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Abstract
Electronic Health Records (EHRs) contain rich
patient information and are crucial for clin-
ical research and practice. In recent years,
deep learning models have been applied to
EHRs, but they often rely on massive features,
which may not be readily available for all pa-
tients. We propose HTP-Star1, which leverages
hypergraph structures with a pretrain-then-
finetune framework for modeling EHR data, en-
abling seamless integration of additional fea-
tures. Additionally, we design two techniques,
namely (1) Smoothness-inducing Regularization
and (2) Group-balanced Reweighting, to en-
hance the model’s robustness during finetuning.
Through experiments conducted on two real
EHR datasets, we demonstrate that HTP-Star

consistently outperforms various baselines while
striking a balance between patients with basic
and extra features.

Data and Code Availability We evaluate our
framework on two publicly available datasets UK

1. Short for Hypergraph Transformer Pretrain-then-
Finetuning with Smoothness-induced regularization and
Reweighting.

Biobank (Sudlow et al., 2015) and MIMIC-III (John-
son et al., 2016). The research was conducted using
data from the UK Biobank Resource under an appli-
cation number (omitted for anonymization). The UK
Biobank makes the data available to all bona fide re-
searchers for all types of health-related research that
is in the public interest, without preferential or ex-
clusive access for any persons. All researchers are
subject to the same application process and approval
criteria as specified by UK Biobank. MIMIC-III is
publicly available from the PhysioNet repository.

Institutional Review Board (IRB) UK
Biobank has approval from the North West Multi-
centre Research Ethics Committee (MREC) as a
Research Tissue Bank (RTB) approval. MIMIC-III
does not need IRB approval.

1. Introduction

Electronic Health Record (EHR) is a digital represen-
tation of a patient’s medical history that contains a
wealth of patient information, including diagnoses,
medications, lab results, and so on (Cowie et al.,
2017). In clinical research and practice, healthcare
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Figure 1: An illustration of basic and extra features.

professionals actively use EHRs for patient health
monitoring (Gandrup et al., 2020; Shi et al., 2024),
risk predictions (Luo et al., 2020; La Cava et al.,
2023) and clinical trial matching (Rogers et al., 2021),
thereby harnessing the capabilities of digital repos-
itories to augment patient care and inform clinical
decision-making (Tang et al., 2022).

In recent years, various deep learning architec-
tures (Choi et al., 2016; Pang et al., 2021) have
gained extensive popularity in predictive tasks on
EHR. Typically, these models are trained on a collec-
tion of basic features shared across various medical
institutions, such as diseases and medications. How-
ever, in real-world scenarios, additional features are
often collected, which are limited to specific hospitals
due to privacy or budget constraints (Taksler et al.,
2021; Hong et al., 2021). Figure 1 shows an illustra-
tion of extra features collected by some local medical
institutes. Due to the often small sample sizes for
patients with these extra features, they are not effec-
tively utilized to enhance the modeling of patients, re-
gardless of whether they possess these extra features
or not. Hence, our primary objective in this research
is to address the challenge: How can we harness the
extra data gathered from local medical institutes on
specific patients to enhance clinical prediction tasks
within the population?

This naturally resembles a transfer learning set-
ting (Weiss et al., 2016) with a pretrain-then-finetune
pipeline, which requires the model to effectively
transfer the knowledge from a more extensive popu-
lation to individuals with extra sets of features. How-
ever, developing clinical predictive models that con-
currently incorporate basic and extra features is non-
trivial. Directly adapting traditional machine learn-
ing (ML) methods such as linear regression or deci-
sion trees is problematic since the model trained from
patients with basic features cannot directly handle

patients with extra features due to different feature
dimensions. Although there exist several deep learn-
ing architectures (e.g. Transformers (Lee et al., 2019;
Choi et al., 2020)) that can model flexible numbers
of patient features, they do not explicitly model the
interactions between features, so they cannot fully
leverage extra features to improve the modeling of
basic features, and vice versa.

Given the challenges outlined above, we emphasize
the importance of designing a suitable data structure
capable of accommodating additional features from
local institutes for patients. Inspired by the recent
progress in hypergraph learning for clinical predic-
tions on EHRs with strong representative power (Xu
et al., 2022; Cai et al., 2022; Wu et al., 2023a), we
propose HTP-Star to utilize hypergraph structure to
characterize the EHR data. Building upon this struc-
ture, patient visits are conceptualized as hyperedges,
with each visit-related feature represented as a node,
allowing each hyperedge to be connected to a flexible
number of nodes. This approach not only effectively
characterizes the relationships between hospital visits
and medical codes from a higher-order view, but also
enables the seamless integration of new features into
the current dataset by simply adding nodes to the
existing hyperedges without extensive modifications
to the overall graph structure. Additionally, to facil-
itate information propagation and mutual enhance-
ment between newly incorporated and existing ba-
sic features, we employ hypergraph transformers (Xu
et al., 2022; Cai et al., 2022), which incorporates
multi-head self-attention and jointly learns the em-
beddings for hospital visits and all patient features.

After capturing the relationship between visits and
features via hypergraph transformer, it is also cru-
cial to design effective and balanced training tech-
niques to enable models to generalize well on both
basic and extra features. This is essential as sam-
ples with basic and extra features might sometimes
have conflicts in their optimization directions. Exist-
ing transfer learning models leverage self-supervised
learning (Shang et al., 2019; Bo et al., 2022; Park
et al., 2022; McDermott et al., 2021) to improve the
model’s generalization ability with a pretrain-then-
finetune pipeline, but they often directly fine-tune on
target tasks without effective regularization, which
is easy to cause catastrophic forgetting (Ramasesh
et al., 2021). There are also generic transfer learning
methods (Han et al., 2021; Liu et al., 2021b; Jiang
et al., 2023a), but they often have strong assump-
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tions on data distributions, and thus may not adapt
to the clinical setting well.
Motivated by this, we develop two strategies to en-

hance the model’s generalization ability across pa-
tients with varying data volumes: (1) To mitigate the
risk of aggressive model updates, we maintain a slowly
updated predictive model, which takes the form of
a momentum-based moving average of the originally
fine-tuned model. We add a regularization term to
encourage consistent predictions between the origi-
nal and the slowly updated predictive model to pre-
vent the predictive model from forgetting previous
information learned from pretraining. (2) To resolve
conflicts in optimization directions between basic and
extra data features, we introduce a gradient balanc-
ing method that adjusts the combination of gradients
from patients with different data types. With these
two dedicated techniques, HTP-Star learns a robust
hypergraph model for EHR predictive tasks to accom-
modate both basic and extra features simultaneously.
We conduct experiments on two datasets, UK-

Biobank (Sudlow et al., 2015) and MIMIC-III (John-
son et al., 2016), to evaluate HTP-Star and potential
baselines. The results demonstrate that HTP-Star

outperforms various standard ML methods as well
as existing finetuning techniques, achieving a balance
between patients with basic and extra features. Our
contribution can be summarized as follows:

• We study the problem of clinical predictions with
basic and extra features and identify the chal-
lenges (Sec. 3.2), which have not been widely
explored in prior works.

• We design HTP-Star, a hypergraph pretrain-
then-finetuning framework to enhance the
model’s robustness over two patient subgroups.
We further propose two additional techniques to
improve the model’s generalization ability dur-
ing fine-tuning steps.

• We conduct comprehensive experiments on two
publicly available datasets (UK Biobank and
MIMIC-III) to verify the efficacy of HTP-Star.

2. Related Works

Deep Predictive Model for EHRs In recent
years, there have been numerous studies focusing on
developing deep healthcare predictive models with
various medical concepts. Earlier works attempt
to leverage recurrent neural networks (RNN) (Choi

et al., 2016; Lipton et al., 2016) as well as Trans-
formers (Li et al., 2020; Pang et al., 2021) to model
the chronological relationships among different med-
ical units. Graph-based models have also been pro-
posed for EHR modeling, including graph convolu-
tion networks (Zhu and Razavian, 2021; Lu et al.,
2022), graph transformers (Choi et al., 2020; Zhu
and Razavian, 2021; Jiang et al., 2023b), and hyper-
graph neural networks (Cai et al., 2022; Xu et al.,
2022). These approaches involve constructing a co-
occurrence graph based on EHR data and then us-
ing graph neural networks (GNNs) to learn the re-
lations among medical codes within each for clini-
cal outcome prediction (Johnson et al., 2023). De-
spite the impressive performance exhibited by deep
learning-based models, these models typically de-
mand massive labeled data and substantial fea-
ture richness, making them challenging to deploy
in real-life resource-constrained healthcare environ-
ments (Erion et al., 2022). In this study, we har-
ness graph-based deep learning models coupled with
enhanced training methodologies to address the chal-
lenge of data scarcity in EHRs. It is also worth noting
that, unlike existing graph-based approaches which
concentrate on enhancing performance for patients
with only basic or extra features, our approach tar-
gets enhancing the generalization ability for patients
with both basic and extra feature profiles.

Training Techniques for Better Generalization
Our work is also related to several studies for im-
proving the model’s generalization with basic data.
Self-supervised learning techniques has been widely
adopted for CV and NLP tasks (Devlin et al., 2019;
Chen et al., 2020), and has also been adopted for
EHRs with improved generalization (Shang et al.,
2019; McDermott et al., 2021; Bo et al., 2022; Park
et al., 2022). Transfer learning techniques (Weiss
et al., 2016) aims to transfer knowledge across the
target and source model, and recent works have pro-
posed to harness attention networks (Xiao et al.,
2020), generative models (Desautels et al., 2017; Es-
tiri et al., 2021), reweighting techniques (Li et al.,
2023; Han et al., 2021; Yu et al., 2021), or adver-
sarial networks (Dai et al., 2022; Liu et al., 2021b)
to facilitate knowledge adaptation to the target do-
mains. Our method is related as we first leverage
self-supervised learning techniques to warm up the
model training, and then design strategies to better
transfer the knowledge to patients with both basic
and extra features.
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3. Preliminary Studies

Before describing the details of our proposed model,
we first give a brief overview of the problem setup, as
well as the potential challenges under this scenario.

3.1. Problem Setup

In this study, we focus on predictive tasks on EHR
which comprises patient visits with different medical
codes. Formally, EHR visits are defined as:

Definition 1 (EHR Visit) The EHR system gen-
erally includes a large amount of hospital visits H for
corresponding patient group P. Each visit h ∈ H in-
volves a distinct set of medical codes c ⊂ C as features,
where C is the total set of medical codes appearing in
H. In this study, C contains multiple types of medical
codes such as diseases, medications, procedures.

Due to the diversity among various groups of pa-
tients, there is usually a large variation in the vol-
ume of the medical codes |C| across different patient
groups. In this study, we consider the setting where
patients are separated into two subgroups, one with
basic features only and the other with both basic and
extra features.

Definition 2 (Patients with Basic/Extra Feat.)
Typically, the available data consists of a large set
of EHRs H from a wider population, which have
basic patient features Cb. However, as local a medical
institute collects extra features Ce, a small subset of
EHRs He ⊂ H further includes extra features Ce.

In this work, given the clinical record H and both
basic and extra features Cb ∪ Ce, we aim to develop a
model gθ that predicts the patients’ clinical outcomes
y so that gθ can perform well on both patient groups,
including those with basic features only and those
with full (both basic and extra) features.

3.2. Limitations of Traditional ML Methods

While traditional ML methods usually demonstrate
strong performance in predictive EHR tasks, they
encounter limitations in our specific scenario due
to their inability to handle varying feature dimen-
sions. To illustrate this challenge, we conduct a
preliminary study as shown in Figure 2, employ-
ing XGBoost (Chen and Guestrin, 2016), one of the
most powerful ML models on two datasets: the UK
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Figure 2: A preliminary study with XGBoost on the
two datasets.

Biobank (Sudlow et al., 2015) and MIMIC-III (John-
son et al., 2016). Both datasets have a large number
of patients with basic features and a smaller subset of
patients with additional extra features (please refer to
Section 5.1 for details of statistics and task descrip-
tions). We conduct three distinct sets of experiments
with XGBoost– on patients with basic features only,
patients with full features only, and all patients re-
gardless of the features they have (by filling in zeros
for patients with basic features only). The experi-
mental results are depicted in Figure 2. From the
results, we have the following findings:
Using patients only with basic or full features
hinders the model performance: Figure 2 reveals
that when using patients’ basic or full features only,
the model generally exhibits lower performance. This
is mainly due to insufficient information (when using
basic features) or the limited amount of training in-
stances (when using full features). It is necessary
to design effective approaches for learning with basic
and full features simultaneously.
Simply combining patients with basic and
full features yields limited performance gains:
Training with all patients, on the other hand, involves
padding the input vectors of patients with only basic
features by zeros to accommodate different feature
dimensions. This can potentially lead to biased in-
formation, as the model might falsely interpret these
zero values as informative features. Therefore, incor-
porating all patients with all features does not nec-
essarily enhance the original model performance in
both evaluation scenarios.

In summary, the inherent limitations of traditional
ML models lead to unsatisfactory performance in the
clinical setting studied in this work. These models
either struggle to effectively leverage additional in-
formation or excel only in cases where patients have
extra features, leaving a substantial performance gap
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when dealing with patients having only basic fea-
tures. This observation highlights the importance
of developing effective strategies that can simultane-
ously incorporate patients with both basic and extra
features to achieve better generalization.

4. Method

From the above analysis, it is crucial to go beyond the
traditional ML modeling techniques to address the in-
trinsic challenges of learning with patients using basic
and extra features. Towards this end, we introduce
our framework HTP-Star in Figure 4, which leverages
hypergraphs to model the EHR patient information
and adopts the pretrain-then-finetune pipeline to in-
corporate information from both basic and extra fea-
tures. Additionally, we apply smoothness-inducing
regularization and group-balanced reweighting tech-
niques to mitigate issues related to catastrophic for-
getting and excessive updates.

4.1. Hypergraph Learning

Graph Construction To better model the patient
visit information as well as medical codes, it is cru-
cial to learn the hypergraph structural information.
In this work, we model the patient visits H as hyper-
edges E and the full collection of medical codes (i.e.
features) Cb ∪ Ce as nodes V. Each hyperedge e ∈ E
represents a patient visit and can connect to various
nodes, where each node v ∈ V stands for a medical
code. We construct Gb = (Vb, E) as the hypergraph
that includes all the patients and their basic features,
and Ge = (V, Ee) as the hypergraph that contains pa-
tients with extra features and all their features.

Figure 3 illustrates the hypergraph structures used
in our approach. In this figure, the yellow circles rep-
resent hyperedges, which correspond to patient vis-
its. Each hyperedge encompasses all the nodes (i.e.,
features) that are present in that particular hospital
visit. This modeling approach captures the higher-
order interactions among patient visits and features.
Additionally, extra features can be easily incorpo-
rated into the hyperedges without the need to create
new edges, providing flexibility in feature integration.

Hypergraph Transformer Architecture De-
note the representation of nodes and hyperedges on
l-th layer as X(l) ∈ R|V|×d, E(l) ∈ R|E|×d′

where
d and d′ are two hyperparameters. Let Ve,X =
{Xv,: : v ∈ e} denote the set of hidden representa-
tions for nodes in the hyperedge e and Ev,E =
{Ee,: : v ∈ e} denote the set of hidden representations
of hyperedges that contain the node v, respectively.
In this work, we leverage the hypergraph transformer
architecture g(·;G, θ) (Xu et al., 2022), which com-
prises several sequential layers. In the l-th layer, the
message passing follows two steps:

E(l)
e = fV→E

(
Ve,X(l−1)

)
, (1)

X(l)
v = fE→V

(
Ev,E(l)

)
. (2)

To realize the propagation function f(·) for each
layer, we use two sub-layers: a multi-head self-
attention (MHA) and a fully connected feed-forward
neural network (FFNN). The details of these two
components are deferred to Appendix A. Formally,
the propagation rule f(·) can be expressed as

Y = MHA(X), (3)

f(X) = LN(Y + FFNN(Y )). (4)

By harnessing the strong representative power of
self-attention, we can identify the most relevant el-
ements within the set for message passing, which is
crucial for encoding the relationships among rich and
sparse features and facilitating knowledge transfer.

Predictions on Target Tasks To support down-
stream clinical prediction tasks with the learned pa-
tient representations, we stack a classification layer
on top of the visit embeddings from all layers

Ẽ
(l)
i (1 ≤ l ≤ L) from Eq. 1 to obtain final predic-

tions. Specifically, for patient i, the prediction can
be expressed as

ŷi = g(ei;G, θ) = σ
(
Wcls

(
∥Ll=1Ẽ

(l)
i

))
; (5)
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Figure 4: The framework of HTP-Star.

where ei is the corresponding hyperedge for patient
i, Wcls is a linear classification head that converts
the vector to a value for binary classification and
σ(x) = 1/ (1 + exp(−x)) is the sigmoid function. The
target prediction task involves a binary classification
task, we use the binary cross-entropy as the learning
objective defined as

ℓcls(ei, yi) = −y log(ŷi)− (1− y) log(1− ŷi). (6)

4.2. Pretrain-then-Finetune Pipeline

The previous section mainly discusses the hypergraph
construction and learning models. Now, the key chal-
lenge becomes how to design an effective training
scheme to better model the basic and extra clinical
features of different groups of patients. As shown in
Section 3.2, using only part of the features, as well as
simply combining patients with basic and extra clin-
ical features results in unsatisfactory performances.

To tackle this issue, we introduce a two-stage train-
ing approach, beginning with a pre-training phase
followed by fine-tuning. Note that such a pretrain-
then-finetune pipeline has been widely adopted for
various domains including computer vision (Chen
et al., 2020), text (Devlin et al., 2019), and time se-
ries (McDermott et al., 2021). Initially, the predictor
is trained on the hypergraph Gb. Then, to tailor the
learned model g(·;Gb, θ) for the specific task involv-
ing patients with additional features, we fine-tune it

on the hypergraph Ge. The details of this two-stage
training pipeline is described in the following sections.

4.2.1. Pretraining on Basic Features From
Broader Population

In order to equip the information from the basic fea-
tures, we pretrain the model on the hypergraph Gb

where the basic features from all patients are con-
sidered. During this pretraining stage, the learning
objective is denoted as

ℓpt(θ) = Eei∼Eℓcls(ei, yi), (7)

where ℓcls is defined in Eq. 6. This pretrained hyper-
graph transformer serves as the starting point in the
fine-tuning stage.

4.2.2. Finetuning with Customized
Techniques

After pretraining on a broader population, we then
finetune our model on local data with a small num-
ber of patient visits with basic and extra features. To
better harness the knowledge from pretraining and
balance the performance between patients with ba-
sic and extra features, we design two additional tech-
niques for our scenarios, namely Smoothness-inducing
Regularization and Group-balanced Reweighting. The
details of these two models are described as follows.
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Algorithm 1: Training Process of HTP-Star.

Input: Patient Visit H = ((Cb, Ce),P), Numbers of
iterations for pretraining and finetuning
Iterpt, Iterft.

Output: Finetuned hypergraph transformer gθ.
// Step 1: Hypergraph Construction
E ← H, Vb ← Cb, Gb ← (Vb, E)
// Step 2: Hypergraph Transformer Pretraining
for i← 1 to Iterpt do

Update hypergraph transformer g(·;Gb, θ) with
ℓpt(θ) in Eq. 7.

end
// Step 3: Hypergraph Transformer Finetuning
Eb ← Hb, V ← (Cb, Ce), Ge ← (V, Ee),
g(·;Ge, θ)← g(·;Gb, θ)

for i← 1 to Iterft do
Calculate loss for patients with basic and extra
features ℓft,b, ℓft,e using Eq. 9.

Calculate weights (ωb, ωe) for two groups with
Eq. 15.

Update the hypergraph transformer g(·;Ge, θ)
with Eq. 10.

end

Smoothness-inducing Regularization Due to
the limited data from the target task, the standard
fine-tuning of the hypergraph transformer model can
lead to overfitting on the training instances, resulting
in poor generalization to test data (Ramasesh et al.,
2021).
To alleviate this issue, we maintain an additional

smoothed model g(θ̃), initialized by the pretrained
model g(·;Gb, θ). In the t-th step, the parameter for

the smoothed model θ̃t is updated as

θ̃t = (1− β)θt + βθ̃t−1, (8)

where β represents the smoothing factor, creating an
exponential moving average between the parameters
of the original predictor θ and the smoothed model
from the previous timestep. To encourage consis-
tency between predictions made by the original model
g(θ) and the smoothed model g(θ̃) during fine-tuning,
we add the additional consistency regularization be-
tween the original and the smoothed model to the
learning objective as

ℓft(θ) = ℓcls(θ)+µEei∼EeDKL

(
g(ei;Ge, θ); g(ei;Ge, θ̃t−1)

)
,

(9)

where DKL is the Kullback–Leibler (KL) divergence
and µ is the weight for the consistent loss. This
regularization strategy effectively prevents aggressive

parameter updates and enhances the model’s gener-
alization capabilities for the target prediction (Tar-
vainen and Valpola, 2017; Nichol et al., 2018).

Group-balanced Reweighting Apart from the
issue of aggressive updates, an equally, if not more,
important challenge for finetuning the predictor to
target patient visits is the balance between patients
with basic only and extra features. To address this,
we propose a reweighting scheme for dynamically ad-
justing the weight of patients with basic and extra
features (denoted as ωb and ωe, respectively) during
the finetuning process. Note that in the finetuning
stage, only a small subset of EHRs from patients with
basic features is available, aiming to better replicate
the perspective of a local medical institute. Thus, the
learning objective after the reweighting stage can be
written as

L(θ) = ωbℓft,b(θ) + ωeℓft,e(θ). (10)

Here ℓft,b(θ) and ℓft,e(θ) stand for the finetuning
loss, which is defined in Eq. 9. When learning with
two groups of patients simultaneously, we hypothe-
size that an ideal choice of ωb and ωe would pro-
vide the biggest reduction on the training loss of the
two groups. We approximate the loss reduction using
first-order Taylor expansion:

∆ℓ(t) =
∑

i∈{b,e}

(ℓi(θ − α∇θL(θ))− ℓi(θ)) (11)

≈ −α
∑

i∈{b,e}

∑
j∈{b,e}

ω
(t)
i (∇θℓi(θ))

T∇θℓj(θ), (12)

where α is the learning rate. In addition, we avoid
the potential rapid change of weights for finetuning
stability, by adding a KL divergence regularization
between ω = (ωb, ωe) at different steps. This leads
to the following optimization target:

min
ω(t)

∆ℓ(t) +DKL(ω
(t),ω(t−1)), (13)

s.t. ωb + ωe = 1. (14)

By using the Lagrangian multiplier with KKT con-
ditions, we obtain the closed-form solution for the
weight on patients with basic and extra features in
step t as:

ω
(t)
i =

ω
(t−1)
i · exp

(
⟨si,

∑
j sj⟩

)
∑

k∈{b,e} ω
(t−1)
k · exp

(
⟨sk,

∑
j sj⟩

) , (15)
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Table 1: Dataset Statistics.

Stats UK Biobank MIMIC-III

# basic features 642 846
# extra features 1371 6577
# health records 1629 12353

# train samples w/ basic only 1140 8647
# train samples w/ extra 164 1235
# validate samples 162 1236
# test samples 488 3706

where i ∈ {b, e}, si = ∇θℓi(θ) is the gradient for loss
li. The ideal solution naturally takes into account
the similarity of gradients between patients who have
basic features and those with extra features. It prior-
itizes the allocation of weights that share more com-
mon needs with others, to enhance the robustness of
the model across different patients.

4.3. Overall Algorithm

To better illustrate the learning procedure, the over-
all procedure is listed in Algorithm 1. It is worth
noting that HTP-Star can be trained in an end-to-
end manner, without heavy parameter tuning.

5. Experiments

5.1. Datasets and Tasks

We conduct experiments on two datasets: UK
Biobank (Sudlow et al., 2015) and MIMIC-III (John-
son et al., 2016), with the statistics shown in Table 1.
The UK Biobank dataset (Sudlow et al., 2015) is

a comprehensive biomedical national biobank and re-
search initiative based in the United Kingdom. It
involves participants aged 40 to 69 who were enrolled
between 2006 and 2010. It recruits a small subset of
patients to take part in an assessment, where extra
features such as sleep hours and cardiac monitoring
are recorded2. We conduct an outcome prediction
task which predicts whether the patients with type
2 diabetes would experience cardiovascular disease
(CVD) endpoints within 10 years after their initial
diagnosis. Specifically, CVD endpoints represent the
presence of coronary heart disease (CHD), congestive
heart failure (CHF), dilated cardiomyopathy (DCM),
myocardial infarction (MI), or Stroke. Please refer to
Appendix B for preprocessing details.
The MIMIC-III dataset (Johnson et al., 2016) con-

tains over 40,000 de-identified patients in critical care

2. Some other features could be found at https://biobank.

ctsu.ox.ac.uk/crystal/browse.cgi

units of the Beth Israel Deaconess Medical Center
from 2001 to 2012. We conduct phenotyping predic-
tion on MIMIC-III, which is formulated as a multi-
label classification on the 25 pre-defined phenotypes
by Harutyunyan et al. (2019). Specifically, given the
patients’ health records, we aim to predict whether
the 25 acute care conditions are present in their
next visits. See Appendix B for the detailed list of
the phenotypes. In the preprocessing stage, we ex-
tract patients with multiple hospital visits and cre-
ate pairs of consecutive visits for each patient. For
each pair, we extract the diseases, medications, pro-
cedures, and services in the former visit as input fea-
tures. Among them, diseases are considered as the
basic features, and the others are considered as ex-
tra features. MIMIC-III is in a simulated setting
and thus the extra features are intentionally masked
out for most patients, even though some of them
might have that information available in the dataset.
This is because diseases are typically readily available
through claims data, and often serve as the primary
focus in various analytical tasks (Wu et al., 2023b).
The phenotypes present in the latter visit serve as
the corresponding labels.

For both datasets, we construct two subgroups for
evaluation. To ensure a fair comparison, we main-
tain the same set of patients in both subgroups, with
one group having only basic features, and the other
having additional extra features. Moreover, we eval-
uate HTP-Star and all baselines on both subgroups
to show their capabilities in two different scenarios.

5.2. Baselines

We mainly compare HTP-Star with two groups of
baselines. The detailed description of baselines is de-
ferred to Appendix C.We employ Accuracy, Macro
AUROC and Macro AUPR as evaluation metrics.

Traditional ML Baselines These methods do not
leverage graph structure to model the relationships
between patients and features. For these methods,
we consider three variants — basic (patients with ba-
sic features only), extra (patients with extra features
only), and combined (considering all patients, and
zero-padding is used to ensure the alignment of ba-
sic and extra features dimensions). In this group of
baselines, we consider three techniques: (1) Logistic
Regression (LR, Keyhani et al. (2008)), (2) XG-
Boost (Chen and Guestrin, 2016) and (3) Trans-
former (Li et al., 2020).
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Table 2: Performance on UK Biobank and MIMIC-III compared with baselines. “P/F” stands for methods
with pretrain-then-finetuning. “HyG” represents hypergraph. Bold indicates the best result across
all models. The result is averaged over 5 runs. * denotes statistical significant results (p < 0.05).

Model

UK Biobank MIMIC-III

Basic Full Basic Full

ACC AUROC AUPR ACC AUROC AUPR ACC AUROC AUPR ACC AUROC AUPR

LR w/ Basic Feat. 67.90 51.76 46.69 67.90 51.76 46.69 75.85 72.31 54.25 75.85 72.31 54.25
LR w/ Full Feat. 64.20 57.36 48.05 69.14 68.50 64.32 74.98 66.86 50.30 74.59 67.41 49.11
LR w/ Both 62.96 52.35 43.58 67.90 64.79 60.82 75.01 72.28 54.25 75.10 68.09 49.50
XGBoost w/ Basic Feat. 61.73 52.82 44.54 61.73 52.82 44.54 75.97 72.44 54.61 75.97 72.44 54.61
XGBoost w/ Full Feat. 64.20 50.00 35.80 64.20 63.79 57.27 76.83 66.71 50.19 76.06 69.61 51.85
XGBoost w/ Both 64.20 52.35 44.84 64.20 67.51 56.63 76.88 72.60 54.54 75.31 71.33 53.25
Transformer w/ Basic Feat. 62.96±0.32 59.88±0.21 46.42±0.32 62.96±0.32 59.88±0.21 46.42±0.32 72.45±0.92 74.64±0.61 59.47±0.76 72.45±0.92 74.64±0.61 59.47±0.76

Transformer w/ Full Feat. 64.20±0.00 41.35±0.28 31.43±0.45 64.20±0.00 54.21±0.35 37.24±0.42 71.72±0.13 72.76±0.24 57.46±0.36 71.72±0.13 72.92±0.25 57.45±0.50

Transformer w/ Both 64.20±0.00 40.22±0.36 30.71±0.40 64.20±0.00 54.31±0.39 37.63±0.40 72.21±0.27 74.55±0.42 59.49±0.69 71.47±0.26 72.35±0.47 56.07±0.59

HyG + vanilla P/F 62.96±0.92 56.79±0.38 48.74±0.26 69.14±0.99 71.56±0.37 61.26±1.84 75.04±0.69 75.77±0.59 62.66±0.38 74.67±0.60 76.54±0.92 63.36±0.84

HyG + Reweight P/F 65.43±0.00 57.33±0.49 49.40±0.09 65.43±0.00 70.23±0.58 64.44±0.20 75.10±1.14 76.04±0.53 63.14±0.96 74.36±1.29 76.65±0.87 62.72±0.80

HyG + AUX-TS P/F 62.96±0.83 56.13±0.44 49.63±0.15 64.20±0.86 58.69±0.43 38.09±1.36 75.89±1.01 77.06±0.40 66.27±0.62 64.69±1.27 63.84±1.34 47.02±0.97

HyG + G-Adv P/F 65.43±0.00 59.98±0.27 48.50±0.11 64.20±1.12 57.29±0.78 39.78±2.01 73.79±1.20 76.71±0.58 62.56±0.94 73.15±1.35 75.23±0.97 60.85±0.73

HyG + ForkMerge P/F 64.20±1.10 58.39±0.35 50.28±0.21 66.67±0.94 74.20±0.23 64.28±0.19 75.56±1.70 76.11±0.54 64.14±0.88 70.85±1.21 70.12±1.63 54.75±1.18

HTP-Star

(HyG + proposed P/F)
72.84±0.71* 60.11±0.43 50.78±0.16* 67.90±0.88 74.40±0.28 65.54±0.12* 78.17±1.09* 81.00±0.42* 69.54±0.70* 77.06±0.69* 79.56±0.92* 67.13±0.55*

Pretrain-then-Finetune Baselines These base-
lines propose additional training techniques to fa-
cilitate knowledge transfer and improve the model’s
generalization ability. Specifically, we consider the
following baselines: (4) PT-FT (Xu et al., 2022),
(5) Reweight (Li et al., 2023), (6) AUX-TS (Han
et al., 2021), (7) G-Adv (Dai et al., 2022; Liu et al.,
2021b), (8) ForkMerge (Jiang et al., 2023a). We are
aware that there are additional techniques for EHR-
based clinical predictions, however, they either focus
on designing neural architectures (Zhu and Razavian,
2021) or leverage additional knowledge (Park et al.,
2022; Cui et al., 2023; Jiang et al., 2023b; Xu et al.,
2024), thus are orthogonal to the focus of this work.

5.3. Implementation Details

We implement our model in PyTorch (Paszke et al.,
2019). We tune the learning rate (α) in the range of
{1e-4, 2e-4, 1e-3} and set it as 1e-3 in the pretrain-
ing stage and 2e-4 in the finetuning stage. We use
Adam (Kingma and Ba, 2014) as the optimizer with
a weight decay of 1e-3. We set µ in Eq. 9 as 0.5, β in
Eq. 8 as 0.5, and number of layers l in the hypergraph
transformer as 3. For the local The experiment is run
on a single NVIDIA Titan RTX GPU. We study the
effect of µ and β in Section 5.6.

5.4. Experimental Results

Table 2 summarizes the experimental results of
HTP-Star compared with baselines. Note that AU-
ROC is the main metric for the model performance.
From the results, we have the following findings:

⋄ Models following the pretrain-then-finetune
pipeline generally exhibit better performance
compared to traditional ML methods which face
challenges in implementing this pipeline due to the
dimension mismatch issue mentioned in section 3.2.
⋄ Directly leveraging the vanilla pretrain-then-
finetune can be suboptimal, as it performs well on
patients with full features but is less satisfactory for
patients with basic features. We attribute this phe-
nomenon to the issue of catastrophic forgetting, where
the model may forget the knowledge learned during
the pretraining stage (Mehta et al., 2023). This fur-
ther highlights the need for designing effective fine-
tuning techniques to circumvent this issue.
⋄ When compared to other transfer learning tech-
niques, our framework achieves better performance.
This is because some baselines (e.g. G-Adv, Fork-
Merge) are mainly proposed to improve the robust-
ness of finetuning without modeling the relations be-
tween patients with basic and extra features, while
other baselines (e.g. Reweight, AUX-TS) mainly use
loss scales and gradient cosine similarity to reweight
different group, which fail to consider overall loss re-
duction. On the contrary, we propose dynamically
reweight different patient groups to avoid sacrificing
the average performance.

5.5. Ablation Study

We study the effect of different components of
HTP-Star on the two datasets, shown in Figure 5.
We observe that both Smoothness-inducing Regular-
ization and Group-balanced Reweighting are benefi-
cial to the model performance, as they address the
catastrophic forgetting issue and identify an opti-
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Figure 5: Effect of different components of HTP-Star
on the two datasets. SR and GR stands for
Smoothness-inducing Regularization and
Group-balanced Reweighting, respectively.
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Figure 6: Parameter studies on UK Biobank.

mized gradient direction that balances between ba-
sic features and extra features. Additionally, we also
demonstrate that the pretrain-then-finetune pipeline
generally enhances the model performance in both
evaluation scenarios. Simply using only patients with
basic features, or patients with extra features do not
harness all the information.

5.6. Parameter Study

We study the effect of β and µ in Eq. 8 and Eq. 9,
respective, in Figure 6. The results indicate that
the model achieves its optimal performance when
the smoothing factor β is set to 0.5, which evenly
balances the influence of both the smoothed model
and the original model. When β equals 1, only the
smoothed model is considered, while β at 0 implies
the model operates without smoothness-inducing reg-
ularization. In both extreme cases, the model ne-
glects information from either the smoothed or orig-
inal model, leading to reduced performance. Addi-
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Figure 7: Performance of HTP-Star with different
balancing method.

tionally, the parameter µ serves as the weight for the
consistency loss in Eq. 9. A higher value of µ signi-
fies a greater alignment with the previous smoothed
model, while a lower value of µ places more emphasis
on the original model. The optimal model perfor-
mance is achieved when µ is set to 0.5.

5.7. Study on Different Balancing Methods

As HTP-Star includes a reweighting step to balance
the weight between two different patient groups, we
further compare with other generic reweighing meth-
ods originally proposed for multi-task learning to un-
derstand the benefit of our design further. Specifi-
cally, we compare with three representative methods:
Uncertainty Weighting (Kendall et al., 2018) that
leverages task homoscedastic uncertainty to weight
each group; CAGrad (Liu et al., 2021a) and PC-
Grad (Yu et al., 2020), which design gradient har-
monization approaches to avoid negative transfer.

Figure 7 illustrates the result. We observe that
UW does not perform well in our setting, as we ob-
serve that the training process can be highly unstable,
especially for patients with full features. Incorporat-
ing gradient harmonization approaches is beneficial,
but the gain is not so significant as they do not take
the overall loss reduction into account. These results
corroborate the advantage of our proposed group-
balanced reweighting.

5.8. A Closer Look at the Finetuning Stage

Figure 8 illustrates the learning curve for the finetun-
ing phase of HTP-Star, in comparison with the hy-
pergraph transformer incorporating vanilla pretrain-
ing and finetuning. Our model effectively balances
performance across patients with basic and extra fea-
tures, enhancing their performance simultaneously.
In contrast, the baseline model experiences a decline
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Figure 8: Learning curve of the finetuning stage
from HTP-Star, compared with hyper-
graph transformer with vanilla pretraining
and finetuning on UK Biobank.

in performance on patients with basic features while
showing continuous improvement for those with full
features. This disparity occurs because the baseline
model fails to maintain a balance between the two
evaluation scenarios and gradually forgets pretrain-
ing information during finetuning.

6. Conclusion

We introduce HTP-Star, a framework leveraging hy-
pergraph structures within a pretrain-then-finetune
framework for EHR modeling, facilitating seamless
integration of additional features. Additionally, we
propose two techniques: (1) Smoothness-inducing
Regularization and (2) Group-balanced Reweight-
ing, to enhance model robustness during finetuning.
Through experiments on two real EHR datasets, we
demonstrate that HTP-Star consistently outperforms
various baselines, maintaining a balance between pa-
tients with basic and extra features.

7. Limitation

In this work, we mainly focus on other medical codes
as extra features, but in real clinical applications,
there could be other types of features from other
modalities, e.g. text (Park et al., 2022), images (Lee
et al., 2023), or time series (McDermott et al., 2021;
King et al., 2023). It is important to design tech-
niques to incorporate data from these modalities to
further broaden the application range of HTP-Star.

Besides, the inclusion of a pretrain-then-finetune
pipeline leads to longer training time, which can be
problematic when there are large amount of patient
data. A promising avenue for future research involves
designing efficient training techniques to improve the
scalability of our proposed framework.
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Appendix A. Details about
Hypergraph
Transformer

MHA computes the attention in parallel h heads as:

MHA(X) = Concat (head1, . . . ,headh)Wo, (16)

headi = Softmax
(
Wqi(XWki

)T /
√
dh

)
XWvi ,

(17)

where X ∈ Rn×d is the input, dh = d/h, and
Wqi ∈ R1×dh , Wki

,Wvi ∈ Rd×dh are query, key, and
value projection matrices for i-th head, respectively3.
Wo ∈ Rd×d is an output projection matrix. The fully
connected feed-forward neural network (FFNN) com-
prises two linear layers with an activation function:

FFNN(X) = σ (XWf1 + b1)Wf2 + b2 (18)

where Wf1 ∈ Rd×dm ,Wf2 ∈ Rdm×d, σ(·) is the acti-
vate function. A residual connection is used followed
by a layer normalization.

Appendix B. Datasets and Tasks
Details

UK Biobank In the preprocessing stage, we con-
sider We consider patients in both inpatient and out-
patient EHR with type 2 diabetes (ICD10 code of
‘E11.XX’). The task labels are whether the patients
develop CHD (ICD10 code of ‘I25.XX’), CHF (ICD10
code of ‘I50.XX’), DCM (ICD10 code of ‘I42.XX’), MI
(ICD10 code of ‘I21.XX’) and Stroke (ICD10 code of
‘I66.XX’) within 10 years of the diagnosis of type 2 di-
abetes. Note that we also consider death with causes
of CHD, CHF, MI or Stroke as a positive outcome (la-
bel should be 1). Patients with an interval between
their initial and last medical record of less than 10
years or with a documented medical history of any
of the specified outcomes (CHD, CHF, DCM, MI, or
Stroke) before their initial diabetes diagnosis are ex-
cluded from our analysis. To formulate a subset of
the patients with extra features, we extract those pa-
tients who have been enrolled in the UKB assessment
within two years before their initial diabetes diagno-
sis, as the assessment introduces additional features.

3. Here the size of Wqi is R1×dh since we only need to gen-
erate an aggregated embedding for each node/hyperedge.

Table 3: The 25 pre-defined phenotypes in the
MIMIC-III dataset.

Phenotype Type

Acute and unspecifed renal failure acute
Acute cerebrovascular disease acute
Acute myocardial infarction acute
Cardiac dysrhythmias mixed
Chronic kidney disease chronic
Chronic obstructive pulmonary disease chronic
Complications of surgical/medical care acute
Conduction disorders mixed
Congestive heart failure; nonhypertensive mixed
Coronary atherosclerosis and related chronic
Diabetes mellitus with complications mixed
Diabetes mellitus without complication chronic
Disorders of lipid metabolism chronic
Essential hypertension chronic
Fluid and electrolyte disorders acute
Gastrointestinal hemorrhage acute
Hypertension with complications chronic
Other liver diseases mixed
Other lower respiratory disease acute
Other upper respiratory disease acute
Pleurisy; pneumothorax; pulmonary collapse acute
Pneumonia acute
Respiratory failure; insufficiency; arrest acute
Septicemia (except in labor) acute
Shock acute

MIMIC-III. Table 3 presents a detailed list of the
25 pre-defined phenotypes, which are identified us-
ing Clinical Classifications Software (CCS) from the
Healthcare Cost and Utilization Project (HCUP)4.

Appendix C. Baselines

We consider the following baselines in this work:

• Logistic Regression (LR, Keyhani et al. (2008)):
It first transforms each EHR visit into a multi-
hot vector, and then uses a linear layer to per-
form prediction.

• XGBoost (Chen and Guestrin, 2016): It opti-
mizes the model’s performance through gradient
descent and regularization techniques.

• Transformer (Li et al., 2020): It directly uses a
self-attention structure for modeling EHR visits.

4. https://hcup-us.ahrq.gov/toolssoftware/ccs/
AppendixASingleDX.txt
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• PT-FT (Xu et al., 2022): It adopts the standard
pretrain-then-finetune pipeline, which first pre-
train on patients with basic features, then fine-
tune on patients with extra features without any
other training strategies.

• Reweight (Li et al., 2023): It adaptively adjusts
the weight between the patients between basic
and extra features.

• AUX-TS (Han et al., 2021): It uses the cosine
similarity between gradients of loss to balance
the weight between basic and extra features.

• G-Adv (Dai et al., 2022; Liu et al., 2021b): It
uses adversarial training during the fine-tuning
stage to improve the model’s robustness.

• ForkMerge (Jiang et al., 2023a): It is the most
recent work on transfer learning, which forks the
model into multiple branches and dynamically
merges branches to enhance auxiliary-target gen-
eralization. To adapt it to our setting, we set two
branches to encode the update in pretraining and
fine-tuning, respectively.

We recognize that traditional missing data imputa-
tion (MDI) approaches seem to be applicable as base-
lines. However, we highlight the significant gap be-
tween MDI problems and our setting, which involves
learning with both basic and extra features: (1) MDI
approaches often make strong assumptions about the
data distribution (e.g., missing at random), whereas
in our setting, for patients with only basic features,
the extra features are entirely missing. (2) MDI ap-
proaches typically lack the flexibility to handle mixed
data types, including both continuous and categorical
variables, as found in the EHR data used in our study.
(3) In our setting, the volume of missing values is too
substantial for missing data imputation methods to
be feasible. Taking the UK Biobank as an example,
according to Table 1, 1,140 out of 1,629 patients have
missing values for the entire 1,371 out of 2,013 fea-
tures. Given such a large proportion of missing data,
applying MDI techniques would introduce significant
bias in the imputed values.

Consequently, we believe that these traditional ap-
proaches are not directly adaptable to our setting
without significant modifications.

Appendix D. Long-term Impact

HTP-Star introduces a novel approach to EHR
modeling with several potential long-term impacts.
Firstly, it enables more comprehensive and person-
alized healthcare decision-making by seamlessly in-
tegrating diverse patient data, including basic and
additional features from local medical institutions.
This could drive advancements in real-world clinical
decision-making, healthcare delivery, and improved
patient outcomes through better utilization of rich
patient data. Additionally, it inspires future research
into transfer learning and domain adaptation tech-
niques for effective knowledge transfer across different
patient populations. Moreover, it may also inspire
follow-up work such as incorporating different data
modalities, enhancing scalability, or applying the ap-
proach to other datasets.
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