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Abstract

Electronic Health Records (EHRs) are valuable healthcare data, aiding researchers and doctors in improving diag-
nosis accuracy. Researchers have developed several predictive models by learning disease representations to forecast
the potential diagnosis that patients may receive. However, existing studies usually ignore the fine-grained semantic
and structure information in EHRs (e.g., the hierarchical relations between diseases and ICD-9 codes), which fails to
provide accurate disease representation towards effective diagnosis prediction. To this end, we propose to enhance
diagnosis prediction through LabCare, a framework with improved semantic and structure modeling of diseases in
EHR data. LabCare can simultaneously capture rich semantic and structural relations among diseases and ICD-9
codes, which is achieved by innovatively integrating language models and box embeddings. Extensive experiments on
two EHR datasets show that LabCare surpasses competitors, consistently achieving a 4.29% average improvement in
Recall and NDCG metrics.

Introduction

Electronic Health Records (EHRs), serving as valuable healthcare data, provide researchers and doctors with the tools
necessary to enhance the precision of diagnosis prediction-making1,2,3. These EHRs are repositories of extensive
patient visit information, including diagnoses, medications, and procedures4,5,6, laying the foundation for the devel-
opment of more effective healthcare plans for patients.

The advent of machine learning techniques integrated with EHRs marks a significant milestone, heralding a new era of
precise disease representation1 3,4. This integration is crucial for diagnosis prediction, as it enables the accurate mod-
eling of diseases, which can be further aggregated to represent patients, thereby facilitating effective and personalized
diagnosis prediction. However, two challenges stand in the way of achieving accurate disease representation.

Challenge I: How to effectively utilize semantic information to capture relations among diseases for modeling dis-
ease representation? Although there have been efforts to utilize textual semantic information from EHRs to obtain
disease representations7,8, their efficacy in distinguishing relations among rare diseases remains constrained. Inspired
by advancements in Language Models (LMs), some studies have attempted to apply these LMs for generating disease
representations9,10, where LMs have been pre-trained with the massive corpora and equipped with a broad spectrum
of knowledge. However, due to the lack of specific clinical knowledge extracted from the medical corpus in training,
it is difficult to model accurate relations between diseases via using LMs to comprehend diagnosis sets of disease
names. For instance, while patients with hypertension may have an increased risk of developing coronary atheroscle-
rosis, these two conditions are semantically distinct. This underscores the existing gap in the capacity of LMs to
comprehend temporal relations between diseases. Moreover, LMs model disease similarity by prioritizing the textual
semantics, thereby potentially failing to distinguish between diseases with similar names while in different categories.
For instance, although “Nephritis nephropathy” and “Gouty nephropathy” have the phrase overlapping of “nephropa-
thy”, they belong to completely different categories (i.e., “Diseases of the Genitourinary System” and “Endocrine
Diseases”). LMs may consider them as similar nephropathy and ignore the difference between the two diseases.

1We use the terms “representation” and “embedding” interchangeably in the remainder of this paper.
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Figure 1: The overall framework of our proposed LabCare. Specifically, we use textualization to convert diagnosis
sets of disease names from EHRs into composed text, and then fine-tune a General LM, thereby obtaining initial
disease embeddings with rich semantics. Next, we model the structural relations among diseases and ICD-9 codes (i.e.,
membership, hierarchy, and exclusion) based on the ICD-9 Hierarchy using box embeddings. Finally, our LabCare
performs diagnosis prediction via aggregating the learned disease embeddings.

Challenge II: How to model and integrate the complex structure information into disease representation? The abun-
dant relations based on hierarchical structures of diseases, such as those provided by the Ninth Revision of Interna-
tional Classification of Diseases (ICD-9) codes in EHRs2, further complicates the accurate representation of diseases.
A common approach among these works involves capturing the hierarchical relations inherent in the ICD-9 Hierar-
chy, while tending to overlook the equally important membership and exclusive relations among diseases and ICD-9
code2,11. This neglect can lead to an inaccurate representation of disease and ICD-9 code relations. For instance, as
depicted in Figure 1, if “Acute sinusitis (with ICD-9 code 461.9)” is categorized under ICD-9 code 461 (i.e., member-
ship between 461.9 and 461), it logically follows that it falls within the broader category of ICD-9 code 460-466 (i.e.,
hierarchy between 461 and 460-466), and conversely, it should not be associated with ICD-9 code 460 (i.e., exclusion
between 460 and 461). Based on the above relations, we can exactly distinguish “Nephritis nephropathy, unspecified
(with ICD-9 code 583.9)” and “Gouty nephropathy, unspecified (with ICD-9 code 274.10)” which belong to different
categories, thereby further capturing more accurate disease representation. However, how to simultaneously capture
the three relations and integrate this complex structure information into disease representation remains unknown.

To address these challenges, in this work, we propose a novel framework to leverage LMs and box embeddings for
enhancing disease representation and diagnosis prediction in healthcare data (named LabCare). Our method begins
with a language-aware semantic modeling module. Specifically, to better understand semantic information from EHRs,
we first convert patients’ diagnosis sets of disease names with temporal structure into composed text via textualization.
Then, we fine-tune a general LM based on the composed text and obtain initial disease embeddings with rich semantics.
This module enables the model to better comprehend disease embeddings with clear relations in the order of visits,
thereby distinguishing different diseases and laying the foundation for more accurate diagnosis predictions.

To further capture and integrate the complex structural relations from EHRs, we propose to project obtained initial

2https://www.cdc.gov/nchs/icd/icd9cm.htm
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disease embeddings into points and ICD-9 code embeddings into boxes, where a box is an axis-aligned hyperrectangle
with a geometric region. Two boxes can clearly “include” or “exclude” each other. In this way, we can utilize
points and boxes to model the membership relations between diseases and ICD-9 codes. Meanwhile, we use boxes to
capture the hierarchical and exclusive relations between ICD-9 codes. Upon box embeddings, we further obtain patient
embeddings via aggregating the learned disease representations for diagnosis prediction, where disease representations
integrate both semantics from diagnosis sets of disease names and structures from ICD-9 Hierarchy.

We conduct experiments on two real-world EHR datasets, a publicly accessible de-identified dataset named MIMIC-
III and a multi-center ICU database named eICU, for diagnosis prediction, respectively. Extensive experimental
results demonstrate that LabCare outperforms the state-of-the-art competitors, which constantly achieves an average
of 4.29% improvement on Recall and NDCG metrics. Furthermore, insightful and interpretable case studies further
demonstrate that our proposed LabCare can effectively capture semantic and structural relations among diseases and
ICD-9 codes, thereby achieving accurate diagnosis prediction.

Related Work

In recent years, Language Models (LMs) have shown remarkable performance in Natural Language Processing (NLP)
tasks9,10,12, where LMs have been pre-trained with the extensive corpora and endowed with a wealth of general knowl-
edge. This enables LMs to better comprehend semantic relations among diseases and model disease representations
from the clinical text in EHRs, thereby supporting doctors and clinicians to make well-informed decisions12,13,14,15.
However, most general LMs usually lack specialized clinical knowledge, which may cause them to overlook temporal
relations among diseases and fail to distinguish different diseases.

More recently, some methods have attempted to leverage the structural relations between diseases and ICD-9 codes
for precise disease representation learning11,16. However, most of them only consider the hierarchy, while ignoring
other equally important relations, such as exclusion. Different from the above representation learning approaches, box
embeddings offer a more natural and intuitive way to capture the complex structural relations17,18,19,20. Two boxes can
naturally and clearly “include” or “exclude” each other, where a box is an axis-aligned hyperrectangle with a geometric
region21,22. Therefore, box embeddings could aid in better understanding and modeling the structural relations among
diseases and ICD-9 codes. Currently, no one has yet utilized LMs in combination with box embeddings to support
and enhance the precision of diagnosis prediction-making. In the following section, we will introduce our LabCare
framework and demonstrate how we leverage LMs and box embeddings to model accurate disease representations and
achieve effective diagnosis predictions.

Method

In this section, we summarize the main modules of the LabCare framework in Figure 1 to provide an overview.
LabCare performs diagnosis prediction through three modules. In the module of language-aware semantic modeling,
we initialize disease embeddings via fine-tuning pre-trained Language Models (LMs) based on the obtained medical
corpus set. Then, in the module of box-constrained structure modeling, we use box embeddings to model three
relations, including membership, hierarchy, and exclusion, from the ICD-9 Hierarchy. After that, we further obtain
patient embeddings via aggregating the learned disease representations for diagnosis prediction.

Language-aware Semantic Modeling. Drawing inspiration from the efficacy of representation learning via Language
Models (LMs)23,24,25,26, we propose to fine-tune pre-trained LMs based on medical corpus for the initialization of
disease embeddings. As depicted in Figure 1, we first convert patients’ diagnosis sets of disease names with temporal
structure from EHRs into composed text through textualization. Then, we adopt a general LM DistilRoBERTa3 as
our starting point for fine-tuning25, which can be flexibly replaced by other LMs (e.g., Clinical-BERT27). Next, we
feed the text to the LM tokenizer and obtain the corresponding token list. The LM then learns the relations between
these tokens to comprehend the textual information within patients’ medical records, thereby yielding the fine-tuned
LM. After obtaining the fine-tuned LM, we gain the initial disease embedding Xd based on the disease name, where

3https://github.com/huggingface/transformers/tree/main/examples/research projects/distillation
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the disease representation can capture both the temporal characteristics and clinical knowledge in the medical corpus.
This improvement enables the model to better comprehend disease embeddings with clear relations in the order of
visits, thereby distinguishing different diseases and laying the foundation for more accurate diagnosis predictions.

Box-constrained Structure Modeling. To begin with, we will introduce the box definition17. A box (hyperrectangle)
can be described by two vectors (points). As shown in the lower right of Figure 1(a), we use the minimum point
s ∈ Rm and the maximum point t ∈ Rm to represent a box b, which is a m-dimensional hyperrectangle. The center
point of the box is denoted as e, and its radius is denoted as r. The formula to calculate the volume of a box is given
by V ol(b) =

∏m
k=1 (t

k − sk), where k is the indicator of dimension. The intersection volume between two boxes bi
and bj is denoted as V ol(bi

⋂
bj) =

∏m
k=1 max(zk, 0), where zk = min(tkbi

, tkbj
)−max(skbi

, skbj
). Note that, the

⋂
operator enables the calculation of conditional probability between two boxes, i.e., p(bi|bj) = V ol(bi

⋂
bj)/V ol(bj).

Leveraging the advantages of box embeddings in modeling structural relations17,22, we integrate three relations ex-
tracted from the ICD-9 Hierarchy to gain more accurate disease representations from both geometric and probabilistic
perspectives. Specifically, we first project the initial disease embeddings Xd into points and ICD-9 code embeddings
into boxes. Then, we use the geometric relations between a point and a box to model membership relations, and that
between two boxes to model hierarchical and exclusive relations. Finally, we optimize these three relations via condi-
tional probability. The right of Figure 1 shows how these relations are transformed into geometric constraints and we
describe each relation in detail.

Membership Relation Since disease can have multiple ICD-9 codes (shown in Figure 1), we propose to leverage
both points and boxes for modeling the membership relations among diseases and ICD-9 codes. Here, the center point
of the box is denoted as e, and its radius is denoted as r. According to the property of mathematical definition on
Membership (i.e., A point di is inside a box bcj

(
scj , tcj

)
if and only if ∥di − ecj∥ < rcj , which means p

(
bcj |di

)
=

1 − tanh
(
max

{
0, ∥di − ecj∥ − rcj

})
= 1.), a disease di can be described by an ICD-9 code cj . In this way, the

corresponding geometric relation can be represented by making a point di ∈ Rm being inside a box bcj ∈ Rm. Then,
we define the membership objective function LMem by measuring the geometric membership (i.e., ∥di −ecj∥ < rcj )
as follows:

LMem

(
bcj ,di

)
= −bcj log

(
p
(
bcj |di

))
−

(
1− bcj

)
log

(
1− p

(
bcj |di

))
, (1)

where di denotes the disease embedding and bcj denotes the ICD-9 box embedding.

Hierarchical Relation Since a parent ICD-9 code can include its children geometrically (e.g., ICD-9 code 460-
466 includes ICD-9 code 461), we propose to leverage the geometric insideness between the hyperrectangles of the
corresponding box b(s, t) for hierarchical relations. According to the property of mathematical definition on Hierarchy
(i.e., A box bci contains a box bcj if and only if p

(
bci |bcj

)
= 1.), we transform the logical constraint into soft

geometric constraint in the embedding space, where we propose a hierarchy loss as follows:

LHie

(
bci , bcj

)
= 1−

V ol
(
bci

⋂
bcj

)
V ol

(
bcj

) , (2)

where box bci (sci , tci) contains box bcj
(
scj , tcj

)
.

Exclusive Relation To properly model the exclusion between ICD-9 codes, we interpret the exclusion as geometric
disjointness between boxes b(s, t). According to the property of mathematical definition on Exclusion (i.e., a box bcj
disconnects from a box bck if and only if p

(
bcj |bck

)
= 0.), we propose an exclusion loss LEx for exclusive relation

modeling as follows:

LEx(bcj , bck) =
V ol(bcj

⋂
bck)

V ol(bcj )× V ol(bck)
, (3)

where box bcj (scj , tcj ) disjoints from box bck(sck , tck).

By modeling the membership, hierarchical, and exclusive relations among diseases and ICD-9 codes, we effectively
capture structure information about diseases. This enhancement equips our LabCare with a more sophisticated un-
derstanding of clinical knowledge.



Diagnosis Prediction. Based on the learned disease representations X̂d via integrating LMs and box embeddings, we
first adopt the self-attention mechanism28 to obtain the historical visit embeddings of patient pi. Following this, we
generate patient embedding pi,Ti

via attention mechanism29:

{wi,k}Ti−1
k=0 = softmax

(
MLP

(
{Self-Att (Di,k)}Ti−1

k=0

))
,

pi,Ti
=

Ti−1∑
k=0

wi,kvi,k,
(4)

where Di,k is the set of disease embeddings diagnosed in the k-th visit of patient pi, {vi,k}Ti−1
k=0 denotes the historical

visits of patient pi, and {wi,k}Ti−1
k=0 denotes the weight assigned to each visit. Since the diagnosis prediction is a

multi-label classification task, we use a dense layer with a softmax function to calculate the predicted probability:

v̂i,Ti = softmax
(
MLP

(
pi,Ti

))
, (5)

where v̂i,Ti
is the prediction of pi’s Ti-th diagnosis. The objective function LPred for diagnosis prediction is listed:

LPred = − 1

K

K∑
i=1

(vi,Ti
log (v̂i,Ti

)) + (1− vi,Ti
) log (1− v̂i,Ti

) , (6)

where vi,Ti
is the ground-truth of pi’s Ti-th diagnosis and K is the number of patients. Finally, the overall objective

function of LabCare is:
L = LPred + λ(LMem + LHie + LEx), (7)

where λ is a weight hyperparameter to control the regularization for box relation modeling.

LabCare combines the semantic modeling capabilities of LMs with the structure modeling features of box embed-
dings. This ensures that disease embeddings not only capture rich semantic information from EHRs but also incorpo-
rate structure information related to disease classification within the ICD-9 hierarchy. Finally, we achieve enhanced
representations of diseases, leading to significantly improved performance in diagnosis prediction tasks.

Experimental Settings

Datasets. To verify the effectiveness of the compared methods, we use two real-world EHR datasets: MIMIC-III30

and eICU31. The publicly available MIMIC-III dataset includes over forty thousand de-identified patients treated in
critical care units at the Beth Israel Deaconess Medical Center from 2001 to 2010. We focus on ICU admissions within
the dataset and utilize them for diagnosis prediction. Additionally, the eICU Collaborative Research Database is a
multi-center ICU database monitoring over two hundred thousand ICU admissions across the United States. For the
eICU dataset, we focus on diagnostic informatics and utilize it for diagnosis prediction. The sample characteristics
of the two datasets are presented in existing works30,31, and detailed statistics are shown in Table 1. Both datasets are
split into training, validation, and test sets at a ratio of 7:1:2, with patients as the unit of segmentation.

Patient Cohort. For MIMIC-III, we extract a total of 7493 patients with at least two visits, considering their last visit
as the diagnosis to be predicted and the previous visits as input to the model. For eICU, we extract patients with at
least three visits, resulting in 23828 patients. In the visit records of these two datasets, diseases diagnosed during each
visit are identified by ICD-9 codes2,8, and the visit records are identified by unique patient IDs. For the hierarchy of
ICD-9 codes, we obtain structure information from the website4. We sample all membership and hierarchical relations
among diseases and ICD-9 codes, as well as exclusive relations between ICD-9 codes at the same level.

Evaluation Metrics. In assessing prediction performance, we employ two widely recognized metrics, Recall@k and
NDCG@k. Recall@k measures the proportion of relevant diseases correctly predicted. NDCG@k (Normalized Dis-
counted Cumulative Gain) simultaneously considers the correctness and ranking of each predicted disease. Consistent
with ProCare3, we set k to 5 and 10 to evaluate the predictive efficacy of our disease forecasting model.

4http://www.icd9data.com/
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Dataset # of patients # of visits Avg. visits # of unique Avg. diagnosis Max diagnosis
per patient ICD-9 codes codes per visit codes per visit

MIMIC-III 7,493 12,401 1.66 4,880 12.47 39.0
eICU 23,828 59,908 2.51 2,591 4.22 95.0

Table 1: Statistics of the datasets used in our experiments.

Methods for Comparison. We compare our proposed LabCare with the following baselines from two perspectives:

⋄ Interaction Modeling Methods. These methods focus more on the interaction between diseases and visits to
capture the structural characteristics of EHRs. Specifically, GRAM32 leverages clinical knowledge graphs to learn
representations of medical codes and predict visits using RNNs. KAME33 focuses on predicting patients’ future
health information through a knowledge attention mechanism. MHM1 models multi-modal clinical data-based hier-
archical multi-label model for the diagnosis prediction task. TAdaNet34 introduces a domain-knowledge graph and
incorporates task-specific customization for diagnosis prediction. CGL8 designs a collaborative graph learning model
to explore patient-disease interactions and medical domain knowledge.

⋄ Dynamic Modeling Methods. These methods focus more on the dynamic process of patients’ status based on
their visits in EHR data to model the temporal information. Specifically, RETAIN35 utilizes gated recurrent units and
attention mechanisms to predict patient diagnoses. Dipole36 employs bidirectional RNNs and attention mechanisms
to forecast patient visits. Timeline37 formulates a time-aware disease progression function for predicting clinical
events based on past visits. HiTANet29 proposes a hierarchical time-aware attention network for risk prediction based
on electronic health records. Chet38 designs a context-aware dynamic graph learning mechanism to learn disease
combinations and development. ProCare3 enhances personalized diagnosis prediction by capturing disease severity,
interaction, and progression in Electronic Health Records (EHR).

Implementation Details. We implement our model in PyTorch5. We employ the standard Adam optimizer with a
learning rates of 1e-4. We set the embedding dimension dim to 128, the batch size to 128, and the weight hyper-
parameter λ to 3.0. For all baselines, we carefully tune their hyperparameters as suggested in the original papers to
achieve their best performance.

Experiment Results

From Table 2, LabCare outperforms all baseline methods across four different evaluation metrics on both datasets.
Compared to the second-best runner, LabCare achieves performance gains ranging from 2.15% in Recall@10 on
eICU to 7.91% in NDCG@5 on MIMIC-III. This validates the effectiveness of our proposed semantic modeling and
structure modeling for diagnosis prediction, as EHRs contain rich semantic information and structural characteristics.

Specifically, compared to ProCare, LabCare improves performance by 3.05% (achieved in Recall@5 on MIMIC-III)
to 15.30% (achieved in NDCG@5 on eICU). This indicates that leveraging LMs for semantic modeling of diagnosis
records contributes to performance enhancement, as LMs can incorporate prior knowledge from general corpora to
learn the rich semantic information in EHRs. Compared to CGL, LabCare achieves performance gains ranging from
2.15% (achieved in Recall@10 on eICU) to 7.91% (achieved in NDCG@5 on MIMIC-III). This suggests that using
box embeddings for structure modeling of ICD-9 codes is beneficial for performance improvement, where the three
relations among diseases and ICD-9 codes in EHRs (i.e., membership, hierarchy, and exclusion) can be naturally and
effectively captured and represented.

To better understand our proposed techniques, we conduct three ablation studies (shown in Table 2). Specifically, we
respectively remove our general LM, fine-tuning, and box embedding techniques to obtain LabCare l-, LabCare f-,
and LabCare b- models. Compared with LabCare l-, LabCare learns semantic information carried by disease names
in EHRs, resulting in performance gains ranging from 9.80% (achieved in Recall@10 on MIMIC-III) to 12.51%
(achieved in NDCG@5 on MIMIC-III). Furthermore, the performance gains of LabCare over LabCare f- ranges

5https://pytorch.org/
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Method Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@10 NDCG@10
MIMIC-III eICU

RETAIN 0.1510 0.4188 0.2134 0.3537 0.3213 0.3428 0.3901 0.3605
Dipole 0.1442 0.3999 0.2038 0.3378 0.3071 0.3274 0.3727 0.3452
GRAM 0.1429 0.4059 0.2112 0.3510 0.3049 0.3318 0.3862 0.3576
Timeline 0.1487 0.4123 0.2100 0.3482 0.3175 0.3376 0.3840 0.3548
KAME 0.1353 0.3992 0.2055 0.3070 0.2887 0.3268 0.3759 0.3126
MHM 0.1383 0.4080 0.2128 0.3481 0.2954 0.3340 0.3893 0.3547
TAdaNet 0.1433 0.4114 0.2172 0.3568 0.3056 0.3371 0.3972 0.3642
Chet 0.1457 0.3635 0.2051 0.3118 0.3104 0.2994 0.3722 0.3160
HiTANet 0.1502 0.4166 0.2122 0.3518 0.3204 0.3413 0.3881 0.3584
ProCare 0.1870 0.4383 0.2640 0.3823 0.4015 0.3622 0.4918 0.3922
CGL 0.1877 0.4676 0.2654 0.4012 0.4083 0.3958 0.5064 0.4279
LabCare l- 0.1727 0.4485 0.2479 0.3888 0.3739 0.3731 0.4686 0.4043
LabCare f- 0.1847 0.4886 0.2619 0.4154 0.4015 0.4014 0.4997 0.4310
LabCare b- 0.1895 0.4821 0.2676 0.4137 0.4102 0.4004 0.5104 0.4299
LabCare 0.1927 0.5046 0.2722 0.4301 0.4179 0.4176 0.5173 0.4449

Table 2: Experimental results on two benchmark EHR datasets with Recall and NDCG. The best performances are
highlighted in boldface and the second runners are underlined.

from 3.23% (achieved in NDCG@10 on eICU) to 4.33% (achieved in Recall@5 on MIMIC-III), where LabCare
further comprehends the temporal information of patient visits and nuanced relations among diseases from EHRs
via fine-tuned LM. The LabCare outperforms LabCare b- with gains ranging from 1.35% (achieved in Recall@10
on eICU) to 4.67% (achieved in NDCG@5 on MIMIC-III), mainly due to its additional modeling of the structural
relations among diseases and ICD-9 codes.

Case Studies

Figure 2: Predictive diagnoses for patients Jack and Mary (pseudonyms) from the MIMIC-III dataset.
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Figure 3: Visualizations of syndromic diseases and their corresponding ICD-9 box embeddings.

Capturing temporal relations between diseases. As shown in Figure 2, for Jack’s diagnoses with essential hyperten-
sion, LabCare forecasts the possibility of developing “Coronary atherosclerosis of the native coronary artery (with
ICD-9 code 414.01)”, which is consistent with the clinical knowledge (i.e., hypertension can increase the heart’s
workload on arteries, thereby leading to the risk of atherosclerosis). In contrast, LabCare f- merely predicts “Unspec-
ified essential hypertension (with ICD-9 code 401.9)”. This further underscores that the textualization and fine-tuning
techniques in LabCare can effectively learn such temporal relations from semantic information in EHRs.

Differentiating diseases with similar names while in different categories. As shown in Figure 2, for Mary’s diagnoses,
LabCare distinguishes between “Acute gouty arthropathy (with ICD-9 code 274.01)” and “Gouty nephropathy (with
ICD-9 code 274.10)”, whereas LabCare b- fails to differentiate them. This confusion arises from the shared phrase,
leading LabCare b- to misclassify them, while LabCare can differentiate them based on their distinct ICD-9 categories
via box embeddings. This demonstrates the effectiveness of our box-constrained structure modeling in accurately
distinguishing diseases with similar names while in different categories, which is a challenge for general LMs alone.

Capturing syndromic relations among diseases. As shown in Figure 3(b), despite the exclusion between ICD-9 codes
250 and 401, there is partial overlap between their corresponding box embeddings. This is mainly because Essential
“Hypertension (with ICD-9 code 401.9)” and “Diabetes with Hyperosmolarity (with ICD-9 code 250.22)” are syn-
dromic diseases, and patients often concurrently suffer from them in EHRs, leading to partial overlap between the
boxes of ICD-9 codes. Compared to only model structural relations among diseases and ICD-9 codes (shown in Fig-
ure 3(a), LabCare can not only model both membership, hierarchy, and exclusion from the ICD-9 Hierarchy, but also
capture the syndromic relations among diseases from patient-disease interactions in EHRs.

Conclusion

In this paper, we propose LabCare to achieve accurate diagnosis prediction, where we propose to enhance semantic
and structure modeling of diseases for diagnosis prediction. Specifically, we simultaneously capture semantic and
structural relations from diagnosis sets of disease names and ICD-9 hierarchy in EHRs, based on a fine-tuned language
model and box embeddings. Subsequently, we perform accurate diagnosis prediction via aggregating the learned
disease representation with rich semantic and structure information. Extensive experiments demonstrate the clear
advantages of our LabCare over state-of-the-art baselines in diagnosis prediction, and insightful case studies show
the accuracy and interpretability of our semantic and structural relation modeling.

For future works, it would be interesting to utilize more semantic information (e.g., ICD-9 names), explore more
intricate structural relations among diseases and ICD-9 codes (e.g., intersection) for diagnosis prediction, and apply
these insights to various crucial clinical tasks such as drug recommendation and early risk prediction.
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