
fectively. Additionally, by working with unparcellated fMRI
data, SwiFT has the potential to capture finer spatio-temporal
features, which are unavailable to models working with parcel-
lated data.

2.1.3. FNC models
The rest of the models we used in our comparisons utilize

FNC fMRI data, either exclusively or as an addition to the time
series input.
BrainNetCNN (Kawahara et al., 2017) is a classification-
focused model for the FNC fMRI input that uses CNN modules.
While originally it was designed for diffusion tensor imaging
(DTI) data, it can be seamlessly adapted for the FNC fMRI in-
put. BrainNetCNN uses special-shaped CNN patches that are
designed for the brain network connectivity data. Edge-to-edge
layers use cross-shaped patches on the FNC matrix to produce
several channels of refined node connections. Edge-to-node
layers use strip patches to produce a vector of node outputs.
Node-to-graph layers use strip patches to produce a single gen-
eralized node output. The final CNN output is used for classifi-
cation.
Functional Brain Network Generation (FBNetGen) model
(Kan et al., 2022a) takes an approach very similar to DICE by
deriving DNC matrices from the fMRI time series input. In
FBNetGen, each feature’s time series is split into adjacent win-
dows and passed through a bidirectional GRU. The softmax of
the final GRU output is interpreted as a global feature embed-
ding. The DNC matrix is then derived as an outer product of
feature embeddings. However, unlike DICE, FBNetGen uses
the derived DNC along with the FNC data to provide the fi-
nal prediction by passing them to a graph convolution network-

based predictor (Kipf and Welling, 2016). For this reason we
include FBNetGen in the FNC model category.
Brain Network Transformer (Kan et al., 2022b), further re-
ferred to as BNT, models the brain networks as a graph, treat-
ing the correlation profiles from the FNC matrices as node em-
beddings and brain regions as nodes. BNT utilizes a multi-
layer multi-head self-attention module typical for transform-
ers (Vaswani et al., 2017) to compute the enhanced network
connectivity from the FNC fMRI input. It then compresses
the enhanced nodes into graph embeddings by clustering func-
tionally similar nodes using an orthonormal clustering readout
(OCRead), a graph readout function designed by the authors of
BNT specifically for the fMRI data. The BNT has been shown
to outperform various alternative models of different architec-
tural types, including SAN (Kreuzer et al., 2021), Graphomer
(Ying et al., 2021), BrainGNN (Li et al., 2021), BrainGB (Cui
et al., 2023), BrainNetCNN, FBNetGEN, and DGM (Kazi et al.,
2023).
Logistic regression (LR) fills the niche of a simpler and gen-
eral use model that we used as a baseline for other FNC models.
In our work we employed a scikit-learn implementation (Pe-
dregosa et al., 2011) with default hyperparameters, using flat-
tened upper FNC triangles as input.

To summarize, in our work we used 8 classification model
for fMRI time series input:

• meanMLP, our proposed hard-to-beat baseline;

• LSTM, a general model for sequences;

• Transformer, another general model for sequences;

• MILC, a classification-focused model designed for fMRI;

• DICE, an interpretability-focused model for fMRI that
learns directed connectivity;

• Glacier, another interpretability-focused model for fMRI
that learns directed connectivity;

• BolT, an hierarchical transformer model for fMRI that can
reveal most discriminative time points;

4



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Figure 2: (a) Schematic flowchart of the general fMRI data preprocessing pipeline used to obtain ICA or ROI parcellated data. (b) Schematic flowchart of the
additional HCP data preprocessing pipeline.

• SwiFT, another hierarchical transformer model that works
directly with the volume fMRI time series;

and 4 models for FNC fMRI input:

• BrainNetCNN, a classification-focused model designed
for DTI data, but adaptable for FNC fMRI;

• FBNetGen, an interpretability-focused model that derives
DNC from the fMRI time series and uses it with FNC
fMRI for classification;

• BNT, a transformer/graph model for FNC fMRI with
some interpretability in mind;

• LR, a simpler general model used as a baseline for other
FNC models.

2.2. Datasets

We used resting-state fMRI images collected from FBIRN
(Function Biomedical Informatics Research Network) (Keator
et al., 2016), COBRE (Center of Biomedical Research Excel-
lence) (Çetin et al., 2014), BSNIP (Bipolar and Schizophre-
nia Network for Intermediate Phenotypes) (Tamminga et al.,
2014), ABIDE (Autism Brain Imaging Data Exchange, release
1.0) (Di Martino et al., 2014), OASIS (Open Access Series
of Imaging Studies, release 3.0) (Rubin et al., 1998), ADNI
(Alzheimer’s Disease Neuroimaging Initiative) (Petersen et al.,

2010), HCP (Human Connectome Project, 1200 subjects re-
lease) (Van Essen et al., 2013), and UK Biobank2. Information
about these datasets is shown in Table 1.

2.2.1. Preprocessing pipeline
All images from the datasets other than HCP and UKB were

preprocessed using statistical parametric mapping (SPM123)
under MATLAB 2022 environment. A rigid body motion cor-
rection was performed using the toolbox in SPM to correct
subject head motion, followed by the slice-timing correction
to account for timing difference in slice acquisition. The fMRI
data were subsequently warped into the standard Montreal Neu-
rological Institute (MNI) space using an echo planar imaging
(EPI) template and were slightly resampled to 3 × 3 × 3 mm3

isotropic voxels. The resampled fMRI images were finally
smoothed using a Gaussian kernel with a full width at half max-
imum (FWHM) = 6 mm.

For the images coming from UKB and HCP datasets, we used
the minimally preprocessed data from the repository prepared
according to Glasser et al. (2013). Like the rest of the datasets,
we normalized them into the MNI space and smoothed with a 6
mm Gaussian kernel.

We further employed two brain parcellation techniques, one
based on deriving the regions from the fMRI data using ICA

2https://biobank.ndph.ox.ac.uk/ukb/
3http://www.fil.ion.ucl.ac.uk/spm/
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(ICA parcellation), and another based on using regions of in-
terest from a predefined brain atlas for comparison (ROI par-
cellation). For the ICA parcellation, we used the Neuromark
pipeline described by Du et al. (2020) to extract 53 independent
components. For the ROI parcellation, we used Schaefer’s 200
regions atlas to extract the average signals from the ROIs; the
voxel-level data was preliminarily denoised using FSL’s FIX-
ICA technique (Jenkinson et al., 2012). The flowchart of this
pre-processing pipeline is shown in Fig. 2(a).

For the UK Biobank dataset on ‘Sex ⊗ Age bins’ category
we split the subjects into 10 equally wide 4-years age bins (ages
between 30 and 70), and then further split these bins according
to subjects’ sex.

For the models expecting the FNC fMRI as their input we
computed Pearson correlation matrices from the fMRI time se-
ries for each subject.

For the SwiFT model designed for volume fMRI input we
used the minimally preprocessed HCP data warped to the MNI
space and the minimally preprocessed FBIRN data warped to
MNI space and resampled to the HCP data grid. For the mod-
els used in comparisons with SwiFT we parcellated the prepro-
cessed data using Schaefer 400 ROIs atlas.

2.2.2. Additional HCP preprocessing pipeline
To analyze the influence of the data preprocessing techniques

on the models’ performance we prepared a few differently pre-
processed additional HCP datasets. All HCP images were min-
imally pre-processed using AFNI toolbox (Cox, 1996; Cox and
Hyde, 1997), which included field map correction, despiking,
motion and slice-timing correction, and coregistration with the
T1 images. Then, minimally preprocessed data was warped to
an MNI template. The following steps, however, were differ-
ent across different versions of the dataset. The flowchart on
Fig. 2(b) summarizes these additional pipelines.

To assess the influence of the MNI projection, we prepared
two versions of the HCP dataset using Desian-Killiany (DK)
brain atlases generated by Freesurfer for each sample in the
dataset. In the original version of the dataset we extracted the
average ROI signals from the minimally pre-processed HCP
data in the original subjects space. In the MNI version of the
dataset we warped the minimally pre-processed HCP data and
DK atlases to the MNI template, and only then extracted the
ROI signals.

To assess the influence of the brain atlases used for ROI
parcellation, we prepared an additional version of the Schae-
fer 200 ROI HCP dataset to compare it to the DK ROI HCP
data. We call this version "noisy" to distinguish it from the
Schaefer 200 ROI HCP dataset preprocessed according to the
general pipeline. For this dataset we warped the minimally pre-
processed HCP data to the MNI template, and then extracted
the ROI signals using Schaefer 200 ROI atlas.

In addition to that, in order to analyze the models ability to
distinguish the time direction in the data we prepared a special
dataset based on HCP ICA data. For this, we took a random half
of the samples from the dataset and labeled them as 0s; then, we
took the samples from the other half, flipped them along time
axis, and labeled them as 1s.

2.3. Experimental setup

In our experiments we tested how well the models can train
on the fMRI datasets, analyzed their performance on differently
preprocessed data and data with a reshuffled temporal order, and
looked into the models’ spatial attention to reveal the regions
important for the accurate classification.

2.3.1. Hyperparameter tuning
Before running the experiments with meanMLP, LSTM, and

Transformer models, we needed to find an optimal set of hy-
perparameters (HPs) for them. For this purpose we singled out
a 1/30th portion of the UKB dataset for the tuning and ran 400
iterations of HP search for each model. In each iteration we ran-
domly sampled a set of HPs, performed stratified 5-fold cross-
validated experiments and extracted an average test ROC AUC
score. HPs associated with the highest ROC AUC score were
chosen as optimal. The tuning portion of the UKB dataset was
not used further in the experiments.

2.3.2. Classification performance comparisons
In our work we performed two kinds of classification perfor-

mance comparisons: one in which we tested the trained models
on a test (holdout) data of the training dataset, and another in
which we tested them on a different dataset of the same cate-
gory (information on categories is provided in Table 1).

In order to compare classification performance of the mod-
els on fair terms, we performed stratified 5-fold cross-validated
(CV) experiments on each dataset with the meanMLP and the
rest of the models referenced in section 2.1. To detect over-
fitting, we randomly split the training set into the train and
validation sets using stratified sampling to preserve class bal-
ances. Validation set size was chosen to be 1/5th of the train-
ing data or 16% of the entire dataset, resulting in 64/16/20
train/validation/test splits. We picked the models with the
smallest loss on the validation set, tested them on the test set,
and computed the test ROC AUC score. For each test fold we
repeat the randomized train/val splitting ten times to marginal-
ize over the initialization effects; this way, we obtained 50 test
results for each model-dataset pair. We ensured that for each
dataset the 50 train/validation/test splits remained consistent
across experiments with different models, with no subject’s data
being present in two or more of the sets simultaneously.

For the experiments with SwiFT we used the same CV exper-
iment design, but used only one train/validation split for each
test fold, resulting in a total of 5 results for a dataset.

Since the fMRI data samples can vary significantly across
populations and acquisition sites, it is important for the clinical
applications to use models that generalize well on out of sam-
ple data. Concerningly, in a recent work by Chekroud et al.
(2024) the authors showed that ML models may have poor gen-
eralizability on biomedical data. To verify this, in our work
we performed what we call "transfer" experiments, in which
we tested how well the models, when trained on one dataset,
were able to perform classification on another dataset of the
same category (FBIRN, BSNIP and COBRE on schizophrenia,
and OASIS and ADNI on Alzheimer disease). To do that, in
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Table 2: Relative training time of the considered models on different tasks. The vertical line between DICE and BNT models separates time series and FNC models.
Time series models’ times are normalized to the time of meanMLP; FNC models are normalized to LR. We use the average training time across 50 runs. Datasets
without specified parcellation are ICA datasets. The MILC model entries on the UKB datasets are missing, since the MILC model was trained on a different
hardware on these datasets. BolT, Glacier, and SwiFT entries are missing for the same reason.

Datasets Models

meanMLP Transformer LSTM DICE MILC BrainNetCNN FBNetGen BNT LR

FBIRN 1 2.3× 3× 4× 13× 163× 95× 66× 1
BSNIP 1 3× 4× 7× 15× 146× 100× 55× 1
COBRE 1 1.6× 5× 5× 28× 168× 109× 95× 1
ABIDE 1 8× 6× 13× 28× 155× 145× 52× 1
OASIS 1 5× 6× 9× 21× 170× 121× 59× 1
ADNI 1 5× 5× 10× 31× 159× 106× 68× 1
HCP 1 12× 5× 13× 35× 171× 412× 58× 1
UK Biobank (Sex) 1 8× 6× 13× - 102× 57× 24× 1
UK Biobank (Age-Sex) 1 10× 11× 15× - 67× 34× 14× 1
FBIRNROI 1 2.1× 2.8× 46× 11× 63× 10× 6× 1
ABIDEROI 1 4× 2.5× 79× 14× 19× 5× 1.7× 1
HCPROI 1 2.6× 1.9× 45× 5× 58× 44× 5× 1

addition to testing the trained models on the test set in the ex-
periments described above we also tested them on the entirety
of data from the same-category datasets.

2.3.3. Data analysis experiments
In order to further validate the performance of our mean-

MLP model we tested it on a differently preprocessed fMRI
data, using the HCP datasets described in 2.2.2. However, we
also used this opportunity to analyze the influence of differ-
ent preporcessing techniques on different model architectures.
In these experiments we limited our model choice to mean-
MLP, LSTM, meanLSTM, Transformer, and meanTransformer,
as these models’ properties are easier to interpret. Hinted by the
meanMLP’s indifference to the temporal order in the data, we
additionally tested the performance of these models on the HCP
and UKB data with a broken temporal order.

We used the same 5-fold cross-validation experiments design
described above. To obtain the data with the broken tempo-
ral order, we reshuffled the training set data over the time axis.
Each sample from the training set was reshuffled over the time
axis independently; on each new training epoch a new shuffling
was used. Validation and test sets were left as they are.

2.3.4. Spatial attention
In order to analyze the brain spatial attention of the trained

models we employed a gradient-based saliency method (Si-
monyan et al., 2014), which highlights the features in the in-
put that play an important role for the model’s prediction.
Saliency maps were computed for the test set data w.r.t. the
true class of an input sample using the 50 models trained as de-
scribed in 2.3.2. For the models trained on one of the datasets
on schizophrenia (FBIRN, BSNIP and COBRE) or Alzheimer
disease (OASIS and ADNI), we also computed the saliency
maps for the entirety of the data from the remaining same-
category datasets. The computed gradients were merged across
time points and subjects, grouped according to their true class
and compared using Welch’s unequal variances t-test. The

model’s spatial attention was then estimated based on the FDR-
corrected p-values.

Following the approach described by Lewis et al. (2022),
we also computed the temporal pairwise correlations for each
saliency map, which we further relate to as co-saliency. By
grouping the co-saliencies according to their true class, we
performed Welch’s unequal variances t-test on the co-saliency
groups to reveal statistically significant differences in the
model’s attention for one class or another.

3. Results

In this section we present the results of our experiments.
We (i) evaluate the classification performance of our model
and its counterparts on fMRI datasets in terms of accuracy and
training time, (ii) analyze the models’ performance on the data
with reshuffled temporal order and on a differently preporcessed
data, and (iii) introspect the trained meanMLP model by visu-
alizing its predictions over time and computing saliency maps.

3.1. Classification comparisons

General comparisons. Using the experimental setup described
in section 2.3.2, we trained our models for classification on dif-
ferent datasets. Fig. 3 shows the test ROC AUC scores of the
trained models. As we can see, the meanMLP model performs
on a competitive level with other, more advanced models on
various tasks, often showing the best results across time series
models. LR exhibits a similar behavior, showing competitive
results among the FNC models, although in a less pronounced
way compared to the meanMLP. This behavior is observed on
different classification tasks and different fMRI parcellations.
In the case of multiclass classification (UKB-SA) LR falls be-
hind the more intricate models; meanMLP, however, still shows
decent results. Notably, on larger datasets (UKB, HCP), mean-
MLP starts to lag behind the more sophisticated BolT model.
We observe a similar behavior in the experiments comparing
meanMLP to SwiFT, the results of which are shown in Fig. 4.
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Figure 3: Comparison of test ROC AUC scores for the meanMLP model and other considered models on various datasets in a classification task. The meanMLP
model shows competitive results compared to more advanced models for fMRI time series, as does logistic regression (LR) trained on FNC data. The blue dashed
line at ROC AUC = 0.5 denotes a random choice baseline. The asterisk and degree signs denote significant (p < 0.05) and insignificant (p > 0.05) statistical
differences between model results according to the Wilcoxon rank test. We ran these tests on meanMLP and the next best TS model, and LR and the next best FNC
model.

Figure 4: Comparison of test ROC AUC scores of meanMLP, BolT, and SwiFT
models on the FBIRN and HCP datasets. In these experiments, we used 5-fold
CV with one trial for each fold, unlike the experiments in Fig. 3 where we
ran 10 trials. SwiFT was trained on volume fMRI time series using 5-fold CV;
meanMLP and BolT models were trained on parcellated fMRI time series using
the Schaefer 400 ROI atlas, which is native to the BolT model. The results we
can see here conform with the observations from Fig. 3 — meanMLP model
shows better results on the smaller datasets (like FBIRN), but falls behind more
intricate models when more data is available.

Training time. Table 2 displays the relative training times of
the models. Here, the meanMLP and LR models excel, con-
sistently demonstrating the fastest performance across the time
series and FNC models, respectively, owing to their simplicity.

Transfer comparisons. In order to better assess models’ gener-
alizability, in addition to same-dataset testing we also explored
how well the trained models "transfer" on the datasets of the
same category (FBIRN, COBRE, and BSNIP on schizophre-
nia, OASIS and ADNI on Alzheimer disease). Fig. 5 show the
results of these tests. The meanMLP model again performs on a
competitive level with more advanced time series models even
when applied to a data from a different dataset. Although, as
we see, this time the complexity of other models sometimes al-
lows them to generalize better. LR exhibits a similar behavior,
showing competitive results among the FNC models.

This result is especially interesting in the light of a recent pa-
per by Chekroud et al. (2024), where machine learning models,
when trained on a biomedical data to distinguish the clinical
output of schizophrenia treatment, were shown to fail on the
independently collected data. Our results show that, when it
comes to fMRI data, the machine learning models are quite ca-
pable of transferring their performance on the independent data.

3.2. Time-shuffled training

In pursuit to understand the reasons behind the meanMLP’s
classification success we decided to explore the importance of
the temporal order in fMRI time series for the accurate classi-
fication. Why temporal order? As was noted in section 2.1.1,
the meanMLP architecture lacks remarkable features with the
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Figure 5: Comparison of test ROC AUC scores of the meanMLP model and other considered models when trained on one dataset and tested on another. All of the
datasets here are ICA datasets. The meanMLP model again shows competitive results compared to more advanced models for fMRI time series, as does logistic
regression (LR) trained on FNC data. The blue dashed line at ROC AUC = 0.5 denotes a random choice baseline. The asterisk and degree signs denote significant
(p < 0.05) and insignificant (p > 0.05) statistical differences between model results according to the Wilcoxon rank test. We ran these tests on meanMLP and the
next best TS model, and LR and the next best FNC model.

exception of being indifferent to the temporal order in the data.
This fact is supposed to harm the meanMLP ability to perform
classification on time series, unless the time points in the time
series, when considered in isolation from each other, contain
enough discriminative information.

To investigate this, we selected a narrow pool of models mod-
els with well known capability for processing the sequential
data, namely LSTM and Transformer, and trained them on two
tasks along with meanMLP. In the first task we train the se-
lected models to distinguish the fMRI samples with normal and
inverted temporal order, using the special HCP ICA dataset de-
scribed in section 2.3.3. The intention behind this task is, on the
one hand, to verify the existence of sequential features hidden
in the fMRI temporal order, and, on the other hand, to analyze
the models’ ability to detect these features and use them in clas-
sification. The results of the models on this task are shown in
Fig. 6(a). We can see that LSTM and Transformer models are
able to detect some sequential features and thus distinguish the
regular and time-reversed fMRI samples. meanMLP fails at this
task, as expected, due to its architecture.

In the second task we trained the selected models on the HCP
and UKB data, in which we artificially broke the temporal or-
der. We did so by randomly reshuffling each training data sam-
ple along the time axis. Each sample was reshuffled indepen-
dently from the others, and was reshuffled anew on each new

epoch. Such reshuffling is supposed to put any sequential fea-
tures in the data in disarray and force the models to look for
some stationary discriminative features, which are independent
from the temporal order. We know that such features exist,
since the meanMLP model can not use anything else for classi-
fication. So, this task allows us to explore how the performance
of order-aware models changes when they are left with only sta-
tionary fMRI features. In this task we used a few variations of
HCP dataset described in sections 2.2 and 2.2.2 in order to rule
out the influence of preprocessing techniques on the temporal
and stationary fMRI features, at least to some extent, and the
UKB-S dataset, on which all of the considered models clearly
proved their classification capabilities.

Fig. 6(b) shows the results of models on the second task.
As expected, meanMLP is indifferent to the temporal shuffling.
Overall, all of the considered models are able to train on the data
with the broken temporal order, which is best shown by the re-
sults on the UKB-S dataset. More intriguingly, the Transformer
model tends to benefit from the broken temporal order, some-
times significantly. The LSTM model performance slightly de-
grades on the data with broken temporal order with an excep-
tion of a single dataset.

We also conducted this kind of experiment with the rest of
TS models, the results of which are shown in Appendix Ap-
pendix A.
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Figure 6: Comparisons of classification performance of a few test models
trained to distinguish (a) the time direction in the HCP ICA data, and (b) the
subject sex in the HCP and UKB data with original and broken time order.
(a) We trained our test models for the time direction inference task using the
special relabeled HCP ICA data described in section 2.3.3. LSTM and Trans-
former are capable of solving this problem to some extent, showing a general
ability to learn sequential features. meanMLP fails at it completely, as can be
expected from the model’s architectures. (b) To break the temporal order in the
data we reshuffled the samples from the training set along the time direction
on every training epoch. meanMLP’s performance was not affected by the bro-
ken temporal order. Interestingly, order-aware LSTM and Transformer models
managed to train even on the data devoid of sequential features, which is promi-
nently seen on the UKB-S results.

3.3. Influence of preprocessing

In order to verify the meanMLP results on one hand, and
to further compare the behavior of order-aware and order-
indifferent architectures on another hand, we compare the
performance of a few chosen models on the differently pre-
processed fMRI data. Here we consider the same pool of
models (meanMLP, LSTM, and Transformer) as in the previ-
ous section, with the addition of meanLSTM and meanTrans-
former models. We use the HCP datasets described in sec-
tions 2.2 and 2.2.2, which allow us to compare the influence
of a few preprocessing techniques in an isolated environment.

Fig. 7 shows the results of our comparisons. We can see that
the warp to MNI space does not significantly affect the models’
classification abilities, and the use of different brain atlases for
fMRI parcellation, while affecting the models performance, af-
fects it in the same way. However, we notice the differences in
performance on the HCP data prepared according to the general
and the additional preprocessing pipelines. Based on these dif-
ferences, we can distinguish two groups of models: one group
includes LSTM and Transformer, two order-aware models that
perform better on the HCP data prepared according to the gen-
eral pipeline; the other group consists of Mean models that per-
form better on the HCP data prepared according to the addi-
tional pipeline.

More importantly, we can see that while pre-processing af-

Figure 7: Influence of the data preprocessing techniques on models classifica-
tion performance. While different preprocessing techniques can improve the
performance of some models and hurt the others, the models ranking remains
mostly unaffected. Judging by the performance comparisons on all the available
data, we can distinguish two categories of models: mean (meanMLP, meanL-
STM, and meanTransformer) and regular (LSTM and Transformer). While
mean models tend to perform better on the HCP data that was prepared ac-
cording general preprocessing pipeline (last two datasets) compared to the ad-
ditional pipeline (first three datasets), regular models do the opposite. At the
same time, the use of different brain atlases and the normalization to the MNI
space do not show such effect.

fects the models’ performance, it does not change the models’
ranking significantly. meanMLP shows best results across the
chosen pool models. Interestingly, the introduction of the av-
eraging step to LSTM and Transformer models improved their
performance significantly, as we can see from the meanLSTM
and meanTransformer results.

3.4. Introspection into the prediction dynamics

Although meanMLP model is capable of accurate classifi-
cation of the brain disorders without learning any dynamical
information from the data, it does not mean that this informa-
tion is not there, and it is still possible to use this model to
peek into the dynamics by inspecting the output logits of the
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Figure 8: Dynamics in MLP block predictions in classification of schizophrenia
(FBIRN), Alzheimer disease (OASIS), and autism (ABIDE). Two healthy con-
trol subjects and two subjects with brain disorder were taken from each respec-
tive dataset. The upper part of the plots shows the relative prediction strength
for each class at each time point. Solid color lines visualize the predictions
averaged over the 10 time points window. Ghost color lines in the background
visualize the raw predictions. The lower part of the plots show the saliency
map, computed using integrated gradients (Sundararajan et al., 2017) for the
true label’s output logit and multiplied at each time point by the corresponding
prediction strength. The existence of time frames where the prediction strength
for one class persistently exceeds the other suggests the presence of periods of
anomalous and exclusively normal brain activity.

MLP block before the averaging step. Fig. 8 shows the results
of introspection into the MLP block predictions. As we see,
there are periods of time where the prediction strength for one
class consistently exceeds the prediction strength for the other,
which suggest the existence of normal and abnormal brain ac-
tivity over periods of time. This fact indirectly verifies the ex-
istence of dynamics in the data. However, as previous results
show, the knowledge of these dynamics is not necessary for the
accurate classification of brain disorders.

3.5. Spatial attention

Region attention. Using the meanMLP model trained on
BSNIP dataset, we explored what brain regions the model
found to be most discriminative for the classification of schizo-
phrenia. To do that we computed the saliency maps and found
regions for which the gradients computed on the data of dif-
ferent classes were significantly different according to Welch’s
t-test statistics, as described in 2.3.4.

Fig. 9 shows the results of these comparisons. As we see,
the gradients from a variety of regions turned out to be statisti-
cally significantly different. This fact makes it difficult to draw
conclusions about the importance of individual brain regions
for the schizophrenia classification, as too many of them ap-
pear to be important to the model. In a way, this failed attempt

Figure 9: Per-region comparisons of gradients computed on test BSNIP data
using meanMLP model trained on BSNIP. The left panel shows the distribu-
tion of gradients computed for the samples of each class at each region; the
right panel shows FDR-corrected p-values of the Welch’s t-test applied to the
gradient distributions. The significance of region differences was determined
by p-values < 0.05. While the per-region distributions of gradients on the left
panel appear to be fairly similar to each other, the p-values from the Welch’s
t-test indicate that most of the region distributions are significantly different,
which makes the interpretation of the model’s attention overly complex.

to interpret the model signifies a different kind of importance
— the importance of designing more interpretable models for
neuroimaging data, if we hope to learn the mechanisms of brain
work through the machine learning. A similar analysis was per-
formed on datasets other than BSNIP; its conclusions, however,
were the same.

Correlational attention. With the previous result being a fail-
ure, we tried a different approach to the attention problem
by statistically comparing not region saliencies, but rather the
temporal correlations of regions saliencies that we call co-
saliencies. The results of this approach for the meanMLP
trained on BSNIP are shown in the Fig. 10. Here we also
considered the co-saliencies computed from the FBIRN and
COBRE data using the same meanMLP trained on BSNIP in
order to better understand how the model transfers onto other
datasets.
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Figure 10: Comparison of co-saliencies computed from meanMLP trained on
BSNIP. We show t-values of Welch’s t-test applied to group co-saliencies com-
puted from the test BSNIP, the entire FBIRN, and the entire COBRE datasets.
Only the significant t-values with the corresponding p-values < 0.05 are shown
on the panels. The FBIRN and BSNIP panels are split into 2 parts along the
main diagonal: the lower triangles show components that are significant in both
COBRE and BSNIP data, the upper triangles show the components that are
unique for COBRE. The first row shows the results for the meanMLP model
trained on the BSNIP data with 80% training and 20 % test splits, as described
in 2.3.2, while the second row shows the results for which this proportion was
flipped to 20% training and 80 % test.

Judging by the BSNIP panel in the first row, we can see that
this approach does not provide us any interpretable spatial at-
tention either, as too many components in co-saliencies are sig-
nificantly different between classes, and they also do not appear
to be clustered. However, the salient components on the trans-
fer dataset panels indicate that while the model detects some fa-
miliar features in the transfer data (regions in lower triangles), it
also pays attention to some new regions that were not salient in
the training dataset (regions in upper triangles). This effect may
lead to intriguing interpretations regarding the learning process
of supervised learning.

However, it is not clear how much this observation is affected
by the size effect of the data. The second row of results in
the Fig. 10 shows the salient regions of a model for which the
proportions of train and test sets of the BSNIP dataset were
flipped. From these results we can see that the model trained
on less data pays attention to more regions in BSNIP data; yet
it pays attention to less regions in the transfer datasets. We
reserve the comprehensive explanation of these observations for
the future work.

4. Discussion

In our experiments we found that the proposed meanMLP
model is a surprisingly decent classifier for the fMRI data, and
also revealed an interesting property of the fMRI data itself.
We believe these findings carry important implications to the
researchers working on joint ML/neuroimaging projects, espe-
cially the work involving the fMRI data.

4.1. Implications to the fMRI classification accuracy as a mod-
els evaluation metric

Our experimental findings in section 3.1 indicate that the
meanMLP model can successfully classify mental disorders,
sex, and age based on the fMRI time series. Notably, mean-
MLP performance is competitive to that of the best models
for fMRI time series data classification, despite much simpler
model design, and only falls behind the more intricate models
when more data is available. This conclusion holds on differ-
ently pre-processed fMRI data, as shown in the section 3.3.

We believe that the above fact, combined with the success
of logistic regression on the FNC fMRI data, underscores the
necessity of reassessing the motivation for the future research
on ML applications to brain fMRI data. While achieving a de-
cent classification accuracy remains an important problem for
the real world medical applications, our findings reveal that the
state-of-the-art accuracy can be achieved with relatively simple
methods. At the same time, the increasing model complexity
often leads to either none or disproportionately small accuracy
improvement on most of the tasks. Thus, it appears more fruit-
ful to explore the ML applications to other neuroscience chal-
lenges, such as fMRI data explainability, where greater model
complexity can allow us to delve deeper into the intricacies of
brain function.

4.2. Importance of fMRI dynamic information for classification

We believe that the classification success of the meanMLP
model on one hand, and the classification results of the models
trained on the fMRI data with a broken temporal order on the
other hand provide us an intriguing insight on the fMRI dynam-
ics. A discriminative information in the fMRI time series can
be potentially embedded by two kinds of features: dynamical
sequential features, hidden in the fMRI temporal order, and sta-
tionary features, independent from the temporal order. mean-
MLP is incapable of learning the sequential features, as it is
insensitive to the temporal order in the data by design; yet it
still shows decent classification results by using only stationary
features. In the experiments with the broken temporal order,
where the sequential features are artificially degraded, a few
chosen order-aware models are still able to learn to perform the
classification task, presumably using only stationary features.
Notably, their performance does not degrade as significantly as
could be expected; on the contrary, the Transformer model even
improves its performance on the data with the broken temporal
order. In this latter case the broken temporal orders probably
plays a role of regularization through data augmentation.

These results collectively provide evidence that the sequen-
tial features—and, by extension, the fMRI dynamics—may con-
tain significantly less discriminative information for fMRI clas-
sification problems than is commonly believed. Another plausi-
ble explanation for these observations is that sequential features
may be inherently more difficult to detect than stationary ones,
and the order-aware models used in our experiments are simply
unable to learn these features effectively.

We do observe one exception: the BolT and SwiFT mod-
els outperform the meanMLP when trained on the HCP and
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UKB datasets, two of the larger datasets. Since these models
are among the largest architectures we tested, this could be an
instance of scaling laws at work (Abrol et al., 2021). It is also
possible that the hierarchical structure of BolT and SwiFT al-
lows them to learn discriminative sequential features more effi-
ciently than other models when sufficient data is available, en-
abling these models to outperform meanMLP on this task.

It is worth noting that the relative importance of the sequen-
tial and stationary features depends on the specific task at hand.
As such, while meanMLP exhibits a decent performance in
classifying brain disorders, it is unable to distinguish the time
direction in the fMRI data, which is a purely temporal task. We
believe that this fact can be exploited in the future research to
gain deeper insights into the dynamic aspects of the phenomena
underlying the classification task. For instance, if, in a given
task, the sequential features prove to be more important than
stationary ones, this would imply that the phenomena behind
the task manifest itself more in fMRI dynamics. Such analy-
sis, however, requires more reliable methods for detection of
sequential features, as the indirect method based on temporal
shuffling we used in our work can only destroy such features.
Perhaps the dynamical systems theory (John et al., 2022) can
provide such methods.

Additionally, these observations carry profound implications
for research aimed at enhancing the fMRI data explainability.
Researchers who may employ ML models to uncover sequential
features and use the classification performance as a validation
metric should be aware that these models may, in fact, unveil
stationary features instead. This awareness may be critical for
ensuring the accurate interpretation of model outcomes.

Finally, in our work we considered only the resting-state
fMRI data. Whether the task-based fMRI data exhibits the same
properties remains unclear.

5. Conclusions

In our work, we present the meanMLP, a simplistic model
designed for the classification of sequence data, particularly in
the context of resting-state fMRI analysis. Through extensive
comparisons, we show that meanMLP is capable of classifica-
tion of brain disorders, sex, and age from the resting-state fMRI
with remarkable accuracy. We hence propose our model as a
baseline for future models for fMRI time series classification.

Given the effectiveness of both our model and logistic re-
gression on FNC fMRI data, we advocate for a shift in focus
toward exploring problems beyond classification accuracy in
future joint neuroimaging/ML research. While current trends
often emphasize increasingly complex models in pursuit of
higher classification performance, our findings reveal that sim-
pler models are quite capable of achieving comparable and even
surpassing results on the fMRI data. This complexity, however,
may be better suited for addressing other challenges, such as
enhancing neuroimaging data explainability.

In support of this idea, we attempted to use our model’s spa-
tial attention to reveal the discriminative features of the fMRI
data. However, our efforts were unsuccessful, as we found too

many statistically significant differences between the explana-
tions the model generated for different groups. Nonetheless,
our exploration of the model’s insensitivity to temporal order
revealed a more intriguing characteristic of fMRI time series.
Contrary to intuitive assumptions, our experiments suggest that
the temporal order of fMRI data may contain much less dis-
criminative information than usually believed. This finding,
corroborated by experiments with temporally re-shuffled data,
underscores the need to consider the role of fMRI dynamics
more critically in future research aiming to uncover meaningful
features in the data using machine learning techniques.
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Figure 11: Test classification performance comparison of a wider pool of TS
models trained to distinguish (a) the time direction in the HCP ICA data, and
(b) the subject sex in the HCP and UKB data with original and broken time
order.
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Appendix A. More time-shuffled training

Here we show the results of a wider pool of models trained to
(i) distinguish the direction of time in the input, and (ii) trained
on the HCP and UKB reshuffled time series. The results of
these experiments are shown in the Fig. 11. Here we notice an
interesting behavior of BolT and Glacier models. Glacier ap-
pears to be unable to distinguish the time direction in the fMRI
data, and it is not significantly affected by time shuffling, which
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suggests that it is not actually learning any sequential features.
BolT is able to distinguish time directions well, but only in
around half of the experiments. Unlike vanilla transformers,
it’s performance is degraded by time shuffling. meanLSTM
and meanTransformer behave similarly to their regular coun-
terparts, although they consistently show better classification
scores.
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Data and Code Availability. The model implementations and the experimental setup used in 

our work can be found at https://github.com/neuroneural/meanMLP. This work does not 

introduce any new datasets; all datasets used in our work are properly referenced in the body 

of the paper. 
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A Simple but Tough-to-Beat Baseline for fMRI Time-series Classification
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Abstract

Current neuroimaging studies frequently use complex machine learning models to classify human fMRI data, distinguishing healthy
and disordered brains, often to validate new methods or enhance prediction accuracy. Yet, where prediction accuracy is a concern,
our results suggest that precision in prediction does not always require such sophistication. When a classifier as simple as logistic
regression is applied to feature-engineered fMRI data, it can match or even outperform more sophisticated recent models. Classi-
fication of the raw time series fMRI data generally benefits from complex parameter-rich models. However, this complexity often
pushes them into the class of black-box models. Yet, we found that a relatively simple model can consistently outperform much
more complex classifiers in both accuracy and speed. This model applies the same multi-layer perceptron repeatedly across time
and averages the results. Thus, the complexity and black-box nature of the parameter rich models, often perceived as a necessary
trade-off for higher performance, do not invariably yield superior results on fMRI.

Given the success of straightforward approaches, we challenge the merit of research that concentrates solely on complex model
development driven by classification. Instead, we advocate for increased focus on designing models that prioritize the explain-
ability of fMRI data or pursue applicable objectives beyond mere classification accuracy, unless they significantly outperform
logistic regression or our proposed model. To validate our claim, we explore possible reasons for the superior performance of our
straightforward model by examining the innate characteristics of fMRI time series data. Our findings suggest that the sequential
information hidden in the temporal order may be far less important for the accurate fMRI classification than the stand-alone pieces
of information scattered across the frames of the time series.

Keywords: resting-state fMRI, data explainability, machine learning, deep learning, brain disorders, predictive neuroimaging
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Highlights:

● A  surprisingly  simple  MLP  model  outperforms  complex  AI  models  in  fMRI
classification

● This simple MLP generalizes to unrelated datasets posing the same prediction task
● These findings hold across many datasets, disorders, and processing pipelines
● fMRI  dynamics  may contain  much less  discriminative  information than commonly

believed
● Predictive accuracy alone may not justify using complex AI models with fMRI data
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