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Abstract
Graph Neural Networks (GNNs) and differential equations (DEs) are
two rapidly advancing areas of research that have shown remark-
able synergy in recent years. GNNs have emerged as powerful tools
for learning on graph-structured data, while differential equations
provide a principled framework for modeling continuous dynamics
across time and space. The intersection of these fields has led to
innovative approaches that leverage the strengths of both, enabling
applications in physics-informed learning, spatiotemporal model-
ing, and scientific computing. This survey aims to provide a compre-
hensive overview of the burgeoning research at the intersection of
GNNs and DEs. We will categorize existing methods, discuss their
underlying principles, and highlight their applications across do-
mains such as molecular modeling, traffic prediction, and epidemic
spreading. Furthermore, we identify open challenges and outline
future research directions to advance this interdisciplinary field. A
comprehensive paper list is provided at https://github.com/Emory-
Melody/Awesome-Graph-NDEs. This survey serves as a resource
for researchers and practitioners seeking to understand and con-
tribute to the fusion of GNNs and DEs.
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1 Introduction
Understanding and predicting complex behaviors in natural and
engineered systems is a fundamental challenge across scientific
and industrial domains. Many real-world phenomena exhibit dy-
namic evolution over time, governed by intricate interdependencies
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between variables. Examples include climate patterns shaped by
atmospheric and oceanic interactions [1], population dynamics in-
fluenced by birth and migration rates [2], financial markets driven
by investor behavior and economic indicators [3], disease progres-
sion driven by biological factors [4, 5], and the spread of infectious
diseases determined by transmission dynamics and intervention
strategies [6, 7]. Capturing these temporal changes and underlying
mechanisms requires mathematical models that not only describe
system behavior but also provide predictive insights.

To effectively model dynamical systems, Differential Equations
(DEs), such as Ordinary Differential Equations (ODEs) [8], Partial
Differential Equations (PDEs) [9], and Stochastic Differential Equa-
tions (SDEs) [10], relate one or more unknown functions to their
derivatives, thus describing how outputs vary given changing vari-
ables. At their core, DEs consist of three essential components: (1)
state variables that describe the system’s condition, (2) derivatives
that model and capture the rate of change, and (3) parameters that
influence the dynamics under given initial and boundary conditions.
These elements work together to provide a structured approach to
understanding how systems evolve over time.

Despite the crucial role of DEs in modeling complex phenom-
ena, various challenges arise from real-world applications. Notably,
many systems exhibit intricate, high-dimensional dynamics that
are difficult to capture using purely knowledge-driven DE formula-
tions [11], as deriving accurate governing equations often requires
human expert involvement. Moreover, computational efficiency
remains a major obstacle, especially for high-dimensional and non-
linear PDEs, since traditional numerical solvers must manage an
enormous number of equations corresponding to the system’s graph
structure, often rendering these approaches prohibitively expen-
sive [12–14]. In response to these challenges, neural differential
equations (NDEs), such as Neural ODEs [15], have emerged as a
data-driven alternative that learns the underlying dynamics directly
from data, bypassing the need for explicit formulation of governing
rules. This innovative approach enables the modeling of systems
for which traditional equations may be intractable or unknown.
Nevertheless, while NDEs excel at capturing temporal evolution, it
remains challenging to model spatial dynamics, such as epidemic
spread in social networks [16] or transportation flows in urban net-
works [17], where discrete interactions complicate continuous-state
representations. This limitation urgently calls for methods that can
effectively integrate temporal dynamics with spatial context.
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To handle the above issues, recent research has leveraged Graph
Neural Networks (GNNs) [18–21], powerful tools for learning rela-
tional data, to build graph-based NDEs and model the complex in-
teractions between variables. Early explorations integrate the graph
learning capabilities of GNNs within the continuous-time frame-
work of NDEs and propose Graph neural ODEs [22–24], which offer
a versatile and powerful approach to modeling complex systems
that evolve over both space and time. This integration not only en-
ables the capture of dynamic temporal behavior but also leverages
the rich spatial relationships encoded in graph structures. Beyond
Graph Neural ODEs, the broader class of Graph Neural Differential
Equations (Graph NDEs), including Graph Neural PDEs [25] and
Graph Neural SDEs [26], bridges the gap between NDEs and GNNs.
Contributions. In this work, we aim to present a comprehensive
and latest review of methods that combine graph neural networks
with differential equations, addressing the gap by summarizing key
tasks, methodologies, and applications in this evolving field. Our
contributions can be summarized as follows:
(a) We offer the first comprehensive review of Graph NDEs that

model continuous spatial and temporal dynamics.
(b) We introduce a structured taxonomy of GraphNDEs in Section 3

and conduct an in-depth review of research integrating GNNs
with different classes of differential equations, including ODEs,
PDEs, and SDEs, as detailed in Section 4.

(c) We explore the diverse applications of Graph NDEs in Section 5,
highlighting their impact across various real-world scenarios.

(d) We identify emerging trends, key challenges, and promising
future research directions in Section 6, aiming to inspire further
exploration in this interdisciplinary field.

Connections to existing surveys.While previous surveys have
exploredGraphNDEs, they often lack comprehensiveness inmethod-
ology and categorization, limiting their ability to fully bridge GNNs
and NDEs. Many focus on specific applications of neural differential
equations [27–29], overlooking spatial dynamics. Others examine
the integration of GNNs with differential equations [30, 31] but
remain narrow in scope regarding DE types and categorization.
In contrast, our survey compiles a broad range of recent studies,
offering a detailed review of methodologies, challenges, and appli-
cations. Additionally, we present a well-structured taxonomy as
well as valuable insights for future research.

2 Background
2.1 Learning on Graphs
In this paper, we define a graph as G = (V, E), where |V| = 𝑁

represents the number of nodes, and E ⊆ V ×V represents the set
of edges connecting nodes. The features of all nodes is represented
as X = {x1, x2, ...x𝑁 } ∈ R𝑁×𝐷 , where 𝐷 denotes the feature dimen-
sion. The adjacency matrix of G is denoted as A, where A𝑖 𝑗 = 1 if
the edge 𝑒𝑖 𝑗 ∈ E and A𝑖 𝑗 = 0 if 𝑒𝑖 𝑗 ∉ E. GNNs provide a flexible
framework to learn graph representations. A common paradigm is
message passing, where each node 𝑣 updates its representation h𝑣
based on aggregating messages from its neighbors N(𝑣). A GNN
with 𝐿 layers can be described as:

h(𝑙+1)𝑣 = 𝑓𝜙

(
h(𝑙 )𝑣 ,

⊕
𝑢∈N(𝑣)

𝑓𝜃
(
h(𝑙 )𝑣 , h(𝑙 )𝑢 , e𝑢𝑣

))
,∀𝑙 ∈ [𝐿], (1)

where 𝑓𝜃 and 𝑓𝜙 are learnable functions parameterized by 𝜃 and 𝜙 ,
e𝑢𝑣 denotes edge features (if available), and

⊕
is permutation in-

variant aggregation operator that aggregates neighbor information.
The final representation can then be used for downstream tasks
such as link prediction and graph-level classification [32], etc.

2.2 Neural Differential Equations
Differential equations model dynamic systems across various do-
mains, with their form varying based on the system. In the follow-
ing, we illustrate three common types of DEs and NDEs.
Ordinary Differential Equations (ODEs). ODEs describe system
evolution with respect to a single independent variable, typically
time 𝑡 . The general form is: 𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥 (𝑡), 𝑡), where 𝑥 (𝑡) is the

system state, and 𝑓 dictates its rate of change.
Partial Differential Equations (PDEs). PDEs involve multiple
independent variables and their partial derivatives. A classical
example is the diffusion equation, given by: 𝜕𝑢

𝜕𝑡 = 𝛼∇2𝑢, where
𝑢 = 𝑢 (𝑥, 𝑡) represents the unknown quantity varying in spatial
coordinate 𝑥 and time 𝑡 , 𝛼 is the diffusion coefficient, quantifying
the rate of spatial dispersion, and ∇2 denotes the Laplacian oper-
ator, defined as the divergence of the gradient of the function 𝑢,
capturing spatial changes in systems such as fluid dynamics [33].
Stochastic Differential Equations (SDEs). SDEs extend ODEs
by modeling the evolution of a state variable x(t) through the in-
corporation of randomness, often via a Wiener process𝑊𝑡 [34]:

𝑑𝑥 (𝑡) = 𝜇 (𝑥 (𝑡), 𝑡)𝑑𝑡 + 𝜎 (𝑥 (𝑡), 𝑡)𝑑𝑊𝑡 , (2)

where 𝜇 and 𝜎 are drift and diffusion terms. SDEs model systems
with inherent randomness such as biological processes [35].
Neural Differential Equations. Neural Differential Equations ex-
tend classical differential equations by parameterizing the evolution
function with neural networks. A prominent example is Neural Or-
dinary Differential Equations [15], where a neural network models
the derivative of a latent state:𝑑𝑥

𝑑𝑡
= 𝑓𝜃 (𝑥, 𝑡), where 𝑓𝜃 is a neural

network parameterized by 𝜃 . An ODE solver is used to compute the
solution at any desired time point: 𝑥 (𝑡) = 𝑥 (𝑡0) +

∫ 𝑡

𝑡0
𝑓𝜃 (𝑥 (𝜏), 𝜏)𝑑𝜏 ,

where 𝑡0 denotes the starting time point. For back-propagation,
NODEs use the adjoint sensitivity method [36] to solve a second
ODE backward in time to compute gradients efficiently: 𝑑𝑎

𝑑𝑡
=

−𝑎𝑇 𝜕𝑓𝜃
𝜕𝑥 , where 𝑎 = 𝜕𝐿

𝜕𝑥 is the adjoint state [15]. This approach
enables training with constant memory cost.

2.3 Combining GNNs with DEs
By integrating the representational power of GNNs with the dy-
namic modeling capabilities of DEs, we introduce the concept of
Graph Neural Differential Equations (Graph NDEs). A Graph NDE
typically consists of two fundamental components: (i) a system of
differential equations governing the temporal and spatial evolu-
tions of states, parameterized by Neural Networks, and (ii) an initial
condition that specifies the starting state of the system. While DEs
establish the continuous or discrete dynamical progression of states,
the role of GNNs is more flexible, as they can be incorporated at
different stages of the modeling framework. As depicted in Figure 1,
Graph NDEs can be roughly categorized based on the manner in
which GNNs are embedded into the system dynamics.
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Figure 1: GNNs can function as an encoder, decoder, or differ-
ential equation in the Graph NDEs. Firstly, the encoder maps
inputs to a latent initial condition, which is then propagated
by the DE solver over time or model depth. Furthermore,
intermediate updates can modulate state evolution through
state derivatives or direct reallocation. Finally, the decoder
reconstructs the latent trajectory into the target space.
2.3.1 Roles of GNNs. Neural DEs generally operate in a latent
space, where they model the evolution of states over time. Conse-
quently, an encoding-decoding mechanism is typically employed:
an encoder maps raw input data to a latent representation, and a
decoder maps the evolved latent states into the target space. GNNs
can be incorporated at various points in this pipeline, functioning
as encoders and decoders and parameterizing the governing DEs.
GNNs as Encoders. When GNNs function as encoders, they map
node feature X ∈ R𝑁×𝐷 into latent representations H ∈ R𝑁×𝐷 ′

while preserving relational dependencies in the graph G [37–40].
The encoding function can be expressed as: H = 𝐺𝑁𝑁 (X,G;Θ𝑒𝑛𝑐 ),
where Θ𝑒𝑛𝑐 denotes the parameters of the GNN encoder. Related
works usually incorporate spatial-temporal GNNs [41, 42], captur-
ing both the structural and temporal information.
GNNs as Decoders. Given a latent representations H(𝑡) evolved
over time using DEs, a decoder maps it to the target space via: Ŷ =

𝐺𝑁𝑁 (H(𝑡),G;Θ𝑑𝑒𝑐 ), where Θ𝑑𝑒𝑐 is the decoder parameter. Graph-
based decoders enable mapping that preserves node interactions
and adapts to changes to graph topology [43–46].
GNNs as Differential Equations. Beyond serving as encoders or
decoders, GNNs can be directly embedded within the differential
equation to govern continuous state flows [22, 47–50]. Let 𝑥 (𝑡)
denote the state of nodes at time 𝑡 . The dynamics of 𝑥 (𝑡) can be de-
scribed by a GNN-parameterized differential equation, taking Graph
Neural ODE as an example: 𝑑𝑥 (𝑡 )

𝑑𝑡
= 𝐺𝑁𝑁 (𝑥 (𝑡),G,Θ), where Θ

is the parameter of the GNN that models continuous aggregation
across the graph. Similarly, higher-order formulations extend this
principle as: 𝑑

𝑘𝑥 (𝑡 )
𝑑𝑡𝑘

= 𝐺𝑁𝑁 (𝑥 (𝑡),G,Θ), where 𝑘 denotes the order
of the DE. Such formulation enables enhanced expressiveness and
adaptability in evolving graph structures [13, 51–58].

2.3.2 Initial Condition Construction. The definition of the initial
condition 𝑥 (𝑡0) significantly influences the trajectory of the learned
dynamics. Besides latent encodings, initial states can be derived
from raw inputs or learned embeddings.
Encoding-Based Initialization. In this case, raw node features X
are first mapped into a latent space before being used as the latent

initial condition, which can be deterministic:H(𝑡0) = 𝑓 (X,G;Θ𝑒𝑛𝑐 )
or sampled from a given distribution [41, 42, 48, 59] (e.g. Gaussian):
H(𝑡0) ∼ N(𝜇, �̂�), where 𝜇 and �̂� are inferred by a function 𝑓 (X,G),
introducing stochasticity into the initial states to model uncertainty.
Pre-defined Initialization. In physical systems, the initial condi-
tion is often dictated by domain constraints, leading to H(𝑡0) = X,
where no additional encoding is applied. This approach is common
in dynamic simulations [60–62], where initial states are predefined
or randomly generated.
Learning-Based Initialization. Instead of explicitly defining ini-
tial states and encoding raw features, it is also viable to learn
the initial condition during model training. The model learns an
optimal embedding H(𝑡0) that best facilitates downstream tasks:
H(𝑡0) = argminH(𝑡0 )L(F (H(𝑡0),G)), where L represents a task-
specific objective function and F denotes the differential equation
dynamics. This strategy is particularly effective in recommendation
systems [63–65], where graph structure alone is available, and node
representations must be inferred from relational interactions.

3 Taxonomies
We classify Graph NDEs based on tasks, datasets, graph construc-
tion techniques, and methodological distinctions. A complete cate-
gorization is in Appendix ??, with a partial version in Figure 2.

3.1 Tasks
Among all the research investigated in this paper, Graph NDEs
are applied in five primary tasks: Node/Graph Classification, Link
Prediction, Ranking, Forecasting, and Graph Generation.
Node/Graph Classification. Given G = (V, E), the goal is to
learn functions 𝑓 : V → Y (node classification) or 𝑔 : G → Y
(graph classification). Graph NDEs model message passing as a
continuous process rather than a one-step discrete propagation.
For citation network prediction [66], articles (nodes) and citations
(edges) form citation graphs, where Graph NDEs improve represen-
tation learning by capturing continuous citing patterns.
Link Prediction. Given G = (V, E), link prediction learns ℎ :
V × V → [0, 1] to estimate edge existence probability. Graph
NDEs enhance prediction by modeling continuous node embed-
ding dynamics. Such a task is commonly seen in recommendation
systems and knowledge graphs [58, 67].
Ranking. Ranking assigns scores to nodes, optimizing 𝑠 : V → R
for ordered retrieval. Graph NDEs leverage continuous diffusion to
model information propagation. For example, in recommendation
systems [39], users and items form bipartite graphs; Graph NDEs
capture evolving preferences, refining interaction prediction.
Forecasting. For dynamic graphs G(𝑡) = (V, E(𝑡)) with temporal
node features X(𝑡), forecasting estimates future states via 𝑓 : V ×
R𝑠 → R𝑧 , where 𝑠 denotes the history input size and 𝑧 refers to the
horizon of prediction. Graph NDEs, incorporating time-continuous
dynamics, excel in capturing gradual state transitions. For example,
in traffic flow forecasting [50, 68–70], road networks use Graph
NDEs for real-time flow updates and long-term forecasting.
Graph Generation.Given a training set G𝑖 , graph generation mod-
els 𝑝 (G) to sample structurally meaningful graphs. Graph NDEs
enable continuous latent space exploration, improving structural
coherence and diversity in generated samples [71, 72].
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3.2 Graph Construction
The construction of graphs plays a crucial role in shaping both
the design and performance of Graph NDEs. This process can be
analyzed along two key dimensions: spatial and temporal.

3.2.1 Spatial Level. In this paper, we depict spatial-level relations
as a general notion of proximity or relationships between nodes.
Depending on how nodes and edges are formulated, graph con-
struction typically follows one of two primary approaches:
Point-Based Graphs. Point-based graphs can be irregular, where
nodes correspond to individual data points, and edges are estab-
lished based on a function 𝑓𝑒 : V × V → {0, 1} that determines
connectivity based on proximity from observations. The notion
of proximity can be defined in various ways depending on the
nature of the data, often reflecting spatial [73], or semantic relation-
ships [74] among nodes. To quantify the strength of connectivity,
edge weights can also be applied.
Grid-Based Graphs. A grid-based graph is a spatially regular,
whereV ⊂ Z𝑛 represents nodes positioned at integer lattice points
in an 𝑛-dimensional space, and edges E connect nodes based on a
predefined neighborhood structure. This structured representation
is widely used in drone swarming [75], and physical modeling [12–
14, 51], where data is arranged in a spatially regular manner.

3.2.2 Temporal Level. Temporal graphs evolve over time in terms
of node features or graph topology. Therefore, each time point
yields a distinct graph G(𝑡) = (V(𝑡), E(𝑡)). Formally, temporal
graphs can be categorized into:
Static Graph. The temporal evolution of a static graph G = (V, E)
is solely captured through time-dependent node attributes X(𝑡).
That is, each node 𝑣 ∈ V has a feature vector x𝑣 (𝑡) evolving over
time, while the edge set remains unchanged, i.e., E(𝑡) = E,∀𝑡 .
Applications span citation [22] and traffic [70] networks.
DynamicGraph.Adynamic graph is characterized by time-evolving
edges and edge weights, E(𝑡), meaning both connectivity and in-
teraction strengths change over time. The structure of such graphs
is determined via: i) explicit modification of adjacency relations,
where E(𝑡) = {𝑒𝑢𝑣 (𝑡)} updates based on new inputs; ii) adap-
tive learning of edges and weights during training, where adja-
cency matrices are replaced by a learned attention matrix 𝐴𝑡 =

(𝑎𝑖 𝑗 ) ∈ R𝑁×𝑁 , with 𝑎𝑖 𝑗 = 𝑓 (𝑣𝑖 , 𝑣 𝑗 , 𝑡) capturing dynamic influ-
ence. The temporal evolution of node states follows Graph NDEs:
𝑑𝑥 (𝑡 )
𝑑𝑡

= 𝑓𝜃 (𝑥 (𝑡), E(𝑡)), which model node state evolution under
varying graph structure. Applications span social interactions [37],
graph generation [71, 72], etc.

3.3 Modeling Spatial & Temporal Dynamics
Graph NDEs surpass discrete models by providing a continuous
flow of latent states across spatial and temporal dimensions, and
the key lies in the modeling of spatial and temporal dynamics.
Temporal Dynamics Modeling. In classical NDEs, the continu-
ous evolution of variable states is definedwith respect to actual time,
𝑡 ∈ R+, ensuring alignment with the target trajectory [15]. Specifi-
cally, in Graph NDEs, the state of each node, 𝑥 (𝑡), evolves accord-
ing to a time-dependent differential equation d𝑥 (𝑡 )

d𝑡 = 𝑓𝜃
(
𝑥 (𝑡), 𝑡

)
,

where the graph structure is either encoded in the initial condition
𝑥 (𝑡0) [38] or integrated into the function 𝑓𝜃 . Additionally, temporal

dynamics are influenced by external controls or new inputs, which
can update node states and introduce new graph structures, thereby
altering the flow of states over time. Spatial-temporal models extend
NDEs by explicitly incorporating the spatial dimension, capturing
both spatial and temporal evolution on dynamic graphs.
Spatial Dynamics Modeling. The dynamic spatial evolution can
also be applied to static graphs, where the model depth [23] cor-
responds to a continuous notion of time. Unlike the conventional
approach of stacking discrete GNN layers, this continuous perspec-
tive naturally connects to diffusion equations [76]. A general graph
diffusion equation is given by:

𝜕𝑥 (𝑡)
𝜕𝑡

= div
(
𝐺

(
𝑥 (𝑡), 𝑡

)
· ∇𝑥 (𝑡)

)
, (3)

where ∇𝑥 (𝑡) is the divergence of 𝑥 , 𝐺
(
𝑥 (𝑡), 𝑡

)
is the diffusion coef-

ficient that may depend on both the current state 𝑥 (𝑡) as well as
current time or depth 𝑡 , and div(·) denotes the graph divergence
operator. By parameterizing this diffusion process, we arrive at the
formulation of NDEs on graphs.

Recent work provides further insight into this connection. For
instance, Chamberlain et al. [77] show that GNNs can be viewed as
the discrete form of Beltrami flow, while Choi et al. [78] develop a
reaction-diffusion-based GNN architecture. Taken together, these
studies reinforce the link between Graph NDEs and graph diffusion
processes. Consequently, Graph NDEs provide both smoother fea-
ture propagation across the graph and a principled physical analogy
grounded in a well-established diffusion process.

4 Methodology
In this section, we detail the methodology underpinning Graph
Neural Differential Equations (Graph NDEs). Our discussion is
organized around two primary perspectives: Temporal Dynamics
Modeling and Spatial Dynamics Modeling. For each perspective, we
elaborate the unique challenges involved.

4.1 Temporal Dynamics Modeling
For spatial-temporal models, incorporating the time dimension
presents several challenges. This section outlines key temporal
modeling challenges and corresponding solutions in Graph NDEs,
including dynamic updates, irregular time intervals, modeling tem-
poral delay, modeling hybrid system dynamics, and the efficiency.

4.1.1 Dynamic Temporal Updates. For a naive DE, whether param-
eterized by an NN or not, a fixed trajectory is predicted once the
initial condition is given. This is because the DE defines the evolu-
tion or flow of node states, namely the vector field [15]. However,
in a spatial-temporal graph, both node features and the graph struc-
ture can evolve over time independently of the vector field defined
by the DE. These updates significantly impact the target trajectory.
From the perspective of the vector field, the updated graphs can
be interpreted in two ways: 1. Reallocation of states, and 2. Con-
ditioned states flow. For the reallocation of states, the vector field
does not change while the new inputs introduce a jump of states
in the vector field: 𝑥

(
𝑡+
𝑘

)
= Φ

(
𝑥
(
𝑡−
𝑘

)
,Δ(𝑡𝑘 )

)
, where 𝑡𝑘 denotes the

moment of a discrete update, 𝑡−
𝑘
and 𝑡+

𝑘
are the times just before

and just after the jump, respectively, and Δ(𝑡𝑘 ) captures the new
information or structural change at 𝑡𝑘 . The update function Φ then
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Figure 2: Summary of Graph Neural Differential Equation methods.

adjusts the node states accordingly. This jump effectively resets the
trajectory of the node states, altering the dynamics governed by
the DE. For example, Poli et al. [22] introduced an autoregressive
graph differential equation that applies "jumps" to adapt to the
dynamic graph structure., and Zhang et al. [79] applied Graph NDE
in the recommendation system, where jumps of node features are
introduced as the interaction between the user and item changes.

In the case of a conditioned state flow, newly arrived inputs at a
given time point serve as the input of Graph NDEs, which gives a
formulation of 𝑑𝑋

𝑑𝑡
= 𝐹 (X(𝑡),G(𝑡)), where X(𝑡) is the current node

states and G(𝑡) is the dynamic graph including node features and
the graph structure. The change of G(𝑡) can be viewed as either
a change of the vector field or as an adjustment to the output 𝑑𝑋

𝑑𝑡
.

Instead of solely relying on the initial condition, the vector field
becomes conditioned on the current input, allowing the system to
adapt its trajectory in response to external influences [80, 81].

4.1.2 Irregular Time Interval. Real-world dynamic systems exhibit
irregularly sampled time series, where observations occur at non-
uniform intervals, making traditional discrete-time models inef-
fective. DE-based models naturally address this by modeling the
continuous evolution of node states so that the states at arbitrary
time points can be inferred. Recent advancements, such as LG-
ODE [82], CG-ODE [83], and GG-ODE [84], extend such ability
to graph-structured data. LG-ODE [82] models continuous node
dynamics using latent ODEs, enabling interpolation across uneven
time steps. CG-ODE [83] further generalizes this by incorporat-
ing evolving graph structures, where both node states and edge
interactions are learned through coupled differential equations.
GG-ODE [84] extends these ideas across multiple environments by
introducing environment-specific latent factors, enabling the trans-
fer of learned dynamics across different systems. These approaches
provide a flexible framework for modeling real-world graph dynam-
ics under irregular sampling, outperforming discrete-time methods
in handling asynchronous, partially observed data.

4.1.3 Temporal Delay Modeling. Traditional GNNs assume im-
mediate information propagation, which fails to capture the in-
herent temporal delays present in real-world systems. In appli-
cations such as traffic forecasting, changes in one location take
time to influence others, making delay-aware modeling essential.
Long et al. [85] introduces the Spatial-Temporal Delay Differential

Equation, which explicitly incorporates time delays into spatial-
temporal modeling. The core idea is to model node interactions as:
𝑑ℎ𝑖 (𝑡 )
𝑑𝑡

= 𝑓 (ℎ𝑖 (𝑡), ℎ 𝑗 (𝑡 −𝜏𝑖 𝑗 ), 𝜃 ), where 𝜏𝑖 𝑗 represents the time delay
in information propagation between nodes. Instead of assuming
fixed delays, they propose two approaches: (1) a precomputed delay
estimator usingmax-cross correlation, and (2) a time-delay estimator
that dynamically adjusts 𝜏𝑖 𝑗 based on traffic conditions.

4.1.4 Temporal Dynamics for Hybrid Systems. While Graph NDEs
parameterize the DEs with NNs or GNNs, making the model in-
herently data-driven, incorporating domain-specific biases can be
beneficial for regularizing the model outputs. Such modeling biases,
often derived from well-established physical laws, constraints, or
expert knowledge, are fundamental in traditional knowledge-driven
models. To enhance the effectiveness and interpretability of Graph
NDEs, hybrid models [7] integrate domain-knowledge into the mod-
eling of Graph NDEs by either constraining the form of Graph NDEs
or predicting the abstract quantities or parameters of the physical
system. Li et al. [86] extend the use of the spatial-temporal decay
model from one-dimensional dynamics to the high-dimensional
latent space. Similarly, Han et al. [87] make use of the structure of
the Susceptied-Infected-Recovered model and switch the modeling
to the latent space. On the other hand, Sanchez-Gonzalez et al. [88]
model the Hamiltonian mechanism by predicting the momentum
and velocity in the physical function using a GNN. Similar practices
have been made for Lagrangian mechanism [89].

4.1.5 Efficient Temporal Simulation. Although classic PDE models
effectively describe various real-world phenomena with numerical
solvers such as the Finite Element Method [90], time complexity
remains a significant challenge, particularly for solving complex
dynamics and real-time processing tasks [91]. The primary sources
of this challenge are twofold. First, the high dimensionality and
non-linearity of many problems lead to more intricate PDE sys-
tems, both in terms of the number of equations and their structural
complexity. Second, the demand for larger or more fine-grained
grid-based graphs further increases the number of nodes to be mod-
eled [92], which can be computationally expensive using classic
PDE solvers. Beyond the computational inefficiency of handling
large-scale and complex PDEs, additional challenges arise when
dealing with problems that lack a fixed PDE formulation. To address
these issues, Graph Neural PDEs [12–14, 51] employ a data-driven
approach to learn and integrate the governing rules of both spatial
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and temporal dynamics across all nodes using a single model. Unlike
traditional methods, where computational complexity scales with
problem intricacy and the graph size, Graph Neural PDEs maintain
a fixed model for all cases and does not rely on classic PDE solvers.
As a result, the time complexity does not increase with the problem
complexity, and the governing dynamics are encapsulated within
the learned parameters, enabling efficient and scalable solutions.

4.2 Spatial Dynamics Modeling
Unlike spatial-temporal dynamics which model latent state evo-
lution over time, spatial dynamics can also be modeled in terms
of model depth. While traditional GNNs effectively capture static
relationships through local aggregation, their discrete nature con-
strains their ability to represent continuous feature evolution. Here,
we show how embedding GNNs in differential equations enables
dynamic graph modeling and overcomes classic challenges such
as over-smoothing, measuring uncertainty, adversarial robustness,
graph heterophily, and modeling high-order relations.

4.2.1 Over-Smoothing on Graphs. GNNs with deeper architecture
experience severe performance degradation due to vanishing gra-
dient and over-smoothing, where node representations become
indistinguishable and converge to the same value as more layers
are added [93]. To mitigate the effect of over-smoothing, previ-
ous studies imitate residual networks [94] and develop skip con-
nections [95] between layers, updating the node features using
H(𝑡 + 1) = H(𝑡) +GNN𝜃 (H(𝑡),G), where t denotes the layer index.
On the other hand, Graph NODE [22] takes a step further bymaking
this process differential: 𝑑H(𝑡 )

𝑑𝑡
= GNN(H(𝑡),G). Then, a numer-

ical solver [96] is applied to acquire the trajectory. Additionally,
CGNN [23] introduces the initial latent embeddings, 𝐸 = H(𝑡0), into
the ODE formulation: 𝑑H(𝑡 )

𝑑𝑡
= GNN(H(𝑡),G)+H(𝑡0) . This results

in a function with a restart distribution, which helps the model
retain the initial representations and effectively mitigates over-
smoothing. Moreover, GRAND++ [97] interprets over-smoothing
through the lens of diffusion, where deeper networks excessively
diffuse node features, ultimately leading to uniform feature repre-
sentations across all nodes. Similar to CGNN, Grand++ mitigates
this issue by introducing a source term (restart) in the differential
equation (DE) to preserve initial representations. Likewise, Graph-
Coupled Oscillator Networks [52] establish a connection between
over-smoothing and zero-Dirichlet energy steady states, proposing
a second-order ODE to counteract the over-smoothing. Further-
more, Maskey et al. [98] extend the problem to directed graphs and
tackle over-smoothing with fractional graph Laplacians.

4.2.2 Uncertainty within Graph Dynamics. Real-world data often
contains noise and unobserved external factors that influence the
dynamics of graph propagation. For one thing, graphs are often
constructed from real-world data where the connections (edges)
between nodes can be incomplete, noisy, or even spurious [99]. For
another thing, even though a clear graph structure is given, the way
information, influence, or any form of signal diffuses through these
networks can be highly variable and subject to external factors (e.g.,
weather, human behavior) [100]. Since GNNs and Graph NODEs
make predictions conditioned on neighbors, both kinds of uncer-
tainty impact their performance. To provide a direct measurement

of uncertainty and improve the robustness of these models, Graph
Neural SDEs introduce a stochastic diffusion term 𝜎 (𝑥 (𝑡), 𝑡)𝑑𝑊𝑡 ,
as illustrated in Equation 2, enhancing the performance on node
classification tasks in both the In Distribution and Out of Distribu-
tion cases [34, 101, 102]. Furthermore, Liang et al. [103] combines
graph variational encoding with SDE, generating dynamic graphs
for spatial-temporal forecasting. Xing et al. [80] stacked the SDE
module upon ODE, which works as a control signal to modulate
the SDE propagation. Huang et al. [72] applied SDE in the graph
generation task by applying the reverse-time SDE to generate the
target permutation-invariant graphs from random graphs.

4.2.3 Graph Adversarial Robustness. GNNs are vulnerable to ad-
versarial perturbations due to inter-node information exchange.
Adversaries can perform modification attacks by adding or remov-
ing edges or injection attacks by introducing malicious nodes. Song
et al. [104] treat graphs as discretized Riemannian manifolds and
analyze the stability of the heat kernel under metric perturbations.
Their results show that for small perturbations 𝜀 = 𝑜 (1), the change
in node features remains bounded

𝜑 (𝑢, 𝑡) − �̃� (𝑢, 𝑡) = 𝑂 (𝜀), where
𝜑 (𝑢, 𝑡) is the node attribute of node 𝑢 at time 𝑡 , indicating that
PDE-based GNNs can better withstand adversarial topology at-
tacks. Building on this analysis, they propose a novel class of graph
neural PDEs with stronger defenses against such adversarial modi-
fications. While Song et al. [104] demonstrate Lyapunov stability,
it does not necessarily guarantee adversarial robustness. Zhao et
al. [105] analyze various stability concepts for graph neural flows,
leading to the Hamiltonian Graph diffusion class, which improves
robustness by maintaining constant total Hamiltonian energy over
time, ensuring bounded BIBO stability. Recently, Kang et al. [106]
made an extension to graph neural fractional-order differential
equations, showing more robust than existing Graph neural ODEs.

4.2.4 Graph Heterophily. GNNs have been widely used for vari-
ous graph-based learning tasks, yet they often assume connected
nodes have similar attributes (homophily), which is not hold in
heterophilic graphs, leading to suboptimal performance. To ad-
dress this, recent works have explored Neural ODEs combined with
graph dynamic modeling to enhance node representation learning
in heterophilic settings. Recent studies have introduced diffusion-
based models to handle heterophilic graphs effectively. Zhao et
al. [107] propose a Graph Neural Convection-Diffusion framework,
leveraging the convection-diffusion equation (CDE) to incorporate
both homophilic and heterophilic information. The convection-
diffusion equation is formulated as: 𝜕𝑥

𝜕𝑡 = div(𝐷∇𝑥) − div(𝑣𝑥),
where the first term represents diffusion, and the second term
accounts for convection with velocity field 𝑣 controlling the prop-
agation direction. In the discrete graph setting, this extends to:
𝜕𝑥 (𝑡 )
𝜕𝑡 = div(𝐷 (𝑥 (𝑡), 𝑡) ⊙ ∇𝑥 (𝑡)) + div(𝑣 (𝑡) ◦𝑥 (𝑡)), where 𝑣 (𝑡) now

adapts to node dissimilarity, enhancing classification performance
on heterophilic graphs. Similarly, Zhang and Li [108] introduce a
dual-channel Continuous Graph Neural Network with latent states
applied using low-pass (H𝐿) and high-pass (H𝐻 ) filtering :
𝜕H𝐿

𝜕𝑡
= (Âsym−I)H𝐿+H(𝑡0),

𝜕H𝐻

𝜕𝑡
= (−Âsym)H𝐻 +H(𝑡0). (4)

where Âsym is the symmetrically normalized adjacency matrix, and
the features are mixed from both channels in the end.
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4.2.5 Graph Dynamics with High-Order Relations. Many real-world
problems involve interactions that go beyond pairwise relation-
ships. Hypergraph learning [109] addresses this by allowing each
hyperedge to connect multiple nodes. Nevertheless, incorporating
hypergraph learning into the framework of Graph NDEs is non-
trivial as the dynamics of pair-wise graphs and hypergraphs are
different. To bridge the gap, Yao et al. [110] propose to model spatial
and temporal evolutions separately, building a spatial hypergraph
𝐺𝑠𝑝 and a temporal hypergraph𝐺𝑡𝑒 . Then, hypergraph convolution
is integrated into the ODE, which yields the spatial and temporal
evolutions on the two graphs. In the end, an MLP layer is applied to
combine the final embeddings from the spatial and temporal levels.
Besides separately encoding the spatial and temporal evolutions,
Yan et al. [111] propose to encode the node embeddings H𝑣 and
hyperedge embeddings H𝑒 separately, which gives an ODE in the

form of:
[ ¤H𝑣
¤H𝑒

]
=

[
𝑔𝑣

(
H𝑣 (𝑡)

)
𝑔𝑒

(
H𝑒 (𝑡)

) ] + 𝐴

[
H𝑣 (𝑡)
H𝑒 (𝑡)

]
, where 𝑔𝑣 and 𝑔𝑒 are

the control functions and 𝐴 denotes the diffusion velocity effect be-
tween the vertex representation and the hyperedge representation
in the dynamic system by the correlation of the hypergraph.

5 Applications
Graph NDEs have been applied across various domains due to their
capability to model continuous spatial and temporal dynamics. In
this section, we discuss on some popular applications, including
Physics Systems Simulation, Traffic Flow Forecasting, Recommenda-
tion Systems, Epidemic Modeling, and Graph Generation.

5.1 Physics Systems Simulation
Graph Neural ODEs have proven effective for modeling continuous-
time dynamics in physics-based simulations by parameterizing
system evolution through differential equations, allowing flexible
and efficient trajectory prediction. These models are particularly
useful for simulating multi-body interactions [84], particle dynam-
ics [112], spring system [48], charged particle system [48], chaotic
pendulum system [113] and fluid mechanics [114], where relational
structures naturally fit graph representations. For example, the
Hamiltonian Graph Network [115] incorporates Hamiltonian me-
chanics to enforce energy conservation in learned physics models.
GG-ODE [84] introduces environment-specific latent factors to
adapt physics models across different conditions. EGODE [62] ex-
tends Graph Neural ODEs to hybrid systems, handling sudden state
changes, e.g.,rigid-body collisions. Furthermore, GNSTODE [116]
improves spatial-temporal modeling in physics systems by learn-
ing latent force interactions and refining long-range dependencies.
These models demonstrate how Graph ODEs enhance the accuracy,
efficiency, and generalization of physics-based simulations, outper-
forming numerical solvers in long-term stability and adaptability.

5.2 Traffic Flow Forecasting
Traffic flow forecasting is a crucial task in intelligent transporta-
tion systems, requiring models that can capture complex spatial-
temporal dependencies. Traditional models, such as ARIMA and
LSTM-based approaches, struggle with irregular traffic patterns and

evolving road network dynamics. GraphNDEs provide a continuous-
time framework that integrates spatial-temporal dynamics, improv-
ing long-range forecasting and adapting to variable time intervals.
For example, STGODE [117] models traffic flow as a continuous
dynamical system, integrating GNNs with an ODE solver to han-
dle long-term dependencies. GODE-RNN [118] combines Graph
NDEs with RNNs, capturing both fine-grained temporal changes
and spatial interactions. ASTGODE [119] introduces an attention
mechanism within Graph ODEs to enhance interpretability and
adaptive forecasting. Additionally, GRAM-ODE [120] employs mul-
tiple GraphODEmodules to learn hierarchical traffic patterns, while
AGODE [121] dynamically updates the graph structure to reflect
changing traffic conditions. These methods outperform discrete-
time GNNmodels in accuracy, demonstrating the potential of Graph
NDEs to handle irregular and evolving traffic data efficiently.

5.3 Recommendation Systems
Recommendation systems [122] naturally form a bipartite graph
structure, capturing relationships between users and items. Graph
NDEs effectively model the continuous evolution of user prefer-
ences, surpassing traditional collaborative filtering methods [123]
by accounting for dynamic interactions. For example, Qin et al. [124]
propose an autoregressive propagation framework with an edge-
evolving mechanism and a temporal aggregation module to predict
user-item interactions, which is similar to CoPE [79] and Con-
TIG [46]. To further enhance the learned representations of Graph
NDEs, Yang et al. [125] integrate contrastive learning into their opti-
mization process. Additionally, to improve adaptability to dynamic
graphs, Guo et al. [39] propose t-Alignment, which synchronizes
the updating time steps of temporal session graphs within a batch.

5.4 Epidemic Modeling
Modeling infectious disease spread [7, 126, 127] is crucial for public
health policy design. In an epidemic graph, nodes represent individ-
uals or communities, while edges denote their interactions. Graph
NDEs extend beyond the traditional mechanistic models, e.g., SIR
and its variants [128], introducing hybrid models [7] that integrate
both GNNs and mechanistic models. These approaches enhance
the ability to capture complex infection dynamics. For example,
STAN [129] preserves the ODE function of the SIR model and uses
GNNs to predict the parameters of the SIR model on a static graph.
As an extension, MepoGNN [130] adopts a graph learning module,
which introduces learning on dynamic graphs. Besides learning the
parameters of mechanistic models, Wan et al. [131] integrate the
ODE function of the SIR model with GNNs, modeling the variables
in the high-dimensional latent space.

5.5 Graph Generation
Graph generation is essential for applications like drug discovery
and program synthesis [132], but modeling graph distributions is
challenging due to their discrete, permutation-invariant nature. Tra-
ditional models like variational autoencoders [133] struggle with
this invariance. Score-based generativemodels address this by using
graph SDEs to simulate graph trajectories, where diffusion corrupts
graphs into a prior distribution (e.g., normal distribution), and the
trajectory captures both diffusion and denoising. These models rely
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on log-density gradient vector fields, imposing fewer constraints
than likelihood-based approaches while ensuring permutation in-
variance. The edge-wise dense prediction GNN [134] estimates
scores for graph distributions while maintaining permutation in-
variance but is limited to adjacency matrices. To overcome this,
Jo et al. [135] proposed Graph Diffusion via SDEs, which models
both node features and adjacency matrices with separate drift and
diffusion terms, capturing node-edge dependencies. CDGS [136]
further improves this with hybrid message-passing blocks and fast
ODE solvers, enabling rapid, high-quality molecule generation.

6 Future Work
While significant advancements in Graph NDEs, many challenges
remain largely unexplored. In this section, we discuss these issues
and suggest directions for future research.

6.1 Discovering Graph Differential Equations
Equation discovery is an essential task across scientific disciplines,
facilitating the extraction of explicit mathematical relationships
directly from observed data [137]. At the heart of this process lies
symbolic regression. Recently, deep learning-based methods, such
as set-to-sequence transformers [138] and large language mod-
els [139], have emerged as viable alternatives to traditional sym-
bolic regression approaches. However, due to inherent architectural
constraints, they focus on discrete representations of data. In con-
trast, Graph NDEs explicitly capture continuous dynamical systems
by learning vector field representations, yet they typically encode
equations in implicit forms. This fundamental difference indicates
that integrating discrete-focused transformer-based methods with
continuous-based Graph NDEs presents a compelling pathway to-
ward advancing the field of differential equation discovery.

6.2 Handling Graph Sparsity and Sporadicity
Data sparsity in dynamic systems remains a critical challenge, often
manifesting as limited labeled nodes and missing or incomplete
observations over time and space. Additionally, sporadic patterns,
characterized by both sparsity and irregular, unpredictable distribu-
tion, further challenge learning and inference [140]. Recently, Luo
et al. [141] combined the strengths of neural processes and neural
ODEs to model evolving graphs with missing edges and to capture
physical dynamics from highly sparse spatial-temporal data. Nev-
ertheless, open challenges persist in ensuring the robustness and
efficiency of Graph NDEs under extreme sparsity conditions. To fur-
ther address the challenge, possible solutions may involve zero-shot
annotator to label a small portion of nodes [142], or graph conden-
sation [143] that yields a condensed graph from sparse graph.

6.3 Scalability on Large Dynamic Graphs
Scalability remains a significant challenge for Graph NDEs, partic-
ularly when applied to large-scale dynamic graphs. These models
require the solving of continuous-time differential equations for
potentially millions of nodes and edges, leading to high computa-
tional overhead and memory demands [144]. The iterative nature
of DE solvers exacerbates the issue since repeated evaluations of
neural network functions over numerous time steps can be prohibi-
tively time-consuming. To tackle this challenge, several approaches

can be explored: developing efficient numerical solvers tailored for
neural differential equations [145], leveraging parallelization and
GPU acceleration [146], and employing sparse representations and
approximation methods [147].

6.4 Modeling Continuous Structural Evolution
Real-world graphs, such as social networks, frequently undergo
dynamic changes, with nodes and edges continuously evolving over
time. While several studies have introduced flexible approaches to
incorporate dynamic inputs during inference, either by adjusting
the flow direction conditioned on new inputs or jumping in the
vector field (see Section 4.1.1), the evolving dynamics of graph struc-
tures have received limited attention. Most existing methods either
generate graphs using SDEs in a discrete manner [103] or adopt an
end-to-end approach for graph generation tasks [72, 136, 148]. Al-
though Huang et al. propose a framework that allows the dynamic
evolution of both edge weights and node features, it overlooks the
newly observed graph structures that emerge dynamically. Since
graph topology significantly influences the evolution of node em-
beddings, it is crucial to incorporate the dynamic evolution of graph
structures during inference to improve downstream performance.

6.5 Modeling Hierarchical Graph Dynamics
Hierarchical or Multi-scale data is essential for capturing complex
structures and long-range dependencies that arise at different lev-
els of granularity. While extensive research has been conducted
on developing multi-scale GNNs [149, 150], relatively few studies
have explored their integration with neural differential equations.
From a data perspective, multi-scale characteristics can manifest
at both temporal and spatial levels. From a modeling perspective,
multi-scale information can be incorporated at different stages,
such as during encoding or the modeling of differential equations,
which yields multiple latent trajectories at different levels. Notably,
Wang et al. [151] capture multi-scale temporal information at the
encoding stage before applying a graph-based ODE. However, the
incorporation of multi-scale spatial modeling within the differential
equation remains an open area of research under the framework of
Graph NDEs.

7 Conclusion
In this survey, we presentes the first comprehensive overview of
Graph Neural Differential Equations (Graph NDEs), beginning with
the fundamental concepts of both GNNs and differential equations.
We then introduce a structured taxonomy covering tasks, graph
construction methods, and the roles of GNNs in various settings.
Methodologically, we analyze existing literature through two pri-
mary perspectives: Temporal Dynamics Modeling and Spatial Dy-
namics Modeling, highlighting key challenges and potential solu-
tions. Additionally, we discuss diverse applications of Graph NDEs
and identify persistent research gaps, suggesting directions for fu-
ture study. By detailing how GNNs can be integrated more naturally
with differential equation frameworks, we believe this survey will
serve as a catalyst for continued innovation in this rapidly develop-
ing field, inspiring both researchers and practitioners to advance
the state of the art in Graph NDEs.



Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Acknowledgment
This research was partially supported by the US National Science
Foundation under Award Number 2319449 and Award Number
2312502, as well as the US National Institute of Diabetes and Diges-
tive and Kidney Diseases of the US National Institutes of Health
under Award Number K25DK135913.

References
[1] Andrew Keane, Bernd Krauskopf, and Claire M Postlethwaite. Climate models

with delay differential equations. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 27(11), 2017.

[2] Elizabeth E Holmes, Mark A Lewis, JE Banks, and RR Veit. Partial differential
equations in ecology: spatial interactions and population dynamics. Ecology,
75(1):17–29, 1994.

[3] Xiangfeng Yang, Yuhan Liu, and Gyei-Kark Park. Parameter estimation of
uncertain differential equation with application to financial market. Chaos,
Solitons & Fractals, 139:110026, 2020.

[4] Ting Dang, Jing Han, Tong Xia, Erika Bondareva, Chloë Siegele-Brown, Jagmo-
han Chauhan, Andreas Grammenos, Dimitris Spathis, Pietro Cicuta, and Cecilia
Mascolo. Conditional neural ode processes for individual disease progression
forecasting: a case study on covid-19. In Proceedings of the 29th ACM SIGKDD
Conference On Knowledge Discovery and Data Mining, pages 3914–3925, 2023.

[5] Xiaoda Wang, Yuji Zhao, Kaiqiao Han, Xiao Luo, Sanne van Rooij, Jennifer
Stevens, Lifang He, Liang Zhan, Yizhou Sun, Wei Wang, and Carl Yang. Condi-
tional neural ode for longitudinal parkinson’s disease progression forecasting.
In Abstract in the Organization for Human Brain Mapping Annual Meeting, 2025.

[6] Yoshihiro Maki and Hideo Hirose. Infectious disease spread analysis using sto-
chastic differential equations for sir model. In 2013 4th International Conference
on Intelligent Systems, Modelling and Simulation, pages 152–156. IEEE, 2013.

[7] Zewen Liu, Guancheng Wan, B Aditya Prakash, Max SY Lau, and Wei Jin. A
review of graph neural networks in epidemic modeling. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
6577–6587, 2024.

[8] John C Butcher. Numerical methods for ordinary differential equations in the
20th century. Journal of Computational and Applied Mathematics, 125(1-2):1–29,
2000.

[9] D Sloan, S Vandewalle, and E Süli. Partial differential equations. 2012.
[10] Nicolaas G Van Kampen. Stochastic differential equations. Physics reports,

24(3):171–228, 1976.
[11] Ljupčo Todorovski and Sašo Džeroski. Integrating domain knowledge in equa-

tion discovery. In Computational Discovery of Scientific Knowledge: Introduction,
Techniques, and Applications in Environmental and Life Sciences, pages 69–97.
Springer, 2007.

[12] Andrey Bryutkin, Jiahao Huang, Zhongying Deng, Guang Yang, Carola-Bibiane
Schönlieb, and Angelica Aviles-Rivero. HAMLET: Graph Transformer Neural
Operator for Partial Differential Equations, October 2024. arXiv:2402.03541 [cs].

[13] Yash Kumar and Souvik Chakraborty. GrADE: A graph based data-driven
solver for time-dependent nonlinear partial differential equations, August 2021.
arXiv:2108.10639 [stat].

[14] Hoyun Choi, Sungyeop Lee, B. Kahng, and Junghyo Jo. GNRK: Graph Neural
Runge-Kutta method for solving partial differential equations, October 2023.
arXiv:2310.00618 [cs].

[15] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
Neural ordinary differential equations. Advances in neural information processing
systems, 31, 2018.

[16] XiaomeiWang, Qi An, Zilong He, andWei Fang. A literature review of social net-
work analysis in epidemic prevention and control. Complexity, 2021(1):3816221,
2021.

[17] Boris Medina-Salgado, Eddy Sánchez-DelaCruz, Pilar Pozos-Parra, and Javier E
Sierra. Urban traffic flow prediction techniques: A review. Sustainable Comput-
ing: Informatics and Systems, 35:100739, 2022.

[18] Guancheng Wan, Zijie Huang, Wanjia Zhao, Xiao Luo, Yizhou Sun, and Wei
Wang. Rethink graphode generalization within coupled dynamical system. In
Forty-second International Conference on Machine Learning, 2025.

[19] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE transactions
on neural networks, 20(1):61–80, 2008.

[20] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kil-
ian Weinberger. Simplifying graph convolutional networks. In International
conference on machine learning, pages 6861–6871. Pmlr, 2019.

[21] Yezi Liu and Yanning Shen. Tinygraph: joint feature and node condensation for
graph neural networks. arXiv preprint arXiv:2407.08064, 2024.

[22] Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime
Asama, and Jinkyoo Park. Graph neural ordinary differential equations. arXiv

preprint arXiv:1911.07532, 2019.
[23] Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. Continuous graph neural

networks. In International conference on machine learning, pages 10432–10441.
PMLR, 2020.

[24] Haoteng Tang, Guodong Liu, Siyuan Dai, Kai Ye, Kun Zhao, Wenlu Wang, Carl
Yang, Lifang He, Alex Leow, Paul Thompson, et al. Interpretable spatio-temporal
embedding for brain structural-effective network with ordinary differential
equation. In International Conference onMedical Image Computing and Computer-
Assisted Intervention, pages 227–237. Springer, 2024.

[25] Andrey Bryutkin, Jiahao Huang, Zhongying Deng, Guang Yang, Carola-Bibiane
Schönlieb, and Angelica Aviles-Rivero. Hamlet: Graph transformer neural
operator for partial differential equations. arXiv preprint arXiv:2402.03541, 2024.

[26] Suresh Bishnoi, Jayadeva Jayadeva, Sayan Ranu, and NM Anoop Krishnan.
Brognet: Momentum-conserving graph neural stochastic differential equation
for learning brownian dynamics. In The Twelfth International Conference on
Learning Representations, 2024.

[27] Hao Niu, Yuxiang Zhou, Xiaohao Yan, Jun Wu, Yuncheng Shen, Zhang Yi, and
Junjie Hu. On the applications of neural ordinary differential equations in
medical image analysis. Artificial Intelligence Review, 57(9):236, 2024.

[28] Idris Bachali Losada and Nadia Terranova. Bridging pharmacology and neu-
ral networks: A deep dive into neural ordinary differential equations. CPT:
Pharmacometrics & Systems Pharmacology, 13(8):1289–1296, 2024.

[29] Sourabh Kumar Dubey, Hibah Islahi, and Raghvendra Singh. Deep neural
networks for solving ordinary differential equations: A comprehensive review.

[30] Andi Han, Dai Shi, Lequan Lin, and Junbin Gao. From continuous dynam-
ics to graph neural networks: Neural diffusion and beyond. arXiv preprint
arXiv:2310.10121, 2023.

[31] Farzan Soleymani, Eric Paquet, Herna Lydia Viktor, and Wojtek Michalowski.
Structure-based protein and small molecule generation using egnn and diffusion
models: A comprehensive review. Computational and Structural Biotechnology
Journal, 2024.

[32] Yu Xie, Yanfeng Liang, Maoguo Gong, A Kai Qin, Yew-Soon Ong, and Tiantian
He. Semisupervised graph neural networks for graph classification. IEEE
Transactions on Cybernetics, 53(10):6222–6235, 2022.

[33] Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining
differentiable pde solvers and graph neural networks for fluid flow prediction.
In international conference on machine learning, pages 2402–2411. PMLR, 2020.

[34] Richard Bergna, Sergio Calvo-Ordoñez, Felix L. Opolka, Pietro Liò, and
Jose Miguel Hernandez-Lobato. Uncertainty Modeling in Graph Neural Net-
works via Stochastic Differential Equations, September 2024. arXiv:2408.16115
[cs].

[35] Shengchao Liu, Weitao Du, Zhi-Ming Ma, Hongyu Guo, and Jian Tang. A
group symmetric stochastic differential equation model for molecule multi-
modal pretraining. In International Conference on Machine Learning, pages
21497–21526. PMLR, 2023.

[36] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Rout-
ledge, 2018.

[37] Yanfu Zhang, Shangqian Gao, Jian Pei, and Heng Huang. Improving Social Net-
work Embedding via New Second-Order Continuous Graph Neural Networks.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 2515–2523, Washington DC USA, August 2022. ACM.

[38] Chuyu Huang. Str-godes: Spatial-temporal-ridership graph odes for metro
ridership prediction. arXiv preprint arXiv:2107.04980, 2021.

[39] Jiayan Guo, Peiyan Zhang, Chaozhuo Li, Xing Xie, Yan Zhang, and Sunghun
Kim. Evolutionary Preference Learning via Graph Nested GRU ODE for Session-
based Recommendation. In Proceedings of the 31st ACM International Confer-
ence on Information & Knowledge Management, pages 624–634, October 2022.
arXiv:2206.12779 [cs].

[40] Lijing Wang, Aniruddha Adiga, Jiangzhuo Chen, Adam Sadilek, Srinivasan
Venkatramanan, andMadhavMarathe. CausalGNN: Causal-Based Graph Neural
Networks for Spatio-Temporal Epidemic Forecasting. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(11):12191–12199, June 2022.

[41] Zijie Huang, Yizhou Sun, and Wei Wang. Coupled graph ode for learning
interacting system dynamics. In Proceedings of the 27th ACM SIGKDD conference
on knowledge discovery & data mining, pages 705–715, 2021.

[42] Zijie Huang, Wanjia Zhao, Jingdong Gao, Ziniu Hu, Xiao Luo, Yadi Cao,
Yuanzhou Chen, Yizhou Sun, and Wei Wang. TANGO: Time-Reversal Latent
GraphODE for Multi-Agent Dynamical Systems, October 2023. arXiv:2310.06427
[cs].

[43] Peixiao Wang, Tong Zhang, Hengcai Zhang, Shifen Cheng, and Wangshu Wang.
Adding attention to the neural ordinary differential equation for spatio-temporal
prediction. International Journal of Geographical Information Science, 38(1):156–
181, January 2024.

[44] Ke Xu, Weizhi Zhang, Yuanjie Zhu, Zihe Song, and S Yu Philip. Node-sat:
Temporal graph learning with neural ode-guided self-attention.

[45] Ni Xiong, Yan Yang, Yongquan Jiang, and Xiaocao Ouyang. Diffusion Graph
Neural Ordinary Differential Equation Network for Traffic Prediction. In 2023
International Joint Conference on Neural Networks (IJCNN), pages 1–8, June 2023.



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Zewen Liu, Xiaoda Wang, Bohan Wang, Zijie Huang, Carl Yang, and Wei Jin

ISSN: 2161-4407.
[46] Xu Yan, Xiaoliang Fan, Peizhen Yang, Zonghan Wu, Shirui Pan, Longbiao Chen,

Yu Zang, and Cheng Wang. ConTIG: Continuous Representation Learning on
Temporal Interaction Graphs, September 2021. arXiv:2110.06088 [cs].

[47] Chengxi Zang and Fei Wang. Neural Dynamics on Complex Networks. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 892–902, Virtual Event CA USA, August 2020.
ACM.

[48] Zijie Huang, Yizhou Sun, and Wei Wang. Learning continuous system dynamics
from irregularly-sampled partial observations. Advances in Neural Information
Processing Systems, 33:16177–16187, 2020.

[49] Shaan Desai, Marios Mattheakis, and Stephen Roberts. Variational Integrator
Graph Networks for Learning Energy Conserving Dynamical Systems. Physical
Review E, 104(3):035310, September 2021. arXiv:2004.13688 [cs].

[50] Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-Temporal
Graph ODE Networks for Traffic Flow Forecasting. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 364–373,
August 2021. arXiv:2106.12931 [cs].

[51] Valerii Iakovlev, Markus Heinonen, and Harri Lähdesmäki. Learning continuous-
time PDEs from sparse data with graph neural networks, January 2021.
arXiv:2006.08956 [cs].

[52] T. Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra,
and Michael Bronstein. Graph-Coupled Oscillator Networks. In Proceedings
of the 39th International Conference on Machine Learning, pages 18888–18909.
PMLR, June 2022. ISSN: 2640-3498.

[53] Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming
Zhang, and Yizhou Sun. HOPE: High-order Graph ODE For Modeling Interact-
ing Dynamics. In Proceedings of the 40th International Conference on Machine
Learning, pages 23124–23139. PMLR, July 2023. ISSN: 2640-3498.

[54] Kenta Niwa, Naonori Ueda, Hiroshi Sawada, Akinori Fujino, Shoichiro Takeda,
Guoqiang Zhang, and W. Bastiaan Kleijn. CoordiNet: Constrained Dynamics
Learning for State Coordination Over Graph. IEEE Transactions on Signal and
Information Processing over Networks, 9:242–257, 2023. Conference Name: IEEE
Transactions on Signal and Information Processing over Networks.

[55] Song Wen, Hao Wang, Di Liu, Qilong Zhangli, and Dimitris Metaxas. Second-
Order Graph ODEs for Multi-Agent Trajectory Forecasting. In 2024 IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), pages 5079–5088,
Waikoloa, HI, USA, January 2024. IEEE.

[56] Yang Liu, Jiashun Cheng, Haihong Zhao, Tingyang Xu, Peilin Zhao, Fugee
Tsung, Jia Li, and Yu Rong. SEGNO: Generalizing Equivariant Graph Neural
Networks with Physical Inductive Biases, March 2024. arXiv:2308.13212 [cs].

[57] Moshe Eliasof, Eldad Haber, Eran Treister, and Carola-Bibiane B. Schönlieb. On
The Temporal Domain of Differential Equation Inspired Graph Neural Networks.
In Proceedings of The 27th International Conference on Artificial Intelligence and
Statistics, pages 1792–1800. PMLR, April 2024. ISSN: 2640-3498.

[58] Liyi Huang, Bowen Pang, Qiming Yang, Xiangnan Feng, and Wei Wei. Link
prediction by continuous spatiotemporal representation via neural differential
equations. Knowledge-Based Systems, 292:111619, May 2024.

[59] Penglei Gao, Xi Yang, Rui Zhang, Ping Guo, John Y. Goulermas, and Kaizhu
Huang. EgPDE-Net: Building Continuous Neural Networks for Time Series
Prediction with Exogenous Variables, September 2023. arXiv:2208.01913 [cs].

[60] Chrysoula Kosma, Giannis Nikolentzos, George Panagopoulos, Jean-Marc
Steyaert, and Michalis Vazirgiannis. Neural Ordinary Differential Equations for
Modeling Epidemic Spreading.

[61] Masahito Uwamichi, Simon K. Schnyder, Tetsuya J. Kobayashi, and Satoshi
Sawai. Integrating GNN and Neural ODEs for Estimating Non-Reciprocal
Two-Body Interactions in Mixed-Species Collective Motion, November 2024.
arXiv:2405.16503 [physics].

[62] Jingyang Yuan, Gongbo Sun, Zhiping Xiao, Hang Zhou, Xiao Luo, Junyu Luo,
Yusheng Zhao, Wei Ju, and Ming Zhang. Egode: An event-attended graph ode
framework for modeling rigid dynamics. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

[63] Jeongwhan Choi, Jinsung Jeon, and Noseong Park. Lt-ocf: Learnable-time
ode-based collaborative filtering. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pages 251–260, 2021.

[64] Yuxuan Yang, Siyuan Zhou, He Weng, Dongjing Wang, Xin Zhang, Dongjin Yu,
and Shuiguang Deng. Siamese learning based on graph differential equation for
next-poi recommendation. Applied Soft Computing, 150:111086, 2024.

[65] Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and Volker Tresp. Learning neural
ordinary equations for forecasting future links on temporal knowledge graphs.
In Proceedings of the 2021 conference on empirical methods in natural language
processing, pages 8352–8364, 2021.

[66] Yuelin Wang, Kai Yi, Xinliang Liu, Yu Guang Wang, and Shi Jin. ACMP: Allen-
Cahn Message Passing for Graph Neural Networks with Particle Phase Transi-
tion, April 2023. arXiv:2206.05437 [cs].

[67] Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and Volker Tresp. Learning Neu-
ral Ordinary Equations for Forecasting Future Links on Temporal Knowledge
Graphs. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott

Wen-tau Yih, editors, Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 8352–8364, Online and Punta Cana, Do-
minican Republic, November 2021. Association for Computational Linguistics.

[68] Jiajia Wu and Ling Chen. Continuously Evolving Graph Neural Controlled
Differential Equations for Traffic Forecasting, January 2024. arXiv:2401.14695
[cs].

[69] Wenming Ma, Zihao Chu, Hao Chen, and Mingqi Li. Spatio-temporal envo-
lutional graph neural network for traffic flow prediction in UAV-based urban
traffic monitoring system. Scientific Reports, 14(1):26800, November 2024.

[70] Weiheng Zhong, Hadi Meidani, and Jane Macfarlane. Attention-based Spatial-
Temporal Graph Neural ODE for Traffic Prediction, May 2023. arXiv:2305.00985
[cs].

[71] Conditional Diffusion Based on Discrete Graph Structures for Molecular Graph
Generation | Proceedings of the AAAI Conference on Artificial Intelligence.

[72] Han Huang, Leilei Sun, Bowen Du, Yanjie Fu, and Weifeng Lv. GraphGDP:
Generative Diffusion Processes for Permutation Invariant Graph Generation,
December 2022. arXiv:2212.01842 [cs].

[73] Konstantin Klemmer, Nathan S Safir, and Daniel B Neill. Positional encoder
graph neural networks for geographic data. In International conference on
artificial intelligence and statistics, pages 1379–1389. PMLR, 2023.

[74] Wenxuan Ma, Shuang Li, Jingxuan Kang, et al. Language semantic graph guided
data-efficient learning. Advances in Neural Information Processing Systems,
36:24088–24102, 2023.

[75] Tom Z. Jiahao, Lishuo Pan, and M. Ani Hsieh. Learning to Swarm with
Knowledge-Based Neural Ordinary Differential Equations, December 2021.
arXiv:2109.04927 [cs].

[76] Ben Chamberlain, James Rowbottom, Maria I. Gorinova, Michael Bronstein,
Stefan Webb, and Emanuele Rossi. GRAND: Graph Neural Diffusion. In Proceed-
ings of the 38th International Conference on Machine Learning, pages 1407–1418.
PMLR, July 2021. ISSN: 2640-3498.

[77] Benjamin Chamberlain, James Rowbottom, Davide Eynard, Francesco Di Gio-
vanni, Xiaowen Dong, and Michael Bronstein. Beltrami Flow and Neural Diffu-
sion on Graphs. InAdvances in Neural Information Processing Systems, volume 34,
pages 1594–1609. Curran Associates, Inc., 2021.

[78] Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. GREAD:
Graph Neural Reaction-Diffusion Networks. In Proceedings of the 40th Inter-
national Conference on Machine Learning, pages 5722–5747. PMLR, July 2023.
ISSN: 2640-3498.

[79] Yao Zhang, Yun Xiong, Dongsheng Li, Caihua Shan, Kan Ren, and Yangyong
Zhu. CoPE: Modeling Continuous Propagation and Evolution on Interaction
Graph. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, CIKM ’21, pages 2627–2636, New York, NY, USA,
2021. Association for Computing Machinery.

[80] Yucheng Xing, Jacqueline Wu, Yingru Liu, Xuewen Yang, and Xin Wang. AG-
GDN: A Continuous Stochastic Predictive Model for Monitoring Sporadic Time
Series on Graphs. In Biao Luo, Long Cheng, Zheng-Guang Wu, Hongyi Li, and
Chaojie Li, editors, Neural Information Processing, pages 130–146, Singapore,
2024. Springer Nature.

[81] Ming Jin, Yu Zheng, Yuan-Fang Li, Siheng Chen, Bin Yang, and Shirui Pan.
Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs. IEEE
Transactions on Knowledge and Data Engineering, 35(9):9168–9180, September
2023. arXiv:2202.08408 [cs].

[82] Zijie Huang, Yizhou Sun, and Wei Wang. Learning continuous system dynamics
from irregularly-sampled partial observations. InAdvances in Neural Information
Processing Systems 33 (NeurIPS 2020), 2020.

[83] Zijie Huang, Yizhou Sun, and Wei Wang. Coupled graph ode for learning
interacting system dynamics. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’21), pages 705–715, 2021.

[84] Zijie Huang, Yizhou Sun, and Wei Wang. Generalizing graph ode for learning
complex system dynamics across environments. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’23), 2023.

[85] Qingqing Long, Zheng Fang, Chen Fang, Chong Chen, Pengfei Wang, and
Yuanchun Zhou. Unveiling delay effects in traffic forecasting: a perspective
from spatial-temporal delay differential equations. In Proceedings of the ACM
Web Conference 2024, pages 1035–1044, 2024.

[86] Jiahao Li, Huandong Wang, and Xinlei Chen. Physics-informed Neural ODE
for Post-disaster Mobility Recovery. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery andDataMining, pages 1587–1598, Barcelona
Spain, August 2024. ACM.

[87] Zhenyu Han, Yanxin Xi, Tong Xia, Yu Liu, and Yong Li. Devil in the landscapes:
Inferring epidemic exposure risks from street view imagery. In Proceedings of
the 31st ACM International Conference on Advances in Geographic Information
Systems, pages 1–4, 2023.

[88] Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia.
Hamiltonian graph networks with ode integrators. arXiv preprint
arXiv:1909.12790, 2019.

[89] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel,
and Shirley Ho. Lagrangian neural networks. arXiv preprint arXiv:2003.04630,



Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks KDD ’25, August 3–7, 2025, Toronto, ON, Canada

2020.
[90] Zienkiewicz Olgierd Cecil, Taylor Robert Leroy, Nithiarasu Perumal, and Zhu

JZ. The finite element method. vol. 3, 1977.
[91] Zichao Jiang, Junyang Jiang, Qinghe Yao, and Gengchao Yang. A neural network-

based PDE solving algorithm with high precision. Scientific Reports, 13(1):4479,
March 2023.

[92] Tianmin Han and Yuhuan Han. Numerical solution for super large scale systems.
IEEE Access, 1:537–544, 2013.

[93] T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on
oversmoothing in graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

[94] KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[95] Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. Optimization
of graph neural networks: Implicit acceleration by skip connections and more
depth. In International Conference on Machine Learning, pages 11592–11602.
PMLR, 2021.

[96] Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman.
How to train your neural ode: the world of jacobian and kinetic regularization.
In International conference on machine learning, pages 3154–3164. PMLR, 2020.

[97] Matthew Thorpe, Hedi Xia, Tan Nguyen, Thomas Strohmer, Andrea L Bertozzi,
and Stanley J Osher. GRAND++: GRAPH NEURAL DIFFUSION WITH A
SOURCE TERM. 2022.

[98] Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta Kutyniok. A Fractional
Graph Laplacian Approach to Oversmoothing.

[99] Yu Hao, Xin Cao, Yufan Sheng, Yixiang Fang, and Wei Wang. Ks-gnn: Keywords
search over incomplete graphs via graphs neural network. Advances in Neural
Information Processing Systems, 34:1700–1712, 2021.

[100] Qitian Wu, Fan Nie, Chenxiao Yang, Tianyi Bao, and Junchi Yan. Graph out-of-
distribution generalization via causal intervention. In Proceedings of the ACM
Web Conference 2024, pages 850–860, 2024.

[101] Richard Bergna, Felix Opolka, Pietro Liò, and Jose Miguel Hernandez-Lobato.
Graph Neural Stochastic Differential Equations, August 2023. arXiv:2308.12316
[cs].

[102] Xixun Lin, Wenxiao Zhang, Fengzhao Shi, Chuan Zhou, Lixin Zou, Xiangyu
Zhao, Dawei Yin, Shirui Pan, and Yanan Cao. Graph neural stochastic diffusion
for estimating uncertainty in node classification. In Forty-first International
Conference on Machine Learning, 2024.

[103] Guojun Liang, Prayag Tiwari, Sławomir Nowaczyk, Stefan Byttner, and Fer-
nando Alonso-Fernandez. Dynamic causal explanation based diffusion-
variational graph neural network for spatiotemporal forecasting. IEEE Transac-
tions on Neural Networks and Learning Systems, 2024.

[104] Yang Song, Qiyu Kang, Sijie Wang, Kai Zhao, and Wee Peng Tay. On the
robustness of graph neural diffusion to topology perturbations. Advances in
Neural Information Processing Systems, 35:6384–6396, 2022.

[105] Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang, and Wee Peng Tay.
Adversarial robustness in graph neural networks: A hamiltonian approach.
Advances in Neural Information Processing Systems, 36, 2024.

[106] Qiyu Kang, Kai Zhao, Yang Song, Yihang Xie, Yanan Zhao, Sijie Wang, Rui
She, and Wee Peng Tay. Coupling graph neural networks with fractional order
continuous dynamics: A robustness study. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 13049–13058, 2024.

[107] Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang, and Wee Peng Tay. Graph
neural convection-diffusion with heterophily. arXiv preprint arXiv:2305.16780,
2023.

[108] Acong Zhang and Ping Li. Unleashing the power of high-pass filtering in
continuous graph neural networks. In Asian Conference on Machine Learning,
pages 1683–1698. PMLR, 2024.

[109] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph
neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pages 3558–3565, 2019.

[110] Chengzhi Yao, Zhi Li, and Junbo Wang. Spatio-Temporal Hypergraph Neural
ODE Network for Traffic Forecasting. In 2023 IEEE International Conference on
Data Mining (ICDM), pages 1499–1504, December 2023. ISSN: 2374-8486.

[111] Jielong Yan, Yifan Feng, Shihui Ying, and Yue Gao. HYPERGRAPH DYNAMIC
SYSTEM. 2024.

[112] Guangsi Shi, Daokun Zhang, Ming Jin, Shirui Pan, and S Yu Philip. Towards com-
plex dynamic physics system simulation with graph neural ordinary equations.
Neural Networks, 176:106341, 2024.

[113] Zijie Huang, Wanjia Zhao, Jingdong Gao, Ziniu Hu, Xiao Luo, Yadi Cao,
YuanzhouChen, Yizhou Sun, andWeiWang. Physics-informed regularization for
domain-agnostic dynamical system modeling. arXiv preprint arXiv:2410.06366,
2024.

[114] Hao Wu, Changhu Wang, Fan Xu, Jinbao Xue, Chong Chen, Xian-Sheng Hua,
and Xiao Luo. Pure: Prompt evolution with graph ode for out-of-distribution
fluid dynamics modeling. Advances in Neural Information Processing Systems,
37:104965–104994, 2025.

[115] Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia.
Hamiltonian graph networks with ode integrators. In NeurIPS, 2019.

[116] Guangsi Shi et al. Towards complex dynamic physics system simulation with
graph neural odes. arXiv preprint arXiv:2305.12334, 2023.

[117] Zheng Fang et al. Spatial-temporal graph ode networks for traffic flow forecast-
ing. In KDD, 2021.

[118] Yuqiao Su et al. Graph ode recurrent neural networks for traffic flow forecasting.
In ICECE, 2022.

[119] Weiheng Zhong et al. Attention-based spatial-temporal graph neural ode for
traffic prediction. arXiv preprint arXiv:2305.00985, 2023.

[120] Zibo Liu et al. Graph-based multi-ode neural networks for spatio-temporal
traffic forecasting. TMLR, 2023.

[121] Lin Bai et al. Adaptive correlation graph neural ordinary differential equation
for traffic flow forecasting. Engineering Letters, 2024.

[122] AminuDa’u andNaomie Salim. Recommendation system based on deep learning
methods: a systematic review and new directions. Artificial Intelligence Review,
53(4):2709–2748, 2020.

[123] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering
techniques. Advances in artificial intelligence, 2009(1):421425, 2009.

[124] Yifang Qin, Wei Ju, Hongjun Wu, Xiao Luo, and Ming Zhang. Learning Graph
ODE for Continuous-Time Sequential Recommendation. IEEE Transactions on
Knowledge and Data Engineering, 36(7):3224–3236, July 2024. arXiv:2304.07042
[cs].

[125] Yuxuan Yang, Siyuan Zhou, He Weng, Dongjing Wang, Xin Zhang, Dongjin Yu,
and Shuiguang Deng. Siamese learning based on graph differential equation for
Next-POI recommendation. Applied Soft Computing, 150:111086, January 2024.

[126] Wei Duan, Zongchen Fan, Peng Zhang, Gang Guo, and Xiaogang Qiu. Mathe-
matical and computational approaches to epidemic modeling: a comprehensive
review. Frontiers of Computer Science, 9:806–826, 2015.

[127] Zewen Liu, Yunxiao Li, Mingyang Wei, Guancheng Wan, Max S.Y. Lau, and Wei
Jin. Epilearn: A python library for machine learning in epidemic modeling. In
epiDAMIK 2024: The 7th International Workshop on Epidemiology meets Data
Mining and Knowledge Discovery at KDD 2024, 2024.

[128] Alexander Rodríguez, Harshavardhan Kamarthi, Pulak Agarwal, Javen Ho, Mira
Patel, Suchet Sapre, and B Aditya Prakash. Data-centric epidemic forecasting:
A survey. arXiv preprint arXiv:2207.09370, 2022.

[129] Junyi Gao, Rakshith Sharma, Cheng Qian, Lucas M Glass, Jeffrey Spaeder, Justin
Romberg, Jimeng Sun, and Cao Xiao. Stan: spatio-temporal attention network
for pandemic prediction using real-world evidence. Journal of the American
Medical Informatics Association, 28(4):733–743, 2021.

[130] Qi Cao, Renhe Jiang, Chuang Yang, Zipei Fan, Xuan Song, and Ryosuke Shibasaki.
Mepognn: Metapopulation epidemic forecasting with graph neural networks.
In Joint European conference on machine learning and knowledge discovery in
databases, pages 453–468. Springer, 2022.

[131] Guancheng Wan, Zewen Liu, Max S. Y. Lau, B. Aditya Prakash, and Wei
Jin. Epidemiology-Aware Neural ODE with Continuous Disease Transmission
Graph, November 2024. arXiv:2410.00049 [cs].

[132] Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and
Shu Wu. A survey on deep graph generation: Methods and applications. In
Learning on Graphs Conference, pages 47–1. PMLR, 2022.

[133] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[134] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and
Stefano Ermon. Permutation invariant graph generation via score-based gener-
ative modeling. In International conference on artificial intelligence and statistics,
pages 4474–4484. PMLR, 2020.

[135] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling
of graphs via the system of stochastic differential equations. In International
conference on machine learning, pages 10362–10383. PMLR, 2022.

[136] Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. Conditional diffusion based
on discrete graph structures for molecular graph generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pages 4302–4311, 2023.

[137] Dimitrios Angelis, Filippos Sofos, and Theodoros E Karakasidis. Artificial
intelligence in physical sciences: Symbolic regression trends and perspectives.
Archives of Computational Methods in Engineering, 30(6):3845–3865, 2023.

[138] Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Gi-
ambattista Parascandolo. Neural symbolic regression that scales. In International
Conference on Machine Learning, pages 936–945. Pmlr, 2021.

[139] Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and
Chandan K Reddy. Llm-sr: Scientific equation discovery via programming with
large language models. arXiv preprint arXiv:2404.18400, 2024.

[140] Jianxiang Yan, Guanghui Song, Ying Li, Zhaoji Zhang, and Yuhao Chi. Enhanced
odma with channel code design and pattern collision resolution for unsourced
multiple access. In 2024 IEEE International Symposium on Information Theory
(ISIT), pages 3201–3206. IEEE, 2024.

[141] Linhao Luo, Gholamreza Haffari, and Shirui Pan. Graph sequential neural ode
process for link prediction on dynamic and sparse graphs. In Proceedings of the
sixteenth ACM international conference on web search and data mining, pages



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Zewen Liu, Xiaoda Wang, Bohan Wang, Zijie Huang, Carl Yang, and Wei Jin

778–786, 2023.
[142] Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han, Wei Jin, Haiyang Zhang,

Hui Liu, and Jiliang Tang. Label-free node classification on graphs with large
language models (llms). arXiv preprint arXiv:2310.04668, 2023.

[143] Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wenqi Fan, B Aditya Prakash,
and Wei Jin. A comprehensive survey on graph reduction: Sparsification, coars-
ening, and condensation. arXiv preprint arXiv:2402.03358, 2024.

[144] Marc Finzi, Andres Potapczynski, Matthew Choptuik, and Andrew Gordon
Wilson. A stable and scalable method for solving initial value pdes with neural
networks. In 11th International Conference on Learning Representations, ICLR
2023, 2023.

[145] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial
differential equations using deep learning. Proceedings of the National Academy
of Sciences, 115(34):8505–8510, 2018.

[146] Alim Samat, Erzhu Li, Peijun Du, Sicong Liu, and Junshi Xia. Gpu-accelerated
catboost-forest for hyperspectral image classification via parallelized mrmr
ensemble subspace feature selection. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 14:3200–3214, 2021.

[147] Ameya D Jagtap, Ehsan Kharazmi, and George Em Karniadakis. Conservative
physics-informed neural networks on discrete domains for conservation laws:
Applications to forward and inverse problems. Computer Methods in Applied
Mechanics and Engineering, 365:113028, 2020.

[148] Yogesh Verma, Samuel Kaski, Markus Heinonen, and Vikas Garg. Modular
Flows: Differential Molecular Generation.

[149] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and
Jure Leskovec. Hierarchical graph representation learning with differentiable
pooling. Advances in neural information processing systems, 31, 2018.

[150] Mingjie Qiu, Zhiyi Tan, and Bing-Kun Bao. Msgnn: Multi-scale spatio-temporal
graph neural network for epidemic forecasting. Data Mining and Knowledge
Discovery, 38(4):2348–2376, 2024.

[151] Keyi Wang, Jichao Zhan, Qinghua Si, Yueying Li, and Youyong Kong. Dynamic
multi-scale spatio-temporal graph ode for metro ridership prediction. In 2024
IEEE 7th Advanced Information Technology, Electronic and Automation Control
Conference (IAEAC), volume 7, pages 1501–1509. IEEE, 2024.


	Abstract
	1 Introduction
	2 Background
	2.1 Learning on Graphs
	2.2 Neural Differential Equations
	2.3 Combining GNNs with DEs

	3 Taxonomies
	3.1 Tasks
	3.2 Graph Construction
	3.3 Modeling Spatial & Temporal Dynamics

	4 Methodology
	4.1 Temporal Dynamics Modeling
	4.2 Spatial Dynamics Modeling

	5 Applications
	5.1 Physics Systems Simulation
	5.2 Traffic Flow Forecasting
	5.3 Recommendation Systems
	5.4 Epidemic Modeling
	5.5 Graph Generation

	6 Future Work
	6.1 Discovering Graph Differential Equations
	6.2 Handling Graph Sparsity and Sporadicity
	6.3 Scalability on Large Dynamic Graphs
	6.4 Modeling Continuous Structural Evolution
	6.5 Modeling Hierarchical Graph Dynamics

	7 Conclusion
	References

