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ABSTRACT
Hyperbolic classifiers, which typically view hyperbolic hyperplanes

as decision boundaries, are generalizations of Euclidean classifiers

in hyperbolic space suitable for modeling hierarchical data. In

this paper, we presentMaximal Separating Poincaré Hyperplane

(MaSH), a hyperbolic geometric inductive bias that enhances the

generalization capability of hyperbolic classifiers, especially on the

class-imbalanced settings. MaSH encourages 1) the equiangularity
of the ideal points of the Poincaré hyperplanes of all classes; and 2)

the equiradiality of these Poincaré hyperplanes. The two proper-

ties jointly encourage the maximal separation bias for hyperbolic
classifiers. We perform experiments on imbalanced/long-tailed clas-

sification and the results show consistent improvements.
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1 INTRODUCTION
Learning representations in hyperbolic space has gained popularity

due to its advantageous properties for encoding hierarchical data

[23, 25, 29, 30, 34]. The ability to encode hierarchies stems from the

fact that the volume of hyperbolic space grows exponentially with

an increase in radius, mirroring the discrete property of trees where
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C1 (major class)
C2 (major class)
C3 (minor class)

(a) HMLR (Acc: 75.7)

C1 (major class)
C2 (major class)
C3 (minor class)

(b) MaSH (Acc: 91.2)

Figure 1: A synthetic example on imbalanced classification
in a 2D hyperbolic space, where 𝐶1 and 𝐶2 are major classes
and𝐶3 is a minor class with only 5% training examples of the
major classes. Training and testing examples of each class
are colored by dark and light colors, respectively. (a) HMLR
does not perform well on the minor class; (2) The proposed
MaSH improves the accuracy by 20%+.

the number of nodes grows exponentially with depth. Hyperbolic

embedding projects data into hyperbolic space, and it has been

successfully applied to represent various forms of hierarchical data,

including images [12], texts [23], networks [2], and knowledge

graphs [29].

By embedding Euclidean space features into hyperbolic space,

conventional machine learning algorithms can be extended to oper-

ate within hyperbolic geometry through the definition of equivalent

vector operations. Hyperbolic classifiers [3, 5, 7, 8, 24, 25] generalize

their Euclidean counterparts by learning decision boundaries in

hyperbolic space, and have demonstrated superior performance

on datasets characterized by hierarchical semantics. As a counter-

part to multinomial logistic regression (MLR) in Euclidean space,

Hyperbolic MLR (HMLR) has served as a standard classifier layer

in various hyperbolic learning architectures, including hyperbolic

image classifiers and hyperbolic graph networks [19, 30, 34, 35]. In

HMLR [8], classification logits are formulated as distances from

instance embeddings to margin hyperplanes in hyperbolic space.

Concerning the generalization of classifiers in the imbalanced

settings, one might introduce an inductive bias that describes a

better assumptions about the target classifiers independent of the

training data. One of the most prominent inductive bias is maxi-
mal class separation bias [11]. Given many possible classifiers, the

maximal class separation bias is to select the one that represents

https://doi.org/10.1145/3701716.3715505
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the maximal pair-wise separation of class decision boundaries. To

achieve this, a wide range of works have investigated optimization

strategies to explicitly enforce classes away from each other. A

common approach is to introduce additional losses [15–18] which

incorporate a notion of class margins. However, the generalization

ability of classifiers in hyperbolic space has not yet been explored.

This paper explores the imbalanced (or long-tailed) classifica-

tion problem in hyperbolic space and presentsMaximal Separating
Poincaré Hyperplane (MaSH), a geometric inductive bias that en-

forces the class hyperplanes in hyperbolic space to be maximally

separated. Fig. 1 shows a comparison of MaSH and HMLR on im-

balanced classification. MaSH is inspired by the maximal class

separation bias but is fully designed in hyperbolic geometry. Dif-

ferent from Euclidean geometry, each hyperplane in hyperbolic

space is a curved subspace and it can be uniquely specified by

two features: 1) the direction of the hyperplane which specifies

where the hyperplane points to and each direction can be uniquely

specified by an ideal point in the boundary of the Poincaré ball;

and 2) the radius of the hyperplane which specifies the volume

that the convex regions of the hyperplane encompass, where the

radius can be calculated as the distance from the hyperplane to the

origin. Our proposed MaSH is designed to encourage the sepera-

tion/uniformity of both features. In particular, MaSH enforces 1)

the equiangularity (i.e., equal pair-wise angle) of the directions

of the Poincaré hyperplanes of all classes; and 2) the equiradiality
(i.e., equal radius) of these Poincaré hyperplanes. The satisfaction

of these two properties jointly describe a maximal separation bias

for hyperbolic classifiers. We propose two regularization terms

to encourage equiangularity and equiradiality, respectively. We

conduct experiments on imbalanced/long-tailed classification. The

experimental results demonstrate that MaSH outperforms HMLR,

especially in the imbalanced or long-tailed settings. Our code for

reproducing the results will be open upon acceptance.

2 RELATEDWORK
Classification in hyperbolic space. Hyperbolic geometry pro-

vides an alternative space for representing data whose samples or

labels exhibit a hierarchical structure [1, 2, 2, 8, 12, 14, 21, 22, 26–

28, 31, 32]. Euclidean classification layers have also been generalized

into hyperbolic space [5, 7]. HMLR [8] generalizes multinomial lo-

gistic regression (MLR) by formulating logits as distances from

instance embedding to the margin hyperplane in hyperbolic space,

which is defined as the intersection of the hyperboloid model and a

hyperplane in the ambient space, a.k.a. geodesic hyperplane. Hyper-

bolic SVM [3, 5, 24] considers the maximum margin learning bias

and can be viewed as a hyperbolic formulation of support vector

machine (SVM) classifiers. HoroSVM [7], which is also a formula-

tion of SVM in hyperbolic space, models classification hyperplanes

as horospheres instead of geodesic hyperplanes. Following these

works, more complicated classifiers such as hyperbolic decision

tree and random forest [4, 6] have also been proposed. However,

none of the existing work has considered the imbalanced setting

of hyperbolic classifiers, which is a more realistic setting in our

real-world applications.

3 PRELIMINARIES
Poincaré ball model The Poincaré ball

(
D𝑛, 𝑔D

)
is one of the

models of hyperbolic geometry. The Poincaré ball is defined as an

open 𝑛-ball D𝑛 = {x ∈ R𝑛 : ∥x∥ < 1} equipped with a Riemannian

metric 𝑔Dx = 𝜆2x𝑔
𝐸
, where 𝜆x = 2

1−∥x∥2 , 𝑔
𝐸 = I𝑛 is the Euclidean

metric tensor, 𝜆x is the conformal factor, and ∥ · ∥2 denotes the 𝐿2
norm in Euclidean space. The distance between two points x, y ∈
D𝑛 can be defined by 𝑑D (x, y) = cosh

−1
(
1 + 2

∥x−y∥2
(1−∥x∥2 ) (1−∥y∥2 )

)
.

Hyperbolic MLR (HMLR) generalizes Euclidean MLR to the hy-

perbolic space by viewing Poincaré hyperplane as linear decision

boundaries. A Poincaré hyperplane is defined as the intersection

of a Euclidean subspace and the Poincaré ball plus all linear sub-

spaces going through the origin. For the former cases, a Poincaré

hyperplane can be uniquely defined by its center point that has a

minimal distance to the origin.

Definition 1 (Poincaré hyperplane). Given a (center) point c ∈ D𝑛
where c ≠ 0, the Poincaré hyperplane is defined as

𝐻 c =
{
p ∈ D𝑛 : 𝑔D

(
logc (p) , ®c

)
= 0

}
, (1)

where c is the center point and ®c ∈ 𝑇cD𝑛 .

Given the definition of Poincaré hyperplane, HMLR is defined as:

Definition 2 (HMLR). Let X ⊆ R𝑛 denote an 𝑛-dimensional in-
stance space, C � {1, . . . , 𝐾} denote a finite set of possible classes
where 𝐾 is the number of classes. Given a set of 𝑁 training examples
D = {(x𝑖 , 𝑦𝑖 ) | 1 ≤ 𝑖 ≤ 𝑁, x𝑖 ∈ X, 𝑦𝑖 ∈ C}. HMLR seeks to learn a
transformation function 𝑓𝜽 : X → D𝑛 that maps inputs to a Poincaré
ball and a set of linear classifiers that correctly classify the training
examples. This is typically achieved by training a model with the
optimization objective

LHMLR =
1

𝑁

𝑁∑︁
𝑖=1

L
( [
𝑣1𝑖 , . . . , 𝑣

𝐾
𝑖

]
, 𝑦𝑖

)
, s.t. u𝑖 = 𝑓𝜽 (x𝑖 ) , (2)

where 𝑓𝜽 can be viewed as a feature extractor implemented by a
hyperbolic neural network with trainable parameters 𝜽 . The output
𝒖𝑖 of the feature extractor is referred to as the feature of 𝒙𝑖 . The
loss function L(·, ·) is typically defined as the cross-entropy loss. The
vector [𝑣𝑖1, . . . , 𝑣𝑖𝐾 ] is often referred to the logit vector for data sample
𝒙𝑖 . The logit function is calculated as 𝑣𝑘𝑖 = logit(u𝑖 , 𝐻𝑘 ), which is the
distance from the sample feature u𝑖 to a Poincaré hyperplane 𝐻𝑘 . The
distance has the closed form 𝑑 (u, 𝐻 c) = sinh

−1
(

2 | ⟨ (−c)⊕u,c⟩ |
(1−∥ (−c)⊕u∥2 ) ∥c∥

)
.

4 MASH: MAXIMAL SEPARATING POINCARÉ
HYPERPLANE

The geometric intuition of MaSH is based on two intuitions: 1) max-

imally separating the directions of classifiers, which is equivalent

to enforcing hyperspherical uniformity of the ideal points of the

Poincaré hyperplanes. 2) encouraging fairness of these classifiers

by imposing equiradiality (equal radii) of the Poincaré hyperplanes.

4.1 The Geometric Structure of MaSH
We first consider the structure of simplex equiangular tight frame

(ETF) [36], in which the vectors have equal pair-wise angles.
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Definition 3 (Simplex Equiangular Tight Frame). A collection of
vectors {𝜁𝑖 }𝐾𝑖=1 where 𝜁𝑖 ∈ R𝑑 , 𝑑 ≥ 𝐾 , is said to be simplex equiangu-
lar tight frame if:

Z =

√︂
𝐾

𝐾 − 1

U
(
I𝐾 − 1

𝐾
1𝐾1𝑇𝐾

)
. (3)

where Z = [𝜁1, · · · , 𝜁𝐾 ] ∈ R𝑑×𝐾 ,U ∈ R𝑑×𝐾 satisfies U𝑇U = I𝐾 , I𝐾
is the identity matrix, and 1𝐾 is vector with all elements being one

All vectors in a simplex ETF have an equal ℓ2 norm and the same

pair-wise angle, i.e., 𝜁𝑇
𝑖
𝜁 𝑗 =

𝐾
𝐾−1𝛿𝑖, 𝑗 −

1

𝐾−1 ,∀𝑖, 𝑗 ∈ [1, 𝐾], where 𝛿𝑖, 𝑗
equals to 1 when 𝑖 = 𝑗 and 0 otherwise. The pair-wise angle − 1

𝐾−1
is the maximal equiangular separation of 𝐾 vectors in R𝑑 . Hence,
simplex ETF can be viewed as the maximal separation structure

for linear classification. However, simplex ETF only exists when

𝑑 ≥ 𝐾 , which is not possible when the number of classes is very

large. This paper considers a more general cases 𝐾 ≥ 𝑑 and studies

Grassmannan frame, which is defined as:

Definition 4 (Grassmannan Frame). Given a unit norm frame
defined as a sequence of 𝐾 vectors {𝜁𝑖 }𝐾𝑖=1 whose norms are all equal
to 1, the frame is said to be a Grassmannan frame iff the frame is the
solution of minimal maximal frame correlation

min{M
(
{𝜁𝑖 }𝐾𝑖=1

)
= max

𝑖, 𝑗,𝑖≠𝑗

{��〈𝜁𝑖 , 𝜁 𝑗 〉��}}, (4)

where the minimum is taken over all unit norm frames in R𝑑 , ⟨·, ·⟩
denotes the inner product between vectors.

Essentially, Grassmannan frame is a relaxed version of simplex

equiangular tight frame (ETF) [36] in which all vectors have equal

pair-wise angles and it satisfies two important properties: 1) it has

minimized maximal correlation which corresponds to hyperspher-

ical uniformity; and 2) there exists at least one solution for any

vector number 𝐾 and dimension 𝑑 , even when 𝐾 ≥ 𝑑 .

Lemma 1 (Existence of Grassmannian frames [9]). For any given
vector number 𝐾 and dimension 𝑑 where 𝐾 ≥ 𝑑 , there exists a Grass-
mannian frame denoted by GF(𝐾,𝑑).

Given a Grassmannan frame, a MaSH can be defined as:

Definition 5 (MaSH). A set of features {𝒖𝑖 }𝑁𝑖=1 ⊆ D𝑑 in hyperbolic
space is said to have a Maximal-Separating-Poincaré-Hyperplane
(MaSH) arrangement with respect to a set of classes {𝑦𝑖 }𝐾𝑖=1 ⊆ [𝐾] if
and only if there exist a collection of Poincaré hyperplanes

{
𝐻c𝑘

}𝐾
𝑘=1

parametrized by the center points {𝒄𝑘 }𝐾𝑘=1, such that 1) these hy-
perplanes have equal radius; 2) the corresponding ideal points set

𝒑 =

{
𝒑𝑘 =

𝒄𝑘
∥𝒄𝑘 ∥

}𝐾
𝑘=1

of the center points form a Grassmannan frame;
and 3) these Poincaré hyperplanes can correctly classify the input fea-
tures, i.e., for all 𝑖, 𝑘 that satisfies 𝑦𝑖 = 𝑘 , it has

arg min

𝑘=1,2,· · · ,𝐾
𝑑 (𝒖𝑖 , 𝐻c𝑘 ) = 𝑘. (5)

The MaSH arrangement has a simple geometric description. In

short, it requires that features associated with each class lie inside

the convex hull formed by a hyperplane while being outside of the

convex hulls formed by other hyperplanes, and the hyperplanes

have the properties that they have the same radius and their ideal

points form a Grassmannan frame, hence different classes are suf-

ficiently separated. Under the unconstrained feature models [36],

which assume that the encoder 𝑓 (·) can produce any set of features

given any set of inputs, we have the following guaranteed existence

of MaSH arrangement given any inputs.

Lemma 2 (Existence of MaSH arrangement). For any given vector
number 𝐶 and dimension 𝑑 where 𝐾 ≥ 𝑑 , there must exist a MaSH
arrangement under the unconstrained feature model.

Proof. Given a vector number 𝐶 and the dimension 𝑑 where

𝐶 ≥ 𝑑 , according to Lemma 1, there must exist a Grassmannian

frame GF(𝐶,𝑑), such that a MaSH can be constructed by 1) setting

the ideal points of the hyperplane centers as the vector sets of

GF(𝐶,𝑑); and 2) requiring that these hyperplane centers having

equal radius. □

4.2 Learning MaSH Structure for Classification
Although MaSH arrangements exist for any 𝐾 and 𝑑 where 𝐾 ≥ 𝑑
unconstrained feature model, constructing one from real-world

datasets, which is as known as the Tammes problem [20], is a chal-

lenging problem.We hence consider gradient descent learning as an

approximation. We design two regularization terms, equiangularity

and equiradiality, which explicitly encourage the satisfaction of the

MaSH structure.

Equiangularity encourages the maximal separation of the ideal

points of hyperplanes. This can be achieved by minimizing the

maximal cosine similarity between pairs of ideal points.

p∗ = argmin

p′∈P

(
max

(𝑘,𝑗,𝑘≠𝑗 ) ∈ [𝐾 ]
cos

(
p′
𝑘
, p′𝑗

))
, (6)

where P denote the solution space. However, optimizing this min-

max problem is inefficient as it requires computing all pairwise

cosine similarities and only the largest pair can be updated at each

time step. Hence, we consider the following proxy loss:

L
equiangularity

=
1

𝐾

𝐾∑︁
𝑖=1

max

𝑗∈[𝐾 ]

(
pp𝑇 − 2I

)
𝑖 𝑗
, (7)

where p ∈ R𝐾×𝐷
denotes the current set of ideal points, I denotes

the identity matrix. The loss function minimizes the smallest cosine

similarity for each pair of ideal points and can be optimized quickly

through matrix computation.

Equiradiality encourages the volumes of convex hulls formed by

classification hyperplanes to be as equal as possible. This can be

achieved by minimizing the variances of the radii of hyperplanes,

L
equiradiality

=
1

𝐾

𝐾∑︁
𝑖=1

(p𝑖 − p̂) , (8)

where p̂ denote the average of ideal point set p.
MaSH classifier. The loss for MaSH classifier can be defined as a

weighted sum of the HMLR loss and the two regularization terms.

LMaSH = LHMLR + 𝜆1Lequiangularity
+ +𝜆2Lequiradiality

, (9)

where 𝜆1 and 𝜆2 denote the corresponding regularization weights.

Lemma 3 shows the soundness of the regularization terms.
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Figure 2: A visualization of the learned hyperbolic hyperplanes of HMLR and MaSH. For imbalanced, few-shot, and zero-shot
learning settings, airplane, automobile, and bird are chosen as three minor classes.

Table 1: Imbalanced/long-tailed classification accuracy (%) with ResNet encoder on CIFAR-10. The numbers in the second row
denote the imbalance ratio calculated as 𝜋 =

𝑛𝑚𝑖𝑛

𝑛𝑚𝑎𝑥
where 𝑛𝑚𝑖𝑛 and 𝑛𝑚𝑎𝑥 are the minimal and maximal numbers of training

samples in all classes, respectively. Results are averaged by 5 repeated experiments with different seeds. Mixup is a regularization
term used to improve the generalization of neural network architectures by adversarial training samples.

Methods

without Mixup with Mixup

0.005 0.01 0.02 0.1 balanced 0.005 0.01 0.02 0.1 balanced

MLR 66.1 71.0 77.1 87.4 93.4 67.3 72.8 78.6 87.7 93.6
HMLR 66.5 72.2 77.7 87.5 93.1 68.4 74.6 79.6 87.9 93.3

MaSH (ours) 67.2 72.9 78.4 87.7 93.1 68.8 75.0 79.9 88.1 93.4

Δ(MaSH - HMLR) 1.1% 1.0% 0.9% 0.2% 0.0% 0.5% 0.5% 0.4% 0.2% 0.1%

Lemma 3 (soundness). The MaSH classifier satisfies the MaSH ar-
rangement if and only if L

equiangularity
= 0 and L

equiradiality
= 0.

Proof. If L
equiangularity

= 0 , then the ideal points of these hy-

perplanes form a Grassmannan frame. If L
equiradiality

= 0, then

these hyperplanes have equal radius. Based on the definition of

MaSH, these hyperplanes form a MaSH arrangement under the un-

constrained feature model. Also, if the MaSH classifier satisfies the

MaSH arrangement, based on the definition of the two regulization

terms, we also have L
equiangularity

= 0 and L
equiradiality

= 0. □

5 EXPERIMENTS
We evaluate our method on multi-class imbalanced classification on

CIFAR-10 [13]. We first test our method on CIFAR-10 dataset with

pre-trained low-dimensional features in hyperbolic space, and train

the classifiers in a 2-dimensional hyperbolic space. Fig. 2 shows a

comparison of the learned hyperbolic hyperplanes of HMLR [8] and

MaSH. First, in the balanced case, HMLR is sufficiently effective in

classification and MaSH achieves the same performance. However,

the learned hyperplanes of MaSH are clearly different from the ones

of HMLR. In particular, the hyperplanes of MaSH are more far away

from the origin and their volumes have small variances. This makes

sense as our loss term encourages equal norms. Secondly, MaSH

Table 2: The impact of the regularization terms in MaSH.

0.005 0.01 0.02 0.1 balanced

HMLR 66.1 71.0 77.1 87.4 93.4
MaSH (w/o EquiAngle) 66.8 71.5 77.8 87.6 93.4
MaSH (w/o EquiRadius) 66.7 71.8 77.7 87.5 93.3

MaSH 67.2 72.9 78.4 87.7 93.1

significantly improves HMLR on the imbalanced settings and even

on few-shot/zero-shot settings. In particular, on the imbalanced

setting (𝜋 = 0.01), HMLR fails in classifying two minor classes –

automobile and bird, while MaSH only fails in classifying automobile.
On the few-shot and zero-shot settings, both HMLR and MaSH

can only correctly classify one minor class airplane, but MaSH’s

hyperplanes distribute more uniformly in the hyperbolic space and

achieve better accuracy.

Next, we test our model on CIFAR-10 dataset by training the

ResNet [10] encoder and map the feature into a hyperbolic space

with a hyperbolic linear layer. For ablation analysis, we set various

imbalance ratios and conduct two experiments, onewithMixup [33]

regularization and one without Mixup. As shown in Table 1, it is

clear that HMLR outperforms Euclidean MLR in most of the imbal-

anced cases, demonstrating the advantages of hyperbolic classifiers.
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It is also clear that the proposed method MaSH consistently im-

proves over HMLR on imbalanced cases while achieving similar

results on balanced cases, which is consistent with our major claim

that MaSH generalizes better. We also find that the regularization

Mixup does improve the generalization, but MaSH further improves

it, which means that the benefits provided by Mixup (adversarial

sampling) and MaSH can complement each other. Another inter-

esting finding is that there is a positive correlation between perfor-

mance gain and the imbalance ratio, which further demonstrates

the advantages of MaSH in imbalanced classification settings.

Influence of regularization terms. Table 2 shows the perfor-

mance of MaSH by removing one of the two regularization terms

on the without-Mixup settings. It shows that both terms result in

some improvements on the classification performance on the im-

balanced settings. The combination of the two terms further boost

the performance, demonstrating the unique benefit of both terms.

6 CONCLUSION
This paper introduces a hyperbolic geometric inductive bias suit-

able for hierarchical imbalanced classification. The inductive bias

is inspired by the maximum separation bias and is fully defined

in hyperbolic geometry. We propose MaSH, a hyperbolic classi-

fication approach with two regularization terms that encourage

this geometric inductive bias. Our results showcase the advantages

of the proposed MaSH on imbalanced or long-tailed classification.

The MaSH framework can enhance AI-driven diagnostics in RADx

projects by improving classification performance on imbalanced

medical datasets, such as distinguishing rare COVID-19 positive

cases from the majority of negative samples.
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