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Healthcare knowledge graphs (HKGs) are valuable tools for organizing biomedical concepts and their relationships. The recent advance
of large language models (LLMs) has paved the way for building more comprehensive and accurate HKGs. This, in turn, can improve
the reliability and evaluation of LLMs. However, the challenges and opportunities of HKGs are not fully understood, highlighting the
need for detailed reviews. This work provides the first comprehensive review of HKGs, summarizing the pipeline and key techniques
for HKG construction and successful HKG utilization in various health-related applications. Lastly, we highlight the opportunities for
HKGs in the era of LLMs.
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1 Introduction

A knowledge graph (KG) is a data structure that captures the relationships between different entities and their
attributes [73, 115]. KGmodels and integrates data from various sources, including structured and unstructured data, and
has been studied to support awide range of applications such as search engines [153], recommendation systems [160, 199],
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Fig. 1. The content overview of this review on healthcare knowledge graph.

and question answering [76, 88, 174, 176]. Healthcare Knowledge Graph (HKG) facilitates an interpretable representation
of medical concepts, e.g., drugs and disease, as well as the relations among those medical concepts. This data structure
enables the connection of contexts and enhances clinical research and decision-making [17, 128].

On the data side, HKG is usually built on complex medical systems such as electronic health records, medical literature,
clinical guidelines, and patient-generated data [12, 123]. However, these data resources are often heterogeneous and
distributed, which makes it challenging to integrate and analyze them effectively [107]. This data heterogeneity can also
lead to incomplete or inconsistent data representations, limiting their usefulness for downstream healthcare tasks [24].
Additionally, the current use of domain-specific knowledge graphs may result in limited coverage and granularity of
the knowledge captured across different levels. This hinders identifying correlations and relationships between medical
concepts from multiple domains. These challenges highlight the need for continued research on HKGs to realize their
full potential.

On the modeling side, the construction of HKGs can be done either from scratch or by integrating existing dataset
resources. Many crucial steps, such as entity and relation extraction, can be optimized with natural language processing
tools and algorithms. Recently, there have been significant advancements in general domain knowledge extraction,
thanks to pre-trained large language models (LLMs) such as BERT [26], GPT Series [13], and others. These models
revolutionize the field and make it possible to integrate heterogeneous medical data from various sources effectively.
The use of pre-trained models has also led to the development of more accurate and comprehensive medical ontologies
and taxonomies [159, 171, 184, 187, 190]. This allows for the evaluation of generated contents from LLMs and reduces
LLM hallucination.

A comprehensive healthcare knowledge graph has the potential to contribute to health research across various
levels [57, 85, 128]. At the micro-scientific level, HKGs can help researchers identify new phenotypic and genotypic
correlations and understand the underlying mechanisms of disease [60], leading to more targeted and effective treat-
ments [17, 131]. At the clinical care level, HKGs can be used to develop clinical decision support systems that provide
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clinicians with relevant information, improving clinical workflows and patient outcomes [16, 35]. Therefore, a thorough
review of existing literature on HKGs becomes an essential roadmap and invaluable resource to drive transformative
advancements in the field.

This review is the first comprehensive overview of HKGs, covering contents shown in Figure 1. Specifically, in Section
2, we delve into the construction pipelines of HKGs, including both building from scratch and integration approaches,
and highlight the key techniques employed in HKG construction. Additionally, we explore two standard utilization
methods of HKGs, namely model-free and model-based approaches. In Section 3, we compile a comprehensive summary
of existing HKG resources with their scopes and applications. Furthermore, Section 4 investigates the literature on
mainstream health applications, offering an in-depth overview of the diverse use cases of HKGs in healthcare. Finally,
we address promising research opportunities in the era of LLMs in Section 5.

2 Backgrounds

2.1 Knowledge Graphs for Healthcare (HKG)

Definition. A healthcare knowledge graph (HKG) is a domain-specific knowledge graph designed to capture medical
concepts such as drugs, diseases, genes, phenotypes, and so on, and their relationships in a structured and semantic
way.
Terminology. Our focus is on healthcare knowledge graphs (HKGs), which are structured, semantic representations of
medical concepts and relationships. We also include ontologies and knowledge bases, which are commonly used in
constructing HKGs. Ontologies define a set of concepts and categories in a domain, as well as the relationships between
them, while knowledge bases store factual information about entities and their attributes. By covering these categories
of terminology, we provide a comprehensive overview of the different types of resources available for organizing and
representing medical knowledge in a structured and semantically rich manner.

Background

HKG Definition

HKG Construction
Construct from Scratch

Construct by Integration

HKG Utilization
Model-free Utilization

Model-based Utilization

Fig. 2. Detailed taxonomy of the background section of healthcare knowledge graphs.

2.2 HKG Construction

Healthcare knowledge graphs can be constructed from scratch or through the integration of existing data resources.

Develop schema Collect data Extract knowledge triples

Normalize entities and relationsInfer missing linksUpdate and validate

Fig. 3. The pipeline of constructing HKGs from scratch.

Constructing HKGs from Scratch. A multi-step pipeline, as in Figure 3, is used to construct HKGs from scratch.
Manuscript submitted to ACM
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(1) The first step is to identify the scope and objectives. In most cases, researchers develop a schema [9, 55] or
use existing schemas [4, 6, 55, 130] to serve as the formal and explicit specification of a domain, thus ensuring
consistent, coherent, and aligned domain knowledge. Unlike the general domain KG, utilizing schemas is a
common practice in HKG construction.

(2) Secondly, researchers gather data from various sources, including medical literature, clinical trials, and patient-
generated data. It is essential to ensure the quality and consistency of the data and to remove identifiable
information for patient privacy.

(3) The third step is to extract and transform the data into a structured format. This step involves identifying medical
entities and creating relationships between them via specialized biomedical Natural Language Processing (NLP)
tools [58, 141, 169].

(4) Next, researchers map the entities and relationships to the chosen ontologies with the help of thesauruses [10]
or terminologies [32, 65]. This step ensures that the knowledge graph is interoperable with other healthcare
systems and facilitates data integration.

(5) Until now, an initial KG has been built. The next step is to populate the KG to infer missing links between entities.
This inference can be done using graph databases [154] or link prediction models [11, 99].

(6) The final step is to continuously update and validate the KG to ensure accuracy and relevance. This step involves
incorporating new data and knowledge, refining the schema, and evaluating the quality of the KG.

Constructing HKGs by Integration. Considering significant efforts have been paid to construct and curate HKGs
from scratch, it is promising to integrate these data resources to avoid repetitive work. Healthcare KG integration (also
called Healthcare KG fusion) refers to the processing of merging two or more HKGs into a single, more comprehensive
graph [64, 142, 181]. The integration process is challenging because different HKGs may use different terminologies,
schemas, or data formats. To address these challenges, researchers have developed various techniques and algorithms
for knowledge graph fusion, including ontology matching [41, 61], schema alignment [103, 144], entity resolution [5, 68],
and conflicts resolution [102]. These methods aim to identify and reconcile the differences between KGs.
Techniques for HKG Constructions. Traditionally, each step of HKG construction involves one specially designated
model. For instance, Hidden Markov Models and Recurrent Neural Networks are widely used for healthcare named
entity recognition, relation extraction, and other sequence tagging tasks, while Translational Models and Graph Neural
Networks are used for HKG completion and conflicts resolution tasks. Recently, large language models (LLMs) have
shown great utility to serve as a uniform tool for constructing KGs [177]. Several key steps of constructing KGs, such
as named entity recognition [18, 70, 87, 92], relation extraction [100, 175, 203], entity linking [20, 25, 111], and KG
completion [129, 136, 168? ], have been successfully tackled by these large foundation models. Early explorations of
construction HKG with large foundation models show that healthcare entity normalization [2, 191], healthcare entity
recognition [45, 67], healthcare entity linking [200], and healthcare knowledge fusion [98] can also be performed,
without extensive training on expensive healthcare annotated corpus. On the other hand, researchers start to construct
KGs under the open-world assumption [23, 86, 99, 118, 137], thus getting rid of the dependency on pre-defined schemas
and exhaustive entity&relation normalization. Although open-world KGs greatly increase the coverage, ensuring the
quality of extracted knowledge is still an open research challenge, especially for explainable and trustworthy HKGs.
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2.3 HKG Utilization

Model-free Utilization. Various query languages can be used for KGs, such as SPARQL, Cypher, and GraphQL [154].
These query languages allow users to query healthcare KGs using a standardized syntax, thus enabling users to
retrieve, manipulate, and analyze data in a structured and consistent way. More complex applications can be further
supported by graph queries. For instance, automatic healthcare question answering can be tackled by Natural Language
Question-to-Query (NLQ2Query) approach [80], where natural language questions are first translated into executable
graph queries and then answered by the query responses. HKGs can also be utilized as an up-to-date and trustworthy
augmentation to large language models (LLMs) for many applications. Some pioneering studies [56, 94, 138, 172] show
that retrieved knowledge triples can improve the reliability of LLMs in various knowledge-intensive tasks, by addressing
the nonsensical or unfaithful generation. Moreover, KGs can be a useful tool for fact-checking [106, 147, 151] as they
provide a structured representation of information that can be used to quickly and efficiently verify the accuracy of
claims. Researchers have explored the utility of HKGs in identifying ingredient substitutions of food [139], COVID-19
fact-checking [108], etc.
Model-based Utilization. Utilizing HKGs in complex reasoning tasks often involves utilizing machine learning models.
HKG embeddings [143, 183] have shown great potential to tackle these tasks. In particular, HKG embedding models
are a class of machine learning models that aim to learn low-dimensional vector representations, or embeddings, of
the entities and relations in a knowledge graph. After obtaining HGK embeddings, they can be plugged into any kind
of deep neural network and further fine-tuned toward downstream objectives. On the other hand, symbolic logic
models represent another prominent approach for KG reasoning due to their interpretability. More specifically, symbolic
reasoning models first mine logical rules from existing knowledge by inductive logic programming [112], association
rule mining [49], or Markov logic networks [82]. These minded rules are used to infer new facts, make logical deductions
and answer complex queries. Recently, researchers start to explore combining logical rules into KG embedding to
further improve the generalization and performance of HKG reasoning [3, 202].

3 Resources

In this section, we compile a detailed resource overview of existing healthcare knowledge graphs to assist researchers and
healthcare professionals in constructing and utilizing HKGs, organized in Table 1. We present key attribute information,
including HKG name, node types, edge types, statistics, and their applications. Details and external links can be referred
to at our public repository1.

4 Applications

4.1 Basic Science Research

Several previous biological terms can also be considered knowledge graphs, such as ontology (gene ontology, cell
ontology, disease ontology), network (gene regulatory network), etc. We use the original biological terms as they are
more popular according to historical reasons.

4.1.1 Medicinal Chemistry. Topics related to medicinal chemistry involve drug-drug interactions (DDIs) and drug-target
interactions (DTIs), which will be discussed in this section.

1Resource: https://github.com/lujiaying/Awesome-HealthCare-KnowledgeBase
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Application

Basic Science Research
Medical Chemistry

Bioinformatics

Pharmaceutical Development
Drug Development

Clinical Trial

Clinical Decision Support
Intermediate Steps to Ad-
vance Prediction Models

Evidence Generation
for Risk Prediction

Public Health

Epidemiology

Environmental Health

Policy and Management

Social and Behavioral

Fig. 4. Detailed taxonomy of the application section of healthcare knowledge graphs.

Drug-drug interactions (DDIs) refer to changes in the actions, or side effects, of drugs when they are taken at the
same time or successively [54]. In general, DDIs are a significant contributor to life-threatening adverse events [143],
and their identification is one of the key tasks in public health and drug development. The existence of diverse datasets
on drug-drug interactions (DDIs) and biomedical KGs has enabled the development of machine-learning models that
can accurately predict DDIs. Yu et al. [183] develop SumGNN, a model that includes a subgraph extraction module to
efficiently extract relevant subgraphs from a KG, a self-attention-based summarization scheme to generate reasoning
paths within the subgraph, and a multichannel module for integrating knowledge and data, resulting in significantly
improved predictions of multi-typed DDIs. Su et al. [143] propose DDKG, an attention-based KG representation learning
framework that involves an encoder-decoder layer to learn the initial embeddings of drug nodes from their attributes
in the KG. Karim et al. [78] compare various techniques for generating KG embeddings with different settings and
conclude that a combined convolutional neural network and LSTM network yields the highest accuracy when predicting
drug-drug interactions (DDIs). Dai et al. [22] propose a new KG embedding framework by introducing adversarial
autoencoders based on Wasserstein distances and Gumbel-Softmax relaxation for DDI tasks. Lin et al. [89] develop
KGNN that resolves the DDI prediction by capturing drugs and their potential neighborhoods by mining associated
relations in KG.
Drug-target interactions (DTIs) is just as important as DDIs [19]. Machine learning models can leverage knowledge
graphs constructed from various types of interactions, such as drug-drug, drug-disease, protein-disease, and protein-
protein interactions, to aid in predicting DTIs. For instance, Li et al. [84] utilize the KG transfer probability matrix
to redefine the drug-drug and target-target similarity matrix, thus constructing the final graph adjacent matrix to
learn node representations by VGAE and augmenting them by utilizing dual Wasserstein Generative Adversarial
Network with gradient penalty. Zhang et al. [193] propose a new hybrid method for DTI prediction by first constructing
DTI-related KGs and then employing graph representation learning model to obtain feature vectors of the KG. Wang et
al. [156] construct a knowledge graph of 29,607 positive drug-target pairs by DistMult embedding strategy, and propose
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a Conv-Conv module to extract features of drug-target pairs. Ye et al. [179] learn a low-dimensional representation for
various entities in the KG, and then integrate the multimodal information via neural factorization machine.

4.1.2 Bioinformatics Research. In bioinformatics settings, a knowledge graph is a graph-based representation where
nodes are biomedical entities (such as mutations, genes, proteins, metabolites, diseases, and biological pathways), and
edges are their relationships (such as associations, interactions, and regulations). Through the integration, researchers
can gain a more comprehensive understanding of complex biological processes and diseases.
Multi-Omics Applications: In recent years, the field of multi-omics data analysis has become increasingly important
for understanding complex biological systems. With the advancement of high-throughput technologies, researchers
can generate large-scale and high-dimensional data from different omics fields, such as genomics, transcriptomics,
proteomics, metabolomics, and epigenomics. More KG applications based on multi-omics data integration have emerged,
aiming to provide new research methods to uncover the complex relationships between different omics layers and
reveal biological systems’ underlying mechanisms.

Knowledge graphs have been used to identify disease-associated mutations, genes, proteins, and metabolites by
integrating multi-omics data with existing biological knowledge. This approach has led to the discovery of novel
biomarkers and therapeutic targets for various diseases and the interpretation of the functional effects of genetic
elements [189]. Quan et al. built a comprehensive multi-relational knowledge graph called AIMedGraph, providing
an interpretation of the impact of genetic variants on disease or treatment [122]. They curated detailed information
about diseases, drugs, genetic variants, and the impact of genetic variations on disease development and drug treatment
from multiple data resources. The entities integrated into AIMedGraph are connected by evidence-based relations
and form a comprehensive gene–variant–disease–drug–trial–reference knowledge network. AIMedGraph uses the
Adamic-Adar algorithm to predict new relations between entities based on shared neighbors and their proximity in the
knowledge network. GenomicsKG is a knowledge graph to analyze and visualize multi-omics data. GenomicsKG can be
used to improve drug development based on clinical genomics correlations and personalized drug customization in the
extended version based on interactive relationships. It also provides multi-dimensional visualization, linked functional
knowledge graphs, and reporting for clinical genomics.
Single-Cell Analysis: Cells are fundamental and essential units of living organisms. With high-throughput sequencing
technologies advancing to measure genomic profiles in a single-cell resolution, cell functions (inside cells) and cell-cell
interactions (between cells) are revealed [91]. When diving into the functions of cells, gene regulatory mechanisms can
be a critical factor. Gene regulatory mechanisms control the expression of genes, which can affect cell differentiation,
response to stimuli, disease progression, etc. It can be visualized as gene regulatory networks (GRNs) which depict
the interactions between genes and their regulators. Traditional approaches to constructing the GRN are based on
gene knockdown or knockout experiments, which can be time-consuming, labor-intensive, and costly. In addition,
these experiments are limited to only one or a few genes which neglects gene-gene interactions. In contrast, single-
cell sequencing data could provide whole-genome scale measurements in each individual cell with comprehensive
information such as gene expression, transcription factors (TF) binding sites, DNAmethylation, epigenetic modifications,
etc. By mining these publicly available data, it is possible to reveal the underlying and universal GRN biomedical
researchers to understand biological processes better. For example, GRNdb provides detailed regulon and TF-target
pairs information from different human and mouse tissues under different conditions by analyzing existing sequencing
data [40]. GenomicKB integrates existing datasets and genome annotations and formulates the data into a knowledge
graph to emphasize the relationships among genomic entries [44]. We can foresee that with more data being generated
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and collected, one generalized GRN (gene regulatory knowledge graph) along with cell-type-specific GRNs can be
reconstructed and used to help reveal the underlying mechanisms of gene expression, biological processes, and disease
progression.

Besides cell-type-specific GRN, single-cell sequencing data can also be used to infer cell-cell interactions, which play
a critical role in understanding cell cycles, cell fate decisions, tissue development, immune response, etc. Among several
approaches through which cells can interact, cell-cell communication or cell signaling is of the most interest [37] as the
physical distance between cells does not limit it. Cells can communicate with each other by sending signaling molecules
called ligands and receiving through receptors located on cell surfaces. Several methods have been developed to
implicitly measure cell-cell communication by modeling and scoring ligand-receptor interactions (LRIs) from single-cell
sequencing data [36, 74]. However, these methods do not utilize the spatial information of cells. Recent advancements
in spatial sequencing techniques provide not only genomic measurements but also complementary information on
the spatial coordinates of each cell, where the spatial coordinates indicate the probabilities of cells communicating
with each other as cells with closer distances tend to interact more. A recent benchmark study on evaluating cell-cell
communication inference methods based on spatial distances [96] while another benchmark study also considers
other biological factors such as cytokine activities and receptor protein abundance [29]. With the availability of spatial
transcriptomics data, many methods have been developed to leverage colocalization information to infer LRIs. Although
many LRIs databases [36, 135] have been constructed and applied to infer cell-cell communication, only recently,
SpaTalk [134] integrates CellTalkDB, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Reactome and TFs
from AnimalTFDB to construct a ligand-receptor-target knowledge graph to help improve the inference of cell-cell
communication. The success of SpaTalk provides an unprecedented view of integrating existing networks into a
knowledge graph and shows that correctly utilizing the knowledge graph could provide helpful information in cell-cell
communication tasks.

4.2 Pharmaceutical Research Development

4.2.1 Drug Development. Drug development is the process of identifying novel chemical compounds that can effectively
treat or alleviate human diseases. Before the drug can be designated as a final product for clinical use, several critical
steps need to be undertaken from the initial target identification, chemical synthesis and clinical trials. The whole process
typically spans over a decade and involves expenses of approximately one billion dollars [1], yet it is characterized by a
low success rate for clinical approval [28].

With advancements in chemistry and the availability of vast chemical libraries, it is possible to reduce the costs of
drug development by extracting and integrating valuable insights from existing data and using computer algorithms to
accelerate the drug design process [33, 116, 117, 119, 155, 157, 188]. Despite the growing trend of computer-assisted
drug discovery, a key question remains regarding how to effectively integrate data and extract valuable insights from
the vast chemical dataset.

To approach this question, knowledge graphs (KGs) have been employed for drug discovery due to their various
advantages [188]: (1) In contrast to traditional methods that capture only one type of relationship, KGs are capable of
providing heterogeneous information that includes diverse entities (e.g., scaffolds, proteins, and genes); (2) In addition,
KGs are capable of handling multiple types of relationships between various types of entities, such as drug-target pairs;
and (3) KGs can provide unstructured semantic relationships between entities. In such graphs, entities are represented
as nodes while their relationships are represented as edges, by which complex relations in biochemical systems can be
easily handled.
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In general, the field of drug development encompasses two main areas: drug design and drug repurposing (also
known as drug repositioning). Drug design is the process of creating novel and diverse drug molecules with desirable
pharmaceutical properties [46, 48, 75], whereas drug repurposing identifies new uses for existing approved drugs that
were originally developed for a different indication [69, 120].
Drug Design. KGs are widely employed in drug design, particularly in generating novel molecules that are promising
drug candidates for various diseases [83, 124]. Ranjan et al. [124] utilize Gated Graph Neural Network (GGNN) to
generate novel molecules that target the coronavirus (i.e., SARS-CoV-2) [59] and integrate KGs into their approach
to reduce the search space. Specifically, KGs were leveraged to discard non-binding molecules before inputting them
into the Early Fusion model, thus optimizing the efficiency of the drug design process. In addition to employing deep
learning for direct structure design, KGs are also utilized in the analysis of chemical synthesis. Quantitative estimation
of molecular synthetic accessibility is critical in prioritizing the molecules generated from generative models. For
instance, Li et al. [83] utilize reaction KGs to construct classification models for compound synthetic accessibility. By
leveraging KGs that capture information about reactions, including reaction types, substrates, and reaction conditions,
they can train machine learning models that could predict the synthetic accessibility of compounds. Jeong et al. [72]
introduce an intelligent system that integrates generative exploration and exploitation of reaction knowledge base to
support synthetic path design.
Drug Repurposing. Compared to drug design, KGs are more commonly utilized to expedite the drug re-purposing
process [51, 53, 64, 104, 170, 192, 194, 201]. Many applications on drug re-purposing that utilize KGs are primarily
focused on link prediction tasks [104]. To re-purpose promising drug candidates for new indications, many methods
employ predictive models that focus on predicting drug-treats-disease relationships within pharmacological knowledge
graphs KGs. Himmelstein et al. [64] use a degree-normalized pathway model on the hetionet KG, which includes genes,
diseases, tissues, pathophysiologies, and multimodal edges, to identify potentially repurposable drugs for epilepsy. Xu et
al. [170] develop a multi-path random walk model on a network that incorporates gene-phenotype associations, protein-
protein interactions, and phenotypic similarities for training and prediction purposes. Zhang et al. [192] introduce an
integrative and literature-based discovery model for identifying potential drug candidates from COVID-19-focused
research literature, including PubMed and other relevant sources. Gao et al. [51] construct a knowledge graph (KG)
by integrating multiple genotypic and phenotypic databases. They then learn low-dimensional representations of the
KG and utilize these representations to infer new drug-disease interactions, providing insights into potential drug
repurposing opportunities. Zhang and Che [194] introduce a model for drug re-purposing in Parkinson’s disease that
leverages a local medical knowledge base incorporating accurate knowledge along with medical literature containing
novel information. Ghorbanali et al. [53] present the DrugRep-KG method, which utilizes a KG embedding approach for
representing drugs and diseases in the process of drug repurposing.

4.2.2 Clinical Trial. The major goal of clinical trials is to assess the safety and effectiveness of drug molecules on
human bodies. A novel drug molecule needs to pass three phases of clinical trials before it is approved by the Food
and Drug Administration (FDA) and enters the drug market. The whole process is prohibitively time-consuming and
expensive, costing 7-11 years and two billion dollars on average [105].
Clinical Trial Optimization targets identifying eligible patients for clinical trials based on their medical history and
health conditions [62, 126]. Recently, with massive electronic health records (EHR) data and trial eligibility criteria (EC),
data-driven methods have been studied to automatically assign appropriate patients for clinical trials [95, 148, 185].
However, it is often hard to fully capture and represent the complex knowledge present in unstructured ECs and EHR
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data, as ECs may only provide general disease concepts. In contrast, patient EHR data contain more specific medical
codes to represent patient conditions. To better capture the interactions among different medical concepts from EHR
records and ECs, Gao et al. [50] enhance patient records with hierarchical taxonomies to align medical concepts of
varying granularity between EHR codes and ECs. Besides, Fu et al. [47] leverage additional knowledge-embedding
modules along with drug pharmacokinetic and historical trial data to improve the patient trial optimization process,
and Wang et al. [161] leverage the knowledge graphs to learn static trial embedding and further designed meta-learning
module to generalize well over the imbalanced clinical trial distribution.

4.3 Clinical Decision Support

Nowadays, abundant Electronic Health Record (EHR) data enables better computational models for accurate diagnoses
and treatments. EHR contains essential patient information such as disease diagnoses, prescribed medications, and test
results. Due to this valuable information, EHRs are extensively utilized to identify patterns in patient health and assist
healthcare providers in making informed clinical decisions.

However, the sparsity of EHR data typically allows for only a small fraction of medical codes to be learned effectively,
thereby restricting the ability of deep learning approaches. To overcome this drawback, knowledge graphs have been
applied to incorporate prior medical knowledge for these deep learning models, which augment the representation of
medical codes to better support the downstream prediction tasks.

4.3.1 Intermediate Steps to Advance Prediction Models. ICD Coding aims to extract diagnosis and procedure codes from
clinical notes, which often consisted of raw text [31, 113, 152, 197]. It is often challenging, as the size of the candidate
target codes can be large and the distribution of the codes is often long-tailed [79]. To overcome this, Xie et al. [167] and
Cao et al. [15] propose to leverage knowledge graphs as distant supervision [87, 109], and inject the label information
via structured knowledge graph propagation by leveraging graph convolution networks [81] to learn the correlations
among medical codes. Besides, Lu et al. [97] propose to leverage knowledge graphs and the co-occurrence graph among
clinical nodes simultaneously with a knowledge aggregation module to boost the ICD coding performance. Ren et
al. [125] design a learning curriculum based on the hierarchical structure of the code to address the highly imbalanced
label distribution issue and balance between frequent and rare labels. Overall, injecting additional knowledge with
graph neural networks offers a way to mitigate the imbalanced label distribution issue and thus better.
Entity and Relation Extraction from Health Records. Health records contain rich unstructured or semi-structured
data, making it difficult for clinicians to access and analyze relevant information. Entity and relation extraction
helps convert this unstructured text into structured data that can be more easily processed, understood, and utilized.
Specifically, entity extraction aims to identify entity mentions from clinical-free texts. There are two key steps for entity
extraction, i.e., named entity recognition (NER) and disambiguation (NED). By leveraging additional knowledge graphs,
Varma et al. [150] transfer structural knowledge from the knowledge base to the medical domain, improving rare entities’
disambiguation accuracy. Yuan et al. [186] inject additional knowledge from the knowledge graphs for entity linking and
proposed two additional strategies, namely Post-pruning and Thresholding, to improve the efficiency and remove the
effect of unlinkable entity mention. Fries et al. [45] leverage clinical ontologies to provide weak supervision sources to
create additional training data for clinical entity disambiguation. Besides, relation extraction aims to identify and classify
relationships between entities in unstructured text, which facilitates understanding complex biological processes, drug
interactions, and disease mechanisms. To incorporate the external knowledge graph, several works [43, 127] proposed
additional post-training steps to align the language models with biomedical knowledge. Hong et al. [66] construct
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embeddings for a wide range of codified concepts from EHRs to identify relevant features related to a disease of
interest, and Lin et al. [90] design a co-training scheme to jointly learn from text and knowledge graphs for extracting
and classifying disease-disease relations. In summary, fusing knowledge graphs with language models can flexibly
accommodate missing data types and bring additional performance gains, especially for those rare entities and relations.

4.3.2 Evidence Generation for Risk Prediction Models. Disease Prediction aims to predict the potential diseases of
a given patient with his past clinical records. To assist the diagnosis with additional knowledge, GRAM [21] and
KAME [101] utilize a medical ontology [34] where the leaf nodes are the medical codes found in EHR data, and their
ancestors are more general categories. By incorporating information from medical ontologies into deep learning
models via neural attention, these approaches learn better embeddings for different medical concepts to alleviate the
data scarcity bottleneck. [180, 195] further consider the domain-specific knowledge graph KnowLife [39] to enrich
the embeddings of medical entities with their neighbors on the knowledge graph. These approaches mainly directly
update the embeddings of different concepts to improve the feature learning, but may be at the risk of ignoring the
high-level order information from the knowledge graph. To tackle this drawback, Ye et al. [178] explicitly exploit paths
in KG from the observed symptoms to the target disease to model the personalized information for diverse patients
with a relational-guided attention mechanism. Xu et al. [173] design a self-supervised learning approach to pre-train
a graph attention network for learning the embedding of medical concepts and completing the knowledge graph
simultaneously. These approaches better harness the structure information, and often lead to better performance than
the pure embedding-based knowledge integration techniques.
Treatment Recommendation aims to recommend personalized medications to patients based on their individual
health conditions, which can help physicians select the most effective medications for their patients, and improve
treatment outcomes [7, 133, 196]. To effectively exploit external knowledge, Shang et al. [132] use drug ontologies
to design additional pretraining loss and directly improve the representation of drugs, and several studies [146, 165]
attempt to extract the additional drug interaction graphs to model the negative side effects of specific drug pairs and
reduce the possibility of recommending negative drug-drug interaction combinations. Besides, Wu et al. [166] leveraged
ontologies to improve the drug representations, and facilitates drug recommendation under a more challenging few-shot
setting.

4.4 Public Health

Public Health research can significantly benefit from HKGs. Knowledge graphs can help organize, structure, and
formalize extensive information from diverse and heterogeneous sources. This allows researchers to analyze data,
reason about factors, and make decisions on a larger scale.
Epidemiology. The field of epidemiology has seen an increase in the use of knowledge graphs to analyze and understand
the spread of diseases. A study conducted by Gao et al. [52] analyzes the research hotspots and development trends
of wastewater-based epidemiology (WBE) using knowledge graphs constructed from nearly 900 papers. Domingo-
Fernández et al. [30] create the COVID-19 Knowledge Graph, a comprehensive cause-and-effect network constructed
from the scientific literature on the coronavirus. Additionally, Turki et al. [149] use knowledge graphs to assess and
validate the portion of Wikidata related to COVID-19 epidemiology using an automatable task set. Pressat Laffouilhère
et al. [121] develop OntoBioStat, a domain ontology related to covariate selection and bias in biostatistics, which can
help interpret significant statistical associations between variables.
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Environmental Health. Fecho et al. [42] develop ROBOKOP, a biomedical knowledge graph-based system, to validate
associations between workplace chemical exposures and immune-mediated diseases. Wolffe et al. [163] propose using
knowledge graphs in systematic evidence mapping in environmental health. This approach overcomes the limitations
of rigid data tables by offering a more suitable model for handling the highly connected and complex nature of
environmental health data.
Health Policy and Management. Wu et al. [164] have analyzed the COVID-19 epidemic situation using a knowledge
graph of patient activity. This method enables in-depth study of the transmission process, analysis of key nodes, and
tracing of activity tracks. Meanwhile, Yu et al. [182] develop a chronic management system, which combines knowledge
graphs and big data to optimize the management of chronic diseases in children. This system enhances treatment and
resource utilization while conforming to the requirements of the Chronic Care Model.
Social and Behavioral Health. There have been several interesting research studies. Cao et al. [14] build a high-level
suicide-oriented knowledge graph combined with deep neural networks for detecting suicidal ideation on social media
platforms. Also, Liu et al. [93] conduct a bibliometric analysis of driver behavior research. Additionally, Wang et al. [158]
create an analysis framework for interpreting causal associations in emotional logic. They introduce a knowledge graph
into appraisal theories, improving human emotional inference.

5 Promise and Outlook

The potential impact of comprehensive and fine-grained HKGs on biomedical research and clinical practice is significant.
By integrating vast amounts of biomedical knowledge from multiple domains, HKGs can facilitate the discovery of new
disease mechanisms and the identification of novel drug targets. They also help to enable personalized medicine by
identifying patient subgroups with shared disease mechanisms. The recent success of large language models (a.k.a.
foundation models) such as ChatGPT offers promising opportunities in capturing such semantics from the biomedical
context [2, 110, 114, 140], enabling the construction of unprecedentedly comprehensive HKGs. In turn, HKGs also
help improve LLMs by providing accurate and contextualized knowledge to regularize the generated content. This is
particularly useful in evaluating LLMs in biomedical applications and addressing the problem of hallucination in critical
areas.

6 Conclusion

Healthcare knowledge graphs have emerged as a promising approach for capturing and organizing medical knowledge
in a structured and interpretable way. This comprehensive review paper provides an overview of the current state of
HKGs, including their construction, utilization models, and applications in healthcare. Furthermore, the paper discusses
the potential future developments of HKGs. In conclusion, HKGs have played a significant role in advancing health
research. With the advent of LLMs, there are even more opportunities to combine HKGs and LLMs to reduce the
generation of false or unreliable content. We hope that our comprehensive review of this field offers a helpful perspective
for future reference.
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