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Abstract. Interpreting and subtyping type 2 diabetes (T2D) is challenging yet 
essential for achieving fine-grained pathophysiological insights and precise clinical 
stratification. Previous studies have primarily relied on a small number of pre-
selected risk factors and biomarkers, neglecting the integration of multimodality 
data (e.g., phenotypic and genetic features) for more comprehensive analyses. In this 
study, we select a cohort of 42,256 participants from the National Institutes of 
Health's All of Us Research Program, where our hypergraph framework achieves an 
AUROC of 89.64% on predicting T2D when integrating phenotypic and genetic 
features. The proposed pipeline performs subtyping by clustering clinical concepts, 
genetic variants, and individuals in an end-to-end manner. Further analysis using 
genetic risk scores reveals distinct genetic profiles between T2D subtypes and 
highlights the potential applications of our solution in precision medicine. 
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1. Introduction 

Affecting over 500 million people worldwide, type 2 diabetes (T2D) poses a significant 
global health challenge largely due to its etiological heterogeneity influencing diabetes 
complications differently. While environmental and lifestyle factors are well-established 
risk factors of T2D, genetic information also plays a crucial role in understanding its 
complex biological mechanisms [1]. Deciphering this heterogeneity is crucial for 
uncovering the pathophysiological mechanisms from both phenotypic and genetic 
perspectives. In this study, we aim to interpret T2D by jointly analyzing phenotypic and 
genetic data. Accordingly, we propose a subtyping pipeline that simultaneously clusters 
individuals, phenotypes, and genotypes using electronic health record (EHR) and whole 
genome sequencing (WGS) data. The data is effectively integrated using a hypergraph 
backbone model, where the unsupervised subtyping process can be guided by a T2D 
prediction task in an end-to-end manner. 

Previous efforts in data-driven T2D subtyping have often relied on single-modal 
approaches involving a panel of pre-selected risk factors and biomarkers, without the 
access to large-scale EHRs and genomics data in a same cohort, thereby restricting more 
comprehensive multimodal analyses. Additionally, traditional clustering techniques like 
K-means, which operate on pre-defined features, lack the adaptability to learn 
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hierarchical or latent representations and are often challenging to integrate with deep 
learning frameworks. In contrast, our model performs effective and efficient phenotype-
genotype co-learning guided by downstream prediction tasks. We use data from the 
National Institutes of Health (NIH)’s All of Us (AoU) Research Program, which has built 
one of the largest and most diverse biomedical databases including data such as clinical 
records (phenotypic), biosamples and bioassays (genomics), surveys, and physical 
measurements [2]. In this study, we select a cohort of 42,256 patients on the AoU 
Research Workbench2. Leveraging this extensive and ancestrally diverse dataset, our 
framework achieves an AUROC of 89.64% when predicting the risk of T2D. Our method 
results in two T2D subtypes characterized by distinct genetic profiles such as body fat 
and metabolic syndrome. 

2. Method 

2.1. Data Preprocessing 
Our study cohort contains (1) a case group of 15,108 patients who were diagnosed with 
T2D and (2) a control group of 27,148 patients who shares similar demographic 
characteristics and clinical profiles with the case group but never diagnosed with diabetes. 
For the case group, we define the diagnostic criteria for T2D based on the guidelines 
provided in [3], including: (1) Medical code level: ICD-10 (E11) and ICD-9 (250.x0, 
250.x2); and (2) Lab measurements level: HbA1c ≥ 6.5%, fasting plasma glucose (FPG) 
≥ 126 mg/dL, and two-hour oral glucose tolerance test (OGTT) plasma glucose level ≥ 
200 mg/dL. In this study, we use propensity score matching (PSM) to construct the 
control group while minimizing potential bias and the influence of variables that could 
confound the relationship between T2D and outcomes. The propensity score is calculated 
using logistic regression with independent variables including gender, age, age2, BMI, 
hypertension, hypercholesterolemia, smoking status, and kidney disease status. These 
covariates are chosen because they are demographic factors or potential confounders for 
T2D [4]. We perform nearest-neighbor matching with a caliper of 0.001 on the 
propensity score, allowing up to two control matches per case. 

In this study, all phenotypic features are derived from participants' EHRs, 
particularly from the standardized (OMOP CDM) clinical codes. For a patient in the case 
group, we identify the initial diagnosis of T2D and collect all unique clinical codes from 
any previous visits. These clinical codes are used to describe a patient's profile and will 
later be used as input phenotypic features. Note that any codes related to diabetes are 
excluded to prevent data leakage. For a patient in the control group, we simply utilize all 
patient's available visits and collect the unique clinical codes from those visits as input. 

Following a recent genome-wide association study of T2D [1], which identified 
1,289 independent genome-wide significant single nucleotide polymorphisms (SNPs)3 
that map to 611 loci, we identify 926 SNPs in the AoU cohort after excluding multiallelic 
variants and indels. To construct genotype features, we utilize short read whole genome 
sequencing (srWGS) data, specifically a smaller callset known as the Allele Count/Allele 
Frequency (ACAF) threshold callset. For each available SNP, we categorize genotypes 
into homozygous reference allele, homozygous risk allele, and heterozygous. These 
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genotype categories are then encoded into multihot features. Missing values in the 
genotype data are imputed with 0. 

2.2. Hypergraph Modeling 
We apply our previously developed hypergraph transformer model [5, 6] to capture the 
complex interactions among phenotypic and genotypic features. In our hypergraph 𝒢	 =
	(𝒱, ℰ) , nodes 𝒱  represent clinical codes or genetic variants, and hyperedges ℰ 
correspond to patients described by subsets of these nodes. Due to the typically higher 
density of genotypic features, directly modeling them within a single graph may result 
in imbalance in feature representation, where genotypic features dominate the graph 
structure. To mitigate this, we adopt a dual-layer hypergraph, allowing phenotypic and 
genotypic features to be modeled separately while enabling their interactions through a 
shared predictor. For each layer, node embeddings are initialized using DeepWalk [7], 
and updated iteratively via a two-step message-passing mechanism: 

𝑬!
(#) = 𝑓𝒱→ℰ+𝓥!,𝑿("#$)-,	 𝑿*

(#) = 𝑓ℰ→𝒱+𝓔𝒱,𝑬(")-,	 (1) 

where 𝓥!,𝑿  represents node features in hyperedge 𝑒 , and 𝓔𝒱,𝑬  represents hyperedge 
features connected to node 𝑣 . The function 𝑓(⋅)  uses a standard self-attention 
mechanism to prioritize informative features during aggregation, where the input 
consists of feature representations from connected nodes or hyperedges. For T2D risk 
prediction, we aggregate hyperedge embeddings from phenotype and genotype layers 
and pass them through a multilayer perceptron (MLP) with a sigmoid activation to 
compute the predicted probability 𝑦4. The model is optimized using the binary cross-
entropy loss: ℒ,-. = −𝑦 log(𝑦4) − (1 − 𝑦) log(1 − 𝑦4), where 𝑦 is the ground truth. 

2.3. Subtype Clustering 
Self-supervised clustering is performed on learned embeddings to identify consistent 
subgroups of clinical codes, patients, and SNPs for the discovery of T2D subtypes. We 
employ a deep embedded approach [8] by iteratively learning cluster assignments 𝑄*  
and 𝑸ℰ for nodes and hyperedges, respectively. The soft assignment 𝑞/0 for a node (or 
hyperedge) 𝑖 and cluster 𝑘 is computed as follows, while the target distribution 𝑝/0  is 
designed to refine cluster purity: 
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where 𝒙/  is the embedding of 	𝑖 , and 𝒖0  is the centroid representation of cluster 𝑘 . 
Cluster centroids are initialized using K-means. Then, we optimize Kullback-Leibler 
(KL) divergence between 𝑷 and 𝑸: 

ℒ,-< 	= 	𝐾𝐿(𝑷	||	𝑸) 	= 	∑ᵢ	∑ₖ	𝑝/0	𝑙𝑜𝑔(𝑝/0/𝑞/0). (3) 
Since clustering is performed simultaneously on phenotypes, genotypes, and 

patients, the pipeline incorporates three clustering losses as defined in Eq.3. The final 
optimization objective is the weighted sum of these three clustering losses and ℒ,-.. 

3. Results 

3.1. T2D Risk Prediction 
We evaluate the predictive capability of our proposed hypergraph (HyG) pipeline on a 



T2D risk prediction task. To address label imbalance, we adopt metrics used in [6], 
including accuracy, AUROC, AUPR, and F1 score. We compare our model against 
traditional machine learning methods such as logistic regression (LR), support vector 
machine (SVM), random forest (RF), and XGBoost (XGB) [9], as well as a deep learning 
approach MLP. The dataset is split into training, validation, and test sets in a 7:1:2 ratio, 
and we fix the number of training epochs (if applicable) at 500. 

Table 1 presents the prediction results using different data modalities. Our proposed 
framework consistently outperforms other baseline models across all metrics when only 
using EHR data. For models only using genotypic data, all methods exhibit suboptimal 
predictive results as expected [10], because T2D is not primarily driven by genetic 
factors. When combining EHR and genotypic data, HyG achieves the best overall 
performance, with an AUROC of 89.64% and an AUPR of 82.77%, exceeding the 
average by 2.56% and 3.19%, respectively. 
Table 1. Performance of predicting T2D risk using different models on various data modalities. The results are 
the averages of metrics from 5 runs of the models. Bold numbers indicate the best results in each category. 

Model EHR Only Gene Only EHR + Gene 

ACC AUROC AUPR F1 ACC AUROC AUPR F1 ACC AUROC AUPR F1 

LR 81.15 86.77 78.86 79.24 62.84 58.47 41.33 53.38 81.14 86.77 78.86 79.23 
SVM 79.29 84.22 74.12 77.51 62.62 58.15 41.04 52.81 79.23 84.22 74.12 77.50 
RF 81.77 87.33 80.65 79.49 64.58 55.89 39.44 44.60 81.85 87.30 80.76 79.53 

XGB 80.76 87.10 80.63 78.25 63.67 57.26 40.43 49.92 80.76 87.71 80.63 78.25 
MLP 81.53 87.65 80.75 79.87 64.71 53.45 37.26 42.31 80.88 87.46 80.31 79.29 
HyG 82.19 88.88 82.30 80.81 64.41 59.22 42.18 49.32 83.36 89.64 82.77 81.85 

3.2. Subtyping Analysis 

We generate five T2D subtypes from our hypergraph pipeline. We compare the genetic 
risk scores (GRS) of these subtypes across eight functional clusters defined by [1]. The 
GRS is calculated by GRS = ∑ β/=

/>2 ⋅ 𝑔/, where β/ is the effect size of SNP	𝑖, and 𝑔/ is 
the number of risk alleles for the SNP, taking values of 0, 1, or 2. Subtype 2 stands out 
with the strongest association to body fat and obesity. Subtype 1 also shows elevated 
risks in these areas but to a lesser extent. Subtype 3 demonstrates weaker associations 
overall, particularly with metabolic and glycaemic traits. Subtype 4 is characterized by 
minimal variation, while subtype 5 shows mild positive associations, with slight 
elevations in lipid metabolism. Table 3 shows the representative clinical concepts for 
each subtype extracted from the node clustering process (illustrated in Fig.1). 
Table 2. Comparison of standardized GRS across functional clusters in T2D subtypes. 

Cluster Subtype 1 Subtype 2 Subtype 3 Subtype 4 Subtype 5 
Body fat 0.3671 0.7449 -0.0722 -0.0191 0.0264 
Obesity 0.2827 0.3847 -0.0834 -0.0169 0.0830 

Metabolic syndrome -0.0465 -0.1417 -0.1284 0.0020 0.0439 
Residual glycaemic 0.1730 0.2410 -0.1955 -0.0024 -0.0263 

Beta cell -PI 0.0071 -0.0271 0.0683 -0.0030 0.0258 
Beta cell +PI 0.2647 0.2853 0.1305 -0.0147 0.0166 

Lipodystrophy 0.0560 0.1835 -0.1223 -0.0013 0.0005 
Liver/lipid metabolism 0.0413 -0.0018 0.0247 -0.0060 0.0601 

4. Discussion 
The findings in subtyping emphasize the potential impact of integrating genetic factors 
into frameworks solely relying on phenotypic data. While the observed differences in 
GRS between subtypes are numerically small, the extracted clinical nodes from each 
subtype corroborate the biological functions observed from a genetic perspective. This 
multi-modal integration approach may provide deeper insights into the heterogeneity of 



disease profiles, particularly when more informative data components of T2D, such as 
proteomics and metabolomics are available. However, methodological limitations 
remain, as the iterative clustering approach based on representation learning may 
produce unstable results. Future work should provide cross-validation of the subtypes 
across diverse cohorts to establish stronger biological credibility. 

Table 3. Clinical concepts for each subtype.    

 

 

 
 

Figure 1. Node clustering illustration. 

5. Conclusions 
We present a versatile framework that efficiently co-learns phenotypic and genotypic 
features. The framework achieves state-of-the-art predictive performance on the AoU 
dataset and guides the downstream subtyping process. It identifies novel T2D subtypes 
with biological differences across eight functionally distinct categories of SNPs and 
could therefore provide potential insights into the heterogeneity of T2D. 
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Subtypes Key clinical concepts 

Subtype 1 Chronic kidney disease, Diabetic retinopathy 

Subtype 2 Renal complications, Obesity, Gout-related symptoms 

Subtype 3 Diabetic neuropathy, Pancreatic dysfunction 

Subtype 4 Metabolic/inflammatory disorders 

Subtype 5 Carbohydrate metabolism disorders, Kidney disease 


