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Abstract—Heterogeneous information network (HIN) has
drawn significant research attention recently, due to its power of
modeling multi-typed multi-relational data and facilitating var-
ious downstream applications. In this decade, many algorithms
have been developed for HIN modeling, including traditional
similarity measures and recent embedding techniques. Most
algorithms on HIN leverage meta-graphs or meta-paths (special
cases of meta-graphs) to capture various semantics. Given any
arbitrary set of meta-graphs, existing algorithms either consider
them as equally important or study their different importance
through supervised learning. Their performance largely relies
on prior knowledge and labeled data. While unsupervised em-
bedding has shown to be a fundamental solution for various
homogeneous network mining tasks, for HIN, it is a much harder
problem due to such a presence of various meta-graphs.

In this work, we propose to study the utility of different
meta-graphs, as well as how to simultaneously leverage multiple
meta-graphs for HIN embedding in an unsupervised manner.
Motivated by prolific research on homogeneous networks, es-
pecially spectral graph theory, we firstly conduct a systematic
empirical study on the spectrum and embedding quality of
different meta-graphs on multiple HINs, which leads to an
efficient method of meta-graph assessment. It also helps us to
gain valuable insight into the higher-order organization of HINs
and indicates a practical way of selecting useful embedding
dimensions. Further, we explore the challenges of combining
multiple meta-graphs to capture the multi-dimensional semantics
in HIN through reasoning from mathematical geometry and
arrive at an embedding compression method of autoencoder
with `2,1-loss, which finds the most informative meta-graphs
and embeddings in an end-to-end unsupervised manner. Finally,
empirical analysis suggests a unified workflow to close the gap
between our meta-graph assessment and combination methods.
To the best of our knowledge, this is the first research effort to
provide rich theoretical and empirical analyses on the utility of
meta-graphs and their combinations, especially regarding HIN
embedding. Extensive experimental comparisons with various
state-of-the-art neural network based embedding methods on
multiple real-world HINs demonstrate the effectiveness and
efficiency of our framework in finding useful meta-graphs and
generating high-quality HIN embeddings.

I. INTRODUCTION

Networks are widely used to model relational data such as
web pages with hyperlinks and people with social connections.
Recently, increasing research attention has been paid to the
heterogeneous information network (HIN), due to its power of
accommodating rich semantics in terms of multi-typed nodes
(vertices) and links (edges), which enables the integration
of real-world data from various sources and facilitates wide
downstream applications [1], [2], [3], [4], [5], [6].

For capturing the complex semantics in HIN, the concepts
of meta-paths and meta-graphs have been developed, which are
subsets of HIN schemas [7]. Since each particular meta-graph
indicates an essential semantic unit that can be potentially
useful for various tasks, they have become the de facto tool of
HIN modeling, leveraged by various existing works [1], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18]. In this
work, to be general, we refer meta-paths to special cases of
meta-graphs, and study them under the same framework.

Since there can be various meta-graphs on a given HIN,
the key problems for leveraging them are: (1) what meta-
graphs are useful (assessment), and (2) how to jointly leverage
multiple meta-graphs (combination). To our surprise, however,
no existing work explicitly studies the first problem, while no
satisfactory solution exists to the second, especially regarding
general-purpose unsupervised network embedding.

To get around the first problem, existing HIN models mostly
assume that useful meta-graphs can be manually composed
based on domain knowledge [1], [8], [11], [12], [13], [14],
[15], [16], [18], [3], [4], while such knowledge can be expen-
sive and not always available for arbitrary unfamiliar HINs. To
break this limitation, a few algorithms attempt to generate all
legitimate meta-graphs up to a certain size through heuristic
mechanisms [9], [10], [17], [19], but they again fail to further
select the more useful ones before sending all of them into a
subsequent combination model.

As for the second problem, most algorithms rely on super-
vised learning towards specific tasks to tune the weights on
different meta-graphs [8], [3], [20], [21], [5], [10], [11]. Their
performance heavily relies on labeled data. On the other hand,
while general-purpose unsupervised network embedding has
received tremendous attention recently due to the huge success
of neural network based models like [22], [23], [24], [25],
there exists no method to properly combine multiple meta-
graphs for unsupervised HIN embedding, except for simply
adding up their instance counts [13], [15] or looking for the
proper weights through exhaustive grid search [14].

In this work, we extend the rich theoretical and empir-
ical studies on homogeneous networks to the HIN setting.
Specifically, we provide a series of methods, analyses and
insights towards meta-graph based HIN spectral embedding,
which serves as solutions to both of the aforementioned
assessment and combination problems. Our main contributions
are summarized in the following.



Contribution 1: Meta-Graph based HIN Spectral Embed-
ding. Motivated by prolific studies on homogeneous networks,
we review and introduce several key conclusions from spectral
graph theory, and propose to leverage meta-graphs to compute
the projected networks of HIN. It facilitates HIN spectral
embedding, which serves as a great tool for various subsequent
theoretical and empirical analyses (Section II and III).

Contribution 2: Meta-Graph Assessment. Based on well-
established spectral graph theory, we compute the graph
spectra of projected networks, which in principle capture the
key network properties. Through a systematic empirical study
on three real-world HINs, we discover two essential properties
that have significant impacts on the general quality of HIN em-
bedding. Theoretical interpretations of these properties provide
valuable insights into the high-order organizations of HINs and
their implications towards embedding quality, which further
allows efficient assessment of meta-graph utility (Section IV).

Contribution 3: Meta-Graph Combination. Since different
meta-graphs essentially capture different semantic information
of a HIN, it is necessary to properly combine multiple useful
meta-graphs. To simultaneously solve the intrinsic dimension
reduction and meta-graph selection problems in an unsuper-
vised manner, we devise an autoencoder with `2,1-loss. It is
able to end-to-end select the important meta-graphs from a
set of candidates by capturing the embedding dimensions with
large variance grouped by the corresponding meta-graphs. We
also provide rich theoretical and empirical analyses towards
its effectiveness (Section V).

Contribution 4: Comprehensive Evaluations. Through ex-
tensive experiments in comparison with various state-of-the-
art HIN embedding methods on three large real-world datasets
towards two traditional downstream tasks, we demonstrate the
supreme performance of our proposed method for general-
purpose unsupervised HIN embedding (Section VI).

II. RELATED WORK AND PRELIMINARIES

A. Heterogeneous Information Network (HIN)
Networks provide a natural and generic way of modeling

data with interactions. Among them, HIN has drawn increasing
research attention in the recent decade, due to its capability of
retaining rich type information [7]. A HIN can be defined as
NH = (VH , EH , φ, ψ), where VH is the vertex set and EH is
the edge set. In addition to traditional homogeneous networks,
φ : VH → T = (t1, t2, ...) and ψ : EH → R = (r1, r2, ...) are
two mapping functions that assign vertices and edges with the
type information. Such extensions, while making the networks
much more complicated, have shown to be very powerful
in modeling real-world multi-modal multi-aspect data [1],
[8], [10], [19], [12] and beneficial to various downstream
applications [2], [3], [4], [5], [6]. To model HIN with typed
vertices and edges, [1] proposes to leverage the tool of meta-
paths, which is later on generalized to meta-graphs [9]. They
are adopted by almost all HIN models due to the capture of
fine-grained type-and-structure-aware semantics.

Recently, network embedding algorithms based on the ad-
vances in neural networks (NN) have been extremely popular
[22], [23], [24], [25]. They aim to compute distributed rep-
resentations of vertices that capture both neighborhood and
structural similarity [26], [27]. Following this trend, many
HIN embedding methods have also been developed [13], [14],
[15], [16], [17], [18], [11]. Most of them, while guided by
meta-graphs, mainly leverage well-developed NN models (e.g.,
Skip-gram [28]). While they are shown to work well in certain
cases, their performances are not stable and hard to track.

In this work, we get inspired by prolific studies on homo-
geneous networks. For the first time, we provide a series of
theoretically sound and empirically effective methods towards
HIN embedding, together with extensive analyses and valuable
insights, based on the well-established spectral graph theory.

B. Spectral Graph Theory

Spectral embedding, also termed as the Laplacian eigenmap,
has been widely used for homogeneous network embedding
[29], [30]. Mathematically, it can be computed as follows:
Given a weighted homogeneous network G = (V, E), where
V is the vertex set and E is the edge set. We also define an
adjacency matrix A. For any eij ∈ E , aij > 0 denotes its edge
weight, and for any eij /∈ E , aij = 0. Let D be the diagonal
degree matrix where dii =

∑
eij∈E aij . Then, the normalized

Laplacian matrix follows
L = I −D− 1

2AD− 1
2 , (1)

where I is the identity matrix. Suppose L has eigenvalues
ordered as λ1 = 0 ≤ λ2 ≤ · · · ≤ λ|V|, which is also termed
as the spectrum of graph G. For each eigenvalue λi, we denote
the corresponding eigenvector as ui = (uij)vj∈V . Then, the
k-dimensional embedding of vertice vj can be expressed as
hj = [u1j , u2j , ..., ukj ]

T . Spectral graph theory connects the
spectrum of L to the properties of G and further gives plentiful
results that are useful in both theory and practice.

For later usage, in the following, we review some key the-
ories and definitions related to our work while refer interested
readers to [31], [32], [33] for more results.

Theorem 2.1 ([31]): The number of zero eigenvalues of L
is equal to the number of connected components of G.

Suppose the number of zero eigenvalues is p. One step
further, the first p dimensions of hi are orthogonal to those
of hj if vi and vj lie in different connected components. So
spectral embedding naturally encodes the connectivity between
vertices in the embedding space.

We next introduce some results on the concept of nodal do-
main [34], [35] that may be used to understand the embedding
space. We start with the definition of some key concepts.

Definition 2.2: For a subset of vertices S ⊆ V , we denote
the induced subgraph of G by S as G(S) = (S, E(S)), such
that for any pair of vertices vi, vj ∈ S , the edge eij ∈ E(S)
if and only if eij ∈ E .

Definition 2.3: Given a function f(·) : V → R|V|. A subset
S ⊂ V is a strong nodal domain of G induced by f if the
induced subgraph G(S) is a maximal connected component
of either {vi ∈ V : f(vi) > 0} or {vi ∈ V : f(vi) < 0}.



Next we introduce two powerful results from spectral graph
theory that characterize the nodal domains of an eigenvector.

The first one gives the bound on the number of nodal
domains of an eigenvector.

Theorem 2.4 ([34]): If the network is connected, the number
of strong nodal domains of vi is not greater than the number
of eigenvalues that are not greater than λi.

It implies that for small λi, the number of nodal domains
induced by vi is also small.

The next one is the high-order Cheeger inequality.
Theorem 2.5 ([35]): Suppose {Sl}1≤l≤m are strong nodal

domains induced by vi. Then

max
1≤l≤m

∑
j∈Sl,j′ /∈Sl ajj′∑
j∈Sl,j′∈V ajj′

≤
√

2λi. (2)

It implies that each nodal domain associated with small
eigenvalues corresponds to the community structures of G,
whose inside is densely connected with few out-edges.

These two theorems indicate how spectral embedding rep-
resents the topology of G in the Euclidean space. As we will
see in the remainder of this work, these theories lay the solid
foundation of our methods, guide our fruitful data analyses
and lead to quite a few valuable insights.

III. META-GRAPH BASED HIN SPECTRAL EMBEDDING

In order to generalize the key theoretical studies and empir-
ical analyses on homogeneous networks to HIN, we introduce
our basic HIN spectral embedding method.

Traditional graph theory studies the adjacency matrices of
homogeneous networks. As we discussed in Section II.A, the
additional type information endows HIN with advantageous
modeling capability but also makes it much more complicated
and inappropriate to be represented by a single adjacency
matrix. To this end, we leverage the powerful tool of meta-
graphs that encode various fine-grained HIN semantics by
designing a HIN projection process. While spectral embedding
has been widely studied [36], [37], [38], [39], no previous
work has connected it with the utility of meta-graphs on HIN.

Figure 1 shows an example of the academic publication
network, where we use three different meta-graphs to project
the HIN and get three different adjacency matrices for the
corresponding homogeneous networks of authors. The edge
weights are generated by the number of matched meta-graph
instances between each pair of vertices. We call the homoge-
neous networks obtained in this way the projected networks.
Note that, during this procedure, the type information is
captured by meta-graphs which may further be encoded into
the edge-weights of the projected networks. Therefore, one
may expect to obtain a good vertex embedding as long as the
meta-graphs are chosen properly.

In Figure 1, we also give a few examples of meta-graphs
and their notations. For simplicity, we only consider edges
connecting to the pairs of vertices (e.g., authors on the two
sides here), and do not differentiate directed and undirected
edges, while our methods trivially generalize to those cases.

Based on the homogeneous projected networks, we can
compute the standard spectral embedding as described in

Fig. 1. The process of obtaining the projected homogeneous networks and
corresponding adjacency matrices from HINs with different meta-graphs.

Section II.B. Note that spectral embedding is mathematically
equivalent to the PCA of a degree normalized adjacency matrix
A = I+D−

1
2AD−

1
2 [40], so approximating the original graph

in the optimal sense such that H = (hT1 , h
T
2 , ..., h

T
|V|)

T gives
the solution to the approximation problem

min
H∈R|V|×k,W∈Rk×k

‖A −HWHT ‖2F , (3)

where W is a diagonal matrix and ‖ · ‖F is Frobenius norm.
In contrast to those complex NN-based approaches, spectral

embedding holds superiority in several aspects. First, it is
computationally cheaper. For a k-dimensional embedding,
one may require O(k|E|) number of scalar sum and product
operations on the projected networks based on power iterations
[41], while one single epoch of training the NN-based models
costs such amount of computation on the original HIN with
much more vertices and edges. More importantly, unlike the
NN-based approaches that implicitly factorize the adjacency
matrices [42], spectral embedding directly provides linear
approximation for the PCA problem in Eq. 3. Its performance
is more tractable through the well-established spectral graph
theory, which makes it a good tool to understand the under-
lying structures and principal properties of networks, as well
as the function of different meta-graphs.

In spectral embedding, an eigenvector ui can be viewed
as a one-dimensional embedding of vertices. Conceptually,
based on Theorem 2.4 and 2.5, for a small eigenvalue λi,
the vertices from one nodal domain of vi typically lie within
a densely connected community of G. Correspondingly, due
to the definition of nodal domains, all the vertices in this
nodal domain will be embedded into the same quadrant in
the embedding space. This relation gives a direct mapping
from the densely connected communities of G to a quadrant
of the embedding space. As each of the eigenvectors can
be viewed as a one-dimensional embedding as described
above, the spectral embedding based on the concatenation of
eigenvectors with small λi actually gives a fine embedding
of the whole graph G in the sense that vertices topologically
close on G are essentially more likely to be embedded into
the same quadrant. Moreover, it also makes the change and
tuning of embedding sizes extremely efficient. To increase
the embedding size by k′, only O(k′|E|) time is required,
while decreasing the embedding size takes no time. On the
other hand, the NN-based models need to be totally retrained
whenever the embedding sizes are changed.



Our method is also closely related to the spectral methods
leveraged for the investigation of higher-order organizations
of homogeneous networks in [43], [36]. However, in HIN,
the high-order connectivity patterns are carried by meta-
graphs that encode various semantic information. Moreover,
the projection process is quite different, since meta-graphs do
not always lead to cliques as the network motifs in [43]. A very
recent work on hypergraphs shows that the spectral clustering
based on inhomogeneous projections of hyperedges keeps
good approximation of the cheeger isoperimetric constant
of hypergraphs [44]. Since hyperedges can be viewed as a
mathematical abstract of our meta-graphs, this implies that
our method essentially puts vertices lying on many common
meta-graphs close to each other in the embedding space.

IV. META-GRAPH ASSESSMENT

While meta-graphs are widely used for HIN modeling,
different meta-graphs encode diverse semantics that essentially
leads to rather different utilities, which might be understood
by looking into the structures of the underlying projected
networks [45], [19]. To this end, we present our spectral
embedding method, which naturally serves as a great tool to
facilitate such assessment in an efficient way.

We notice that in spectral graph theory, eigenvalues are
closely related to many essential graph properties [31]. How-
ever, it is unknown what properties are indeed impactful,
i.e., important for meta-graph utilities, especially regarding
HIN embedding. To understand this, we conduct a systematic
empirical study on various real-world HINs towards multi-
ple traditional network mining tasks. Specifically, for each
projected network, we visualize and study the correlations
between its spectrum and embedding quality. As we will soon
see, the results are indeed highly interpretable and insightful.

The datasets we use include HINs in different domains, i.e.,
DBLP from an academic publication collection1, IMDB from
a movie rating platform2, and Yelp from a business review
website3. Details of these datasets are as follows.

1) DBLP: We use the Arnetminer dataset V84 collected by
[46]. It contains four types of vertices, i.e., author (A),
paper (P), venue (V), and year (Y).

2) IMDB: We use the MovieLens-100K dataset5 made
public by [47]. There are four types of vertices, i.e.,
user (U), movie (M), actor (A), and director (D).

3) YELP: We use the public dataset from the Yelp Chal-
lenge Round 116. Following an existing work that mod-
els the YELP data with heterogeneous networks [5], we
extract five types of vertices, i.e., business (B), user (U),
location (L), category (C), and star (S).

1https://dblp.uni-trier.de/
2http://www.imdb.com/
3https://www.yelp.com/
4https://aminer.org/citation
5https://grouplens.org/datasets/movielens/100k/
6https://www.yelp.com/dataset

A. FPP (First-Positive-Point) - Network Connectivity
Empirical Observations. Figure 2 shows the spectrum and
embedding quality of different meta-graphs on the three
datasets. The spectrum is computed via SVD7 on the normal-
ized Laplacian defined in Eq. 1 and sorted in ascending orders.
The embedding quality is evaluated towards node classification
through an off-the-shelf SVM8 model with standard five-fold
cross validation on labeled nodes. We compute the commonly
used F1 score for evaluating the classification performance.
Other tasks like standard link prediction and clustering show
similar trends and are omitted due to space limit.

As we can observe, the spectrum curve always starts from
zero, and increase to positive values at some point, which we
refer to as FPP (First-Positive-Point). Its position has a clear
correlation with the embedding quality, i.e., (1) the spectrum
curve and performance curve mostly start to grow at the same
point, and (2) the earlier the spectrum curve starts to grow,
the higher the performance curve can reach.

Theoretical Interpretations. Looking at Figure 2 from a
graph theory point of view, we find the strong correlations
quite revealing. According to Theorem 2.1, the number of
zeros in the spectrum is exactly the number of disconnected
components in the corresponding network. Hence, the results
in Figure 2 clearly indicate that meta-graphs leading to better
connected projected networks usually have better HIN em-
bedding quality. The second observation is more interesting.
Again, according to Theorem 2.1, the first several embedding
dimensions that correspond to zero eigenvalues actually work
as the features that identify whether the corresponding vertex
belongs to a single connected component. As the number
of embedding dimensions increases from 0 to FPP, the per-
formance hardly improves, which implies that the identity
of each connected component might be not useful for the
HIN embedding. This observation is quite opposite to the
recent significant findings in homogeneous networks [43],
[44], where in practice, with a good high-order connectivity
pattern, the identity of connected component itself may have
already been a strong feature for vertex embedding.

The results further show that a small number of eigenvectors
associated with small non-zero eigenvalues may help greatly
towards the overall HIN embedding performance. According
to Theorem 2.4, within each connected component, these
newly added eigenvectors begin to characterize the nodal do-
mains within the connected components. Theorem 2.5 further
implies that these nodal domains are essentially good network
communities (i.e., densely connected parts) within the con-
nected components. Therefore, the results can be understood
as most of the connected components hold good community
structures within themselves, and thus these components can
be well represented by only a few eigenvectors associated with
the small positive eigenvalues right after the FPP.

Efficient Assessments. Based on the systematic empirical
study and theoretical interpretations, we are able to efficiently

7https://docs.scipy.org/doc/numpy.linalg.svd.html
8http://scikit-learn.org/stable/modules/svm.html



(a) Spectrum – DBLP (b) Spectrum – IMDB (c) Spectrum – Yelp

(d) Performance – DBLP (e) Performance – IMDB (f) Performance – Yelp

Fig. 2. FPP of the spectra clearly correlates with the embedding performance.

assess the meta-graph utility regarding HIN embedding by
simply looking at the leading eigenvalues of the corresponding
projected network. Particularly, meta-graphs corresponding to
early FPP of the spectrum curves are generally more useful.
Moreover, spectral embeddings corresponding to the positive
eigenvalues are more important than those of the zero ones.

B. Curvature - Network Low-Rank Property
Empirical Observations. Besides FPP, is any other spectrum
property indicative to the embedding quality? To rule out the
influence of FPP, we focus on each pair of meta-graphs and
pick out their LC3 (Largest Common Connected Component)
as illustrated in Figure 3. Suppose subnetworks S1 and S2 are
the connected components on the projected networks of meta-
graph M1 and M2, respectively. Then subnetwork S3 is a
common connected component of M1 and M2. LC3 is the
one with the largest number of vertices. On LC3, the spectra
of two meta-graphs are aligned, in a way that they both only
have a single zero value.

Fig. 3. The spectra aligning process of finding LC3 of two projected networks.

Throughout our systematic empirical study, we find the
spectrum curvature highly correlated with the embedding
quality. Particularly, as shown in Figure 4, (1) the faster

the eigenvalues grow in the beginning (i.e., larger curvature),
the better the embedding quality is, and (2) the embedding
quality degenerates with larger embedding sizes. Although we
only present the performance towards author classification on
DBLP due to space limit, we find exactly similar phenomena
for other network mining tasks on all three datasets we use.

Theoretical Interpretations. The observations again can be
interpreted through references to spectral graph theory. First,
better embedding based on the faster growth of eigenvalues
can be explained from the perspective of PCA. With simple
linear algebra, we know the optimal loss of PCA (Eq. 3) equals
to

∑|V|
i=k+1(2 − λi)2. The fast growth of eigenvalues means

for some small i, λi can be already large and hence 2− λi is
small. One step further, it implies that the projected network
has preferable low-rank properties, i.e., a steep curvature
indicates the energy mostly concentrates on a few eigenvalues
of the normalized adjacency matrix A. Therefore, the loss
of PCA can be small for some small embedding dimension
k, and A can be well approximated by the inner product
of low-dimensional embedding vectors of different vertices,
i.e., HWHT . When the eigenvalues achieve the medium
value (almost 1), the nodal domains of the corresponding
eigenvectors can hardly express the community structures of
the network according to the inequality in Eq. 2, as the RHS is
greater than 1 and becomes trivial. Therefore, the eigenvectors
w.r.t. large eigenvalues (>1) may not be a good representation
that encodes the topology of the network. As a consequence,
eigenvectors of large λi are not informative for the HIN
embedding. In fact, adding them as the embedding features
may cause significant overfitting and hence the degenerated
learning performance.



Fig. 4. The curvature of the spectrum clearly correlates with the embedding performance.

Efficient Assessments. Besides FPP, the curvature of spectrum
allows additional efficient assessment of the meta-graph utility,
i.e., steeper eigenvalue growth indicates better embedding
performance. Moreover, spectral embeddings corresponding to
the first several non-zero eigenvalues carry the most useful
structure information, while the subsequent ones are less useful
and may easily lead to model overfitting.

C. Implied Assessment Method

Given a meta-graph M on an arbitrary HIN N , without
knowing the downstream task, we simply need to compute the
projected network and its leading eigenvalues, based on which
we can then quickly assess the utility ofM and select the most
informative embedding dimensions. Note that, this method
is efficient due to several facts: (1) Given N and M, it is
not always necessary to compute the projected networks from
scratch. In fact, many real-world network companies nowadays
maintain the graph databases to constantly track and store the
instances of certain high-order structures for analytical usage
[48]. (2) Finding instances of M on N is a well-studied
problem, which can be efficiently solved by algorithms like
[9]. (3) Our method only works with the projected networks,
which are much smaller than the original HINs. (4) We only
need to check the leading K eigenvalues and do not require
the networks to be fully decomposed [41].

V. META-GRAPH COMBINATION

A. Motivations and Challenges

In HIN, each meta-graph captures particular semantics. Take
Figure 5 (a) as an example. In a movie-review HIN, suppose
Alice is connected with Bob by meta-graph M1 (UDU), and
with Carl by M2 (UGU). Thus, the underlying semantics
are, Alice and Bob like movies directed by the same director,
while she and Carl like movies of the same genre. For the
general purpose of HIN embedding, it is natural that we
want the embeddings to capture all “useful” semantics by
simultaneously considering multiple meta-graphs.

However, simply concatenating the individual embeddings
of multiple meta-graphs may actually lead to poor results. To
illustrate this, we continue with the example in Figure 5. In the
concatenated embedding space ofM1 andM2, Bob and Carl
might be far away, since they do not like the same movies. As a
consequence, Alice can only lie between the two of them while
being close to neither of them, due to the triangle inequality
property of metric spaces as shown in (b). It implies that, in

Fig. 5. A toy example of a movie-review HIN.

order to capture the essentially useful semantics, we need to
wisely distort the embedding space, by throwing away redun-
dant, noisy and non-discriminative information. Eventually, we
want a model that is able to automatically trade-off different
meta-graphs and their embedding dimensions, and arrive at an
embedding space like one of those in (c), where Alice can be
close to either Bob or Carl, depending on which meta-graph
is found to be more important.

We find that the problem of unsupervised meta-graph com-
bination essentially boils down to two challenging subprob-
lems as follows:

1) Dimension Reduction: As we have just explained, sim-
ply concatenating the individual embeddings ignores
the interactions and correlations among meta-graphs,
and results in high dimensionality and data redundancy.
Moreover, as we can observe from our analyses in
Section IV, the individual embeddings can be quite
noisy, which together with the high dimensionality can
easily lead to model overfitting.

2) Meta-graph Selection: As we also observe in Section
IV, the utilities of meta-graphs towards HIN embedding
can be rather different. While they can be efficiently
assessed individually, there is no end-to-end systematic
method for the selection of important meta-graphs by
considering them together in an unsupervised way, so
as to capture all essentially useful semantics in a HIN.



B. Autoencoder with `2,1-Loss

To simultaneously solve the above two problems, we pro-
pose the method of autoencoder with `2,1-loss. The overall
framework is shown in Figure 6.

For unsupervised dimension reduction, we take the spirit
of [49], [40] in preserving the most representative features by
variance maximization. Further, we get motivated by recent
advances in neural networks and deep learning, particularly,
the unsupervised deep denoise autoencoders [50], [51]. They
have been shown effective in feature composition due to the
proven advantages in capturing the intrinsic features within
high-dimensional noisy redundant inputs in a non-linear way.

One step further, we design a specific `2,1-loss to fur-
ther require grouped sparsity on the embedding dimensions
w.r.t. each meta-graph, so as to effectively select the more
useful meta-graphs in an end-to-end fashion. It helps us to
put more stress on the important meta-graphs to improve
the final embedding quality. Moreover, it also enables better
understanding of the meta-graph utilities, and allows further
validation of our meta-graph assessment methods.

In what follows, we go through our model design in details.

Fig. 6. Our joint embedding framework for meta-graph combination.

For each vertex vi ∈ V , given its spectral embedding of
the k-th projected network hk

i , the input of our meta-graph
combination framework is thus xi = Φ(h1

i , . . . ,h
K
i ), which

is a vector concatenation of K spectral embeddings.
To leverage the power of autoencoders, given xi, we first

apply an encoder, which consists of multiple laters of fully
connected feedforward neural networks with LeakyReLU acti-
vations. The neural networks are in decreasing sizes and after
them we get a Q-dim compressed embedding qi as

qi = fPe (. . . f2e (f1e (xi)) . . .), (4)
where P is the number of hidden layers in the encoder, and

fpe (x) = LeakyReLU(Wp
eDropout(x) + bp

e). (5)
To ensure that qi captures the important information in

xi, we compute the reconstruction x̃i of xi through stacking
a decoder, which also consists of multiple layers of fully
connected feedforward neural networks. The sizes of neural
networks are in an increasing order, exactly the opposite as in
the encoder. So we have

x̃i = fPd (. . . f2d (f1d (qi)) . . .), (6)

fpd (x) = LeakyReLU(Wp
dDropout(x) + bp

d). (7)
The number of hidden layers in the decoder is also H , the

same as in the encoder.

After the decoder, a reconstruction loss for embedding is
computed as

J =

n∑
i=1

l(xi, x̃i), (8)

which is a summation over all vertices in V .
For regular autoencoders, l is implemented either as a

cross entropy for binary features, or a mean squared error
for continuous features. However, per reasons we have just
discussed in Section V.A, we apply a specific `2,1-loss [52]
to l as

l(xi, x̃i) = ||xi − x̃i||2,1 (9)

=

K∑
k=1

||hk
i − h̃k

i ||2, (10)

where h̃k
i is the reconstructed embedding of hk

i .

C. Theoretical Justification

Autoencoder is a non-linear generalization of PCA. Partic-
ularly, consider an `2-loss in Eq. 8. It is exactly the same as
the PCA loss in Eq. 3, if we remove the non-linear activa-
tion layers. From the mathematical geometry point of view,
consider the original embedding space as a ball, PCA distorts
this ball into an ellipsoid by picking out the directions of the
greatest variance in the dataset. This process necessarily incurs
an information loss, but the variance maximization process
ensures the lost information to be more of the redundant part.

One step further, our leverage of autoencoder further enables
the utilization of the expressiveness of non-linear feedforward
neural networks. It allows us to efficiently explore more
complex interactions of different embedding dimensions and
distort the embedding space with more flexibility [53].

Beyond the standard autoencoder, our `2,1-loss is built
on group-wise feature selection via group lasso [54]. The
setting of the `1-loss only imposes sparsity in the group level
while the `2-loss within each group expresses that all features
of one group should be selected or rejected simultaneously.
The mathematical property of `2,1-loss coincides with our
target of combining the individual embeddings of different
meta-graphs: When compressing the embeddings, we want
the model to ensure that only some grouped dimensions are
exactly reconstructed, which allows it to ignore certain useless
meta-graphs and instead focus on the more important ones. In
this way, our model is able to select important meta-graphs in
an end-to-end fashion.

D. Empirical Analysis

We conduct a series of empirical analyses to specifically
study our meta-graph combination model. The autoencoder
we use in this subsection has only one encoding layer with no
additional hidden layer. For input, we take an 80-dimensional
individual spectral embedding for each meta-graph. Due to
space limit, we focus the analyses on the DBLP dataset with
four meta-graphs: APVPA, APPA, APPPA and APPAPPA.

The first analysis we did is on the comparison between
linear and non-linear autoencoders. In Table I, the non-linear



|Q| 10 20 40 70 100 200
Linear 0.582 0.611 0.628 0.631 0.637 0.642

Non-linear 0.654 0.668 0.673 0.669 0.668 0.676
TABLE I

COMPARING THE F1 SCORES OF LINEAR AND NON-LINEAR MODELS.

Meta-graphs APVPA APPA APPPA APPAPPA F1
`2,1 0.214 0.256 5.222 5.243 0.695
`2 2.420 3.133 3.349 3.340 0.668

TABLE II
COMPARING AUTOENCODERS WITH `2,1-LOSS AND `2-LOSS.

results are constantly better than the linear ones, which is
generated by the exact same architectures with the non-linear
activation functions removed. The differences are more signif-
icant for smaller encoding dimensions. It clearly indicates the
power of non-linear embedding and supports our selection of
autoencoder as the basic model.

Subsequently, we study the efficacy of our `2,1-loss. In Table
II, we compare two models with the `2,1-loss and standard `2-
loss. The encoding dimension is fixed to 200, and the losses
are all group-wise computed after vector mean-shifting and
normalization. As we can see, the `2,1-losses can effectively
differentiate the utilities of APVPA and APPA from APPPA
and APPAPPA, while the `2-losses are more uniform over
all meta-graphs. The final embedding quality regarding the
classification F1 score with the `2,1-loss is also significantly
better. It confirms our intuition of leveraging the group lasso
for end-to-end meta-graph selection.

Moreover, such results from our combination method clearly
deem the meta-graphs APVPA and APPA to be more important
than APPPA and APPAPPA, which aligns with our assessment
method in Section IV. Such observation allows us to close
the gap between these two methods, and further propose a
unified framework for meta-graph based HIN embedding. To
be specific, given a large number of candidate meta-graphs
(due to the lack of precise domain knowledge), our assessment
method can be firstly applied for an efficient but coarse selec-
tion of individual candidate meta-graphs as well as promising
embedding dimensions. Then our combination method can be
applied to fine-tune the combined embedding, which results
in low-dimensional high-quality representations capturing the
most important information across multiple meta-graphs.

VI. EXPERIMENTAL EVALUATION

We comprehensively evaluate the performance of our pro-
posed method in comparison with various state-of-the-art NN-
based HIN embedding algorithms on the same three large
real-world datasets as we described in Section IV. Extensive
experimental results show that our method can effectively
select and combine useful meta-graphs for general-purpose
unsupervised HIN embedding, which leads to supreme per-
formance on multiple traditional network mining tasks.

A. Experimental Settings

Datasets. The datasets we use are DBLP, IMDB and Yelp, as
described in Section IV, with statistics shown in Table III.

Dataset Size #Types #Nodes #Links #Classes
DBLP 4.33GB 4 335,185 2,704,655 4
IMDB 16.1MB 4 45,913 153,645 23
Yelp 6.52GB 5 1,123,649 8,912,736 6

TABLE III
STATISTICS OF THE FOUR PUBLIC DATASETS WE USE.

Baselines. We compare with various unsupervised HIN em-
bedding algorithms to comprehensively evaluate the perfor-
mance of our proposed method.

• PTE [25]: It decomposes the heterogeneous network into
a set of bipartite networks and then captures first and
second order proximities for HIN embedding.

• Meta2vec [13]: It leverages heterogeneous random walks
and negative sampling for HIN embedding.

• ESim [14]: It leverages meta-path guided path sampling
and noise-contrastive estimation for HIN embedding.

• HINE [15]: It captures w-hop neighborhoods under meta-
path constrained path counts fo HIN embedding.

• Hin2vec [16]: It jointly learns the node embeddings and
meta-path embeddings through relation triple prediction.

• AspEm [17]: It selects meta-graphs based on a heuristic
incompatibility score and combine the embedding of
multiple induced graphs through vector concatenation.

Evaluation protocols. We study the embedding quality of
all algorithms on two traditional network mining tasks, i.e.,
node classification and link prediction. The class labels and
evaluation links are generated as follows. For DBLP, we
use the manual class labels of authors from four research
areas, i.e., database, data mining, machine learning and
information retrieval provided by [1]. For IMDB, we follow
[17] to use all 23 available genres such as drama, comedy,
romance, thriller, crime and action as class labels. For Yelp,
we extract six sets of businesses based on some available
attributes, i.e., good for kids, take out, outdoor seating,
good for groups, delivery and reservation. Following the
common practice in [9], [10], for each dataset, we assume
that authors (movies, businesses) within each semantic class
are similar in certain ways, and generate pairwise links among
them for the evaluation of link prediction.

All algorithms learn the embeddings on the whole network.
For node classification, we split the class labels in half for
training and testing. We train a standard SVM9 on the training
data and compute the F1 and Jaccard scores towards all class
labels on the testing data. For link prediction, we compute
the cosine similarity of each node pair, and rank all nodes
for each node to compute the precision at K and recall at
K. All algorithms are run on a server with one GeForce
GTX TITAN X GPU and two Intel Xeon E5-2650V3 10-
core 2.3GHz CPUs. While scalability is not our focus in this
work, we also measure the training time of all algorithms. Our
audoencoder-based embedding model can be efficiently trained
on GPU and consumes no significantly more time than most
baselines.

9http://scikit-learn.org/stable/modules/svm.html



Parameter settings. Our method only has a few parameters.
The sizes of spectral embeddings are set w.r.t. our assessment
method (i.e., 80 for DBLP, 150 for IMDB and 800 for Yelp).
For the autoencoder, we empirically set the number of both
encoder and decoder layers to 2, each halving (doubling) the
size of the previous layer. The drop out ratio is 0.2.

For each HIN, we firstly enumerate all meta-graphs up to
size 5 and visualize their spectra to select a few most promis-
ing meta-graphs by our assessment method10. These meta-
graphs are then given as input to our combination method.
Since most promising meta-graphs are actually meta-paths,
they are also given as input to all compared baselines. All
other parameters of the baselines are either set as given in
the original work on the same datasets, or tuned to the best
through standard five-fold cross validation on each dataset.

B. Performance Comparison with Baselines

As we can see from Table IV and V, the HIN embeddings
produced by our method constantly lead to better performance
on both node classification and link prediction tasks. The
results on node classification are all averaged over 10 random
training-testing splits, and the improvements of our method
over the compared algorithms all passed the paired t-tests with
significance value p < 0.01. The link prediction results are
averaged across all nodes in the networks.

Firstly, by comparing the results in this section with those
in Section IV, we can clearly see that properly combining
multiple meta-graphs leads to better overall performances,
especially on more complicated HINs like IMDB and Yelp.
Secondly, the relative performance of baselines varies across
different datasets and tasks, while our method is able to con-
stantly yield more than 10% relative improvements compared
with the strongest baselines on all datasets and both tasks,
which clearly demonstrates its advantage.

C. Embedding Efficiency

Now we conduct an in-depth study on the effects of different
embedding sizes and training data on the performance of
our method, in order to further demonstrate our embedding
efficiency. As we can see in Figure 7, for all algorithms,
when the embedding size is large, the task performance relies
much on the amount of training data, due to the effect of
overfitting. This justifies our intuition of efficient feature
selection to reduce the embedding size. On the other hand,
for all baselines, small-size embeddings can hardly capture
all useful information and always perform much worse than
the large-size ones. Our method is the only one that efficiently
captures the most important information with small embedding
sizes, which is especially useful when training data are limited.

VII. CONCLUSIONS

In this work, we systematically study the assessment and
combination of meta-graphs for unsupervised HIN embedding.

10IMDB: MDM, MAM, MUM, M(UD)M, M(AD)M, M(UA)M, M(UAD)M;
DBLP: A(PP)A, APA, APPA, APVPA, APAPA, APPPA, PAPAP, APPAPPA;
Yelp: BUB, B(UC)B, B(UCU)B, B(CUU)B, B(UU)B

Fig. 7. Node classification
performance with varying
embedding sizes and train-
ing data. The highlighted
trends in our texts are even
more clearly observed on
IMDB and Yelp, which have
more complicated network
structures and larger individ-
ual embedding sizes. Due to
space limit, we only present
the results on DBLP.

For future work, we would like to see how our methods can
generally benefit various HIN models through better meta-
graph selection. Moreover, our methods, while producing high-
quality HIN embedding for various downstream tasks, also
indicate the importance of each meta-graph in the spectral
embedding process and is of great interest to in-depth studies
of HIN high-order organizations in particular domains.
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