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Abstract

Heterogeneous networks contain multiple types of nodes and links,
with some link types encapsulating hierarchical structure over en-
tities. Hierarchical relationships can codify information such as
subcategories or one entity being subsumed by another and are of-
ten used for organizing conceptual knowledge into a tree-structured
graph. Hyperbolic embedding models learn node representations in
a hyperbolic space suitable for preserving the hierarchical structure.
Unfortunately, current hyperbolic embedding models only implic-
itly capture the hierarchical structure, failing to distinguish between
node types, and they only assume a single tree. In practice, many
networks contain a mixture of hierarchical and non-hierarchical
structures, and the hierarchical relations may be represented as mul-
tiple trees with complex structures, such as sharing certain entities.
In this work, we propose a new hyperbolic representation learning
model that can handle complex hierarchical structures and also
learn the representation of both hierarchical and non-hierarchic
structures. We evaluate our model on several datasets, including
identifying relevant articles for a systematic review, which is an
essential tool for evidence-driven medicine and node classification.
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1 Introduction

Graphs are popular data structures that describe entities (or nodes)
and their relationships (edges). Most real-world graphs are a mix-
ture of hierarchical and non-hierarchical structures. Humans nat-
urally use hierarchies to organize entity categories, for example,
social networks, sentences in natural language, and evolutionary re-
lationships in phylogenetics [20]. Typical hierarchical structures are
denoted as a directed acyclic tree (e.g., an is-a relationship between
abstractions such as “Elephant” is-a “Ungulate” and “Ungulate” is-a
“Mammal”). As a motivating example, consider the articles published
through ACM. Articles can cite each other (article-article link) and
form a non-hierarchical structure. Each article is also associated
with one or more ACM Computing Classification System (CCS)
concepts, which consist of multiple trees of different depths. Thus,
modeling the ACM graph necessitates handling both hierarchical
and non-hierarchical structures.

Graph representation learning seeks to encode nodes as low-
dimensional distributed vectors that can succinctly summarize the
graph structure [11, 16, 17, 21, 23]. However, most graph repre-
sentation learning approaches focus on modeling non-hierarchical
structures by ignoring the hierarchical structures or considering the
hierarchical (i.e., directed) links as an undirected form. One impor-
tant characteristic of hierarchical structures is that the number of
leaf nodes increases exponentially as the number of levels increases
and can cause distortion issues when embedding such graphs [22].
Hyperbolic space has been proposed for representing latent hierar-
chical structures in graph-structured data [1, 4, 19, 20, 28, 29] as the
volume grows exponentially with the radius and thus can naturally
model the growth in leaf nodes.

Poincaré embedding model [19] is a popular embedding model
in hyperbolic space. The learned node representations are defined
within the n-dimensional Poincaré ball such that parallel points
along two lines grow exponentially as the points get near the sur-
face of the ball. The model implicitly learns the representations of
the hierarchy such that root nodes generally lie at the origin while
nodes at lower levels of the hierarchy will reside closer to the surface
of the ball. Yet there are several limitations to existing models. First,
they assume a hierarchical structure with a single root node and
may not yield reasonable representations in the presence of multi-
ple root nodes (e.g., multiple trees within CCS). Figure 1(a) shows
an example of multiple root nodes that are depicted as a red circle.
Second, when there is a poly-hierarchical structure (i.e., a child can
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(c) Distance-based Child
Regularization

(d) Non-hierarchical Structure
Embedding

Figure 1: An example of the embedding results for the toy example (a) after applying each component. The circle nodes are
from the hierarchical structure, and the star and square nodes are non-hierarchical structures. Some edges are not illustrated in
(a) for simplicity. Note that non-hierarchical structures are not shown in (b) and (c). (d) shows the embedding results of using a
hyperbolic entailment cone, and the shadowed area shows the region in the nodes in the non-hierarchical structure can reside.

have multiple parents from different trees), the implicit modeling of
the hierarchy can result in representations where the child resides
closer to the origin than the parent. Third, limited work considers
graphs with mixed hierarchical and non-hierarchical structures [9].
Unfortunately, it relies on the product manifold of multiple hyper-
bolic, sphere, and Euclidean components, which leads to higher
dimension sizes and increased computational costs. Last, recent
works [5, 13, 14, 17] have focused on the semi-supervised or super-
vised setting, partly due to the advantages of graph neural networks.
However, this often assumes labels and computational resources
necessary to fine-tune are available.

To address the above limitations, we propose HypMix, an un-
supervised Hyperbolic representation learning model for graphs
with Mixed hierarchical and non-hierarchical structures. HypMix
only relies on a single hyperbolic manifold. For graphs with hier-
archical structures that contain multiple root nodes, we propose a
regularization term to embed the root nodes close to the origin of
the Poincaré ball. To tackle challenges related to poly-hierarchical
structures, we propose two regularizations: (1) a distance-based
restriction to embed parent nodes closer to the origin than their
children and (2) using the hyperbolic entailment cone [7] to ensure
two children reside in a similar Poincaré region. We also introduce
the use of the hyperbolic entailment cone to the non-hierarchical
structures to better embed these nodes in the Poincaré ball. We con-
duct extensive experiments across two evaluation tasks and three
real-world datasets to demonstrate the effectiveness of HypMix
over existing baselines. We also perform an ablation study to better
understand the benefits of the three components of our model.

2 HypMix

HypMix adopts Poincaré embedding [19], which learns the repre-
sentation of hierarchical structure into a hyperbolic space or an
n-dimensional Poincaré ball. However, the basic Poincaré embed-
ding model does not always learn the representation that preserves
the hierarchical structure. For example, Poincaré embedding model
cannot handle multiple root nodes which leads the root nodes to
be placed in the outer part of the hyperbolic space than their child
nodes. Also, because of the poly-hierarchical structures, some par-
ent nodes are located further from the origin than their child nodes.
Another limitation of Poincaré embedding is that it is a model only

for hierarchical structures, which makes it challenging to learn the
representation with non-hierarchical structures. To resolve these
limitations, we use two regularizations to learn a better representa-
tion of the hierarchy structure and use hyperbolic entailment cone
[7] also to learn the representation of non-hierarchical structures.

2.1 Root Regularization

One limitation of existing Poincaré-based models is the implicit de-
sign for a hierarchical structure with a limited number of roots (i.e.,
a small number of trees). However, some hierarchical taxonomies
may have multiple categories or concepts that can be further sepa-
rated into subcategories. For example, ACM CCS contains 13 root
nodes (e.g., Networks, Theory of computation, Security and Privacy,
etc.). Unfortunately, when the hierarchical structure encompasses
multiple trees, the root embeddings of the tree may reside closer to
the surface of the Poincaré ball. This restricts the embedding space
to learn the hierarchical structure of subsequent children nodes
and thus may result in suboptimal leaf embeddings.

To address this limitation for hierarchical structures with mul-
tiple root nodes, we propose a regularization term to encourage
the root node to reside closer to the origin. In this manner, the
subtree has sufficient space and more flexibility to better preserve
deeper trees. Let the distance between two nodes, u,v € B9 where
B ={x € RY ||x|| < 1} is the open d-dimensional unit ball and
[| - || denotes the Euclidean norm [19] be defined as:

2Ju —o||?
. =) )
(1= {lull*)(1 = [lo]]?)
Then, given a root node, 1,00, we denote the distance to the origin,
origin as d(origin, nyoo;) and impose the following condition:

d(u,v) = arccosh(1+

d(origin, nyoot) < 6, @

where J is a user-specified parameter (shown in Figure 1(b)).

2.2 Child Regularizations

Another limitation of the Poincaré embedding model is that it only
implicitly captures the hierarchical structure by modeling undi-
rected edges. As such, it may not be able to distinguish which node
is a child or parent and place child nodes closer to the origin than
their parents. This is particularly difficult for a poly-hierarchical
structure where a node may have parents from different trees. For
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example, ACM CCS is a poly-hierarchical ontology where concepts
can belong to multiple categories. In this scenario, the ideal rep-
resentation is the parent embedding, which resides closer to the
origin than the child to reflect the hierarchical structure.

2.2.1 Distance-based Child Regularization. We first introduce a
regularization term that restricts a parent from being further in
distance from the origin than its child. Given two nodes, p and C
where p is the parent node and C are the children nodes of p. We en-
force HypMix to learn a representation using the distance between
the two nodes, Eq. (1), that satisfies the following condition:

d(origin, p) < d(origin,c;), Yc; € C(1 <i < |C)|). 3)

Note that |C| denotes the number of children nodes of the parent
node p. Figure 1(c) demonstrates the learned embedding after the
child regularization is applied. We briefly note that the root regu-
larization is not applied in this scenario. As shown in the figure,
the child node resides further from the origin than its parent node
and explicitly preserves the hierarchical structure where nodes at
lower levels will be closer to the surface of the ball.

2.2.2  Hyperbolic Entailment Cone Regularization. The distance-
based child regularization (Equation (3)) can help preserve the
relationship between one parent and one child, yet two children
of the same parent may not reside in a “similar” Poincaré region.
Moreover, under the Poincaré embedding model, most points col-
lapse on the border of the Poincaré ball. As such, we posit that a
partial ordering where each subtree naturally defines the Poincaré
region can further improve the learned embedding of the nodes
within the tree. The idea is that a parent node will define a cone in
the Poincaré space for which its children can reside and enable bet-
ter differentiation of the node embeddings between multiple trees.
Thus, if a child shares two parents, then it can only be nested in the
intersection of the two cones defined by the parents. To achieve
this, we leverage the hyperbolic entailment cone [7] to place the
children nodes within the hyperbolic cones defined by the parent.
Hyperbolic entailment cones are inspired by the generalized idea
of order embedding [25]. The idea is to use geodesically convex
entailment cones to induce the partial ordering relation in the em-
bedding space. The cones exhibit 4 intuitive properties that include
axial symmetry, rotation invariance, continuous cone aperture func-
tions, and transitivity of nested angular cones. Let Cx denote the
Poincaré entailment cone at apex x € B9 and be defined as:

_ 2
IR

Cx = {y e B¢ | Zxy < sin"}(K

[1xI]
where /yy denotes the angle between the half-lines connecting x
and y as well as the origin and x, and K € R is a hyperparameter.

Our entailment cone regularization then requires the following:
ci € Cp,¥e; € C(1 i <|C)). (5)

In other words, each child must belong to the angular cone defined
by the parent. Figure 1(d) demonstrates the hyperbolic entailment
cone in a hierarchical structure as illustrated by the circle nodes.

2.3 Non-hierarchical Structure Embedding

Across many real-world graphs, nodes may capture both hierarchi-
cal and non-hierarchical structures. The above regularizations (root,
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distance-based child, and hyperbolic entailment cone) can preserve
the hierarchical structures, yet do not account for links to nodes
that may not have a non-hierarchical structure. As a motivating
example, consider articles published at the various ACM confer-
ences. Each article can be tagged with multiple CCS categories
(which exhibit a hierarchical structure), yet the articles themselves
do not have a hierarchical structure. As such, the natural question
is how to leverage the hierarchical structure to better embed the
non-hierarchical nodes in the hyperbolic space.

Suppose we have two node types, H = {h1, hy,...hy} and V =
{01,902, ..,um}, where there is a hierarchical relationship between
the nodes in H while the nodes in V have non-hierarchical struc-
ture (i.e., can be linked to each other but not as a parent-child
relationship), and there are also non-hierarchical links between H
and V. Note that any nodes in V can have multiple relations with
the nodes in H, and linked nodes in H can be located at any level in
the tree. In this scenario, the hierarchical structure of H can serve
as a guideline for learning the representation of the nodes in V.
Our idea is that any node v; that is linked to a node in h; should
then naturally reside in the same angular cone region defined by
the node through the hyperbolic entailment cone:

vj € Chj’ You; € V and (v;, hj) 6)

where Ch is the entailment cone region defined using Eq. (4), and
(vi, hj) denotes that the nodes v; and h; are linked. Thus, nodes in
a non-hierarchical structure should also be embedded within the
hyperbolic entailment cone of the associated hierarchical nodes. In
this manner, hierarchical nodes that are indirectly linked together
through a non-hierarchical node will reside in similar Poincaré
space as the non-hierarchical must reside in the intersection. The
blue area in Figure 1(d) is the region where the nodes in non-
hierarchical structures can be located.

3 Experiment Settings
3.1 Evaluation Tasks

We use two evaluation tasks, systematic reviews (SRs) and node
classification (NC). In health research, SRs are crucial for bridging
the research-to-practice gap and serve as the basis for evidence-
based practice [2, 3, 8]. Each article can be associated with multiple
MeSH terms and the associated MeSH terms can be within the
same MeSH hierarchy or tree (i.e., terms that are supported by a
broader MeSH term) or can be in a different MeSH tree. We use
the PGB benchmark dataset [18], and follow their experimental
setting for evaluating the embedding model using three different
SR datasets: Cohen [6], SWIFT-Review [12], and CLEF-TAR [15],
where the goal is to predict whether the article passes the abstract
screening process. Note that Cohen contains 15 SR topics, whereas
the SWIFT-Review and CLEF-TAR both contain 3 SR topics each.
For the SR task, we use 2 node types, Paper and MeSH terms, and
3 edge types, P-P, P-M, and M-M. Only the edge type, M-M, has a
hierarchical structure, while the others are non-hierarchical.

For the NC task, we construct two datasets of real-world net-
works, DBLP! and YELP? with explicit hierarchical structure. For
the DBLP dataset, we use the topic taxonomy from the ACM CCS

!https://dblp.uni-trier.de/xml/
Zhttps://www.yelp.com/dataset
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Table 1: AUC performance for the SR and NC tasks. The best
score is bolded and the second highest is underlined. The SR
topics follow the same order as the PGB results [18].

Dataset LINE GS  Poincaré HSHNE R Ch C HypMix
ACE 0.544  0.546 0.524 0.586 0.534 0.532  0.556 0.589
ADHD 0.533  0.537 0.522 0.540 0.523  0.533  0.539 0.552
AH 0.541  0.543 0.518 0.547 0.514 0.534 0.547 0.567
AAP 0.547  0.547 0.522 0.555 0.523  0.534  0.552 0.561
BB 0.564  0.568 0.554 0.584 0.551  0.555 0.579 0.59
CCB 0.566  0.57 0.549 0.597 0.555 0.559 0.581 0.599
Estrogens 0.534  0.536 0.53 0.543 0.529 0.534 0.539 0.548
NSAIDS 0.549  0.553 0.536 0.578 0.535 054  0.568 0.588
Opioids 0.557  0.561 0.544 0.604 0.539  0.546  0.583 0.606
OH 0.509  0.508 0.502 0.530 0.502  0.504  0.51 0.535
PPI 0.558  0.56 0.523 0.586 0.527 0.533  0.585 0.61
SKM 0.562  0.565 0.534 0.582 0.532  0.542 0.581 0.612
Statins 0.549  0.551 0.534 0.573 0.543  0.542  0.558 0.577
Triptans 0.551  0.554 0.53 0.592 0.534  0.544  0.565 0.596
UTI 0.556  0.559 0.537 0.572 0.542  0.543  0.569 0.609
TG 0.579  0.584 0.566 0.643 0.579  0.577  0.632 0.645
PFOS-PFOA  0.582  0.584 0.572 0.630 0.581 0.573  0.622 0.641
BPA 0.546  0.545 0.518 0.561 0.524  0.523  0.552 0.57
CD012661 0.547  0.552 0.532 0.590 0.54  0.538 0.576 0.598
CD008803 0.552  0.561 0.544 0.590 0.554  0.552  0.579 0.604
CD005139 0.573  0.583 0.556 0.605 0.566  0.561 0.596 0.627
DBLP 0.581  0.583 0.578 0.643 0.576  0.579  0.632 0.657
YELP 0.555  0.556 0.545 0.598 0.545 0.546  0.589 0.602

codes, and the mapped information of authors and CCS codes are
provided by Yang et al. [27]. We define a binary classification prob-
lem of whether the author has a link to one of the four selected CCS
codes, “machine learning”, “artificial intelligence”, “information sys-
tems applications”, and “information retrieval” or not. The dataset
has 2 node types, Author and CCS codes, and 3 edge types, A-A,
A-C, and C-C where the only edge type C-C has the hierarchical
structure, and others are non-hierarchical. For the YELP dataset,
we follow the same setting as TAXOGAN [27], which generates
the business network based on the customers’ reviews with the
category of the business. We set it as a binary classification problem
by setting two classes, stars > 3 and stars < 3. The dataset has 2
node types, Business and Category, and 3 edge types, B-B, B-C, and
C-C. From the edge types, C-C has a hierarchical structure, and
other edge types are non-hierarchical. We randomly split the data
into 3 train-test trials of 70%-30%, respectively.

3.2 Baseline Models

We benchmark HypMix with 4 baseline models. We also analyze
three of the components that we propose. As HypMix is an unsuper-
vised model, we compare it with an unsupervised network embed-
ding models that use Euclidean space, LINE [24], and GraphSAGE
(GS) [10], and hyperbolic space, Poincaré Embedding [19], and Hy-
perbolic Space Heterogeneous Network Embedding (HSHNE) [26].
We also compare three proposed components which are HypMixg
(R), HypMix¢y, (Ch), and HypMixc (C). HypMixg only applies the
root regularization technique or Equation (2) and HypMixcy, only
applies the child regularization technique, Equation (3). In addition
to all the regularization techniques (root and child regularization),
HypMixc uses the hyperbolic entailment cone to embed the hierar-
chical structure, Equation (5) but does not use it for non-hierarchical
structures. We use a softmax layer to train the classifier. For the
Euclidean space models, we use the dimension size 256 (d = 256)
for both SR and NC tasks. For the hyperbolic space models, we use
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d = 50 for the SR task, and d = 30 for the NC task due to the smaller
size of the hierarchical structure. All the baselines are trained using
a single g4dn AWS instance with NVIDIA T4 GPU.

4 Evaluations

The average AUC score on the three splits is reported in Table 1.
Note that the first 21 datasets from the table are the SR tasks: Cohen,
SWIFT-Review, and CLEF-TAR, respectively.

For the SR task, we observe that HypMix outperforms all other
baselines from 0.002 to 0.037 by comparing with the second-best
AUC score. This indicates the importance of effectively modeling
both the hierarchical and non-hierarchical structures. Moreover, it
demonstrates the effectiveness of HypMix in the SR task. Between
the original Poincaré embedding model and HypMix, the results
show that HypMix significantly outperforms the former and high-
lights the effectiveness of the components that we propose. It also
shows that the original model cannot handle multiple trees and
mixed node types. By comparing the results with LINE and GS (Eu-
clidean space), HypMix outperforms both models, which illustrates
the importance of using the hyperbolic space appropriately to em-
bed hierarchical relations. Even if we use a larger dimension for
both LINE and GS (d = 256), they still fail to outperform HypMix.
HSHNE outperforms Euclidean space models as HSHNE is a model
to embed heterogeneous networks into a hyperbolic space which
shows the effectiveness of the hyperbolic space.

For the NC task, we observe similar performance trends as the
SR tasks in which HypMixc (C) and HypMix offer the best per-
formance. We also observe that LINE and GS perform similarly
to the Poincaré embedding results, potentially due to the smaller
dimension size (d = 30). This demonstrates the limitations of em-
bedding hierarchical and non-hierarchical structures in Euclidean
space. Since DBLP and YELP contain more tree-like hierarchical
structures than the MeSH hierarchy, HSHNE and HypMix yield
higher results compared to the SR task.

5 Conclusion

In this paper, we propose HypMix, an unsupervised hyperbolic rep-
resentation learning for graphs with mixed hierarchical and non-
hierarchical structures. We resolve the limitations of the Poincaré
embedding model regarding handling multiple roots and poly-
hierarchical structure. We propose root regularization to learn the
representations of the root nodes to reside closer to the origin of the
hyperbolic space. We also introduce two child regularizations so
that the parent node is embedded closer to the origin than its child
nodes and define the angular region, or entailment cone, for its
children. Also, to learn the representation of the non-hierarchical
structure, we adopt the hierarchical structure entailment cone to
define the region of the non-hierarchical nodes. The extensive ex-
periments on 21 real-world SR tasks and 2 real-world NC tasks
show that the HypMix outperforms existing unsupervised graph
representation learning models.

Acknowledgements. We thank the reviewers for their insight-
ful suggestions and comments. This work was supported by the
National Science Foundation award IIS-2145411.
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