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ABSTRACT

Global monitoring of novel diseases and outbreaks is crucial for
pandemic prevention. To this end, movement data from cell-phones
is already used to augment epidemiological models. Recent work
has posed individual cell-phone metadata as a universal data source
for syndromic surveillance for two key reasons: (1) these records
are already collected for billing purposes in virtually every country
and (2) they could allow deviations from people’s routine behaviors
during symptomatic illness to be detected, both in terms of mobility
and social interactions. In this paper, we develop the necessary
models to conduct population-level infectious disease surveillance
by using cell-phone metadata individually linked with health out-
comes. Specifically, we propose GraphDNA—a model that builds
Graph neural networks (GNNs) into Dynamic Network Anomaly
detection. Using cell-phone call records (CDR) linked with diagnos-
tic information from Iceland during the H1N1v influenza outbreak,
we show that GraphDNA outperforms state-of-the-art baselines
on individual Date-of-Diagnosis (DoD) prediction, while tracking
the epidemic signal in the overall population. Our results suggest
that proper modeling of the universal CDR data could inform public
health officials and bolster epidemic preparedness measures.
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1 INTRODUCTION

The COVID-19 pandemic underscores the need for early outbreak
detection and infectious disease surveillance. In normal times, pub-
lic health officials continuously monitor emerging pathogens and
smaller epidemics to mitigate the chances for any of these turning
into a global pandemic. These efforts include syndromic surveil-

lance where multiple data sources, such as hospital records, cross-
sectional surveys, or even search-engine queries are searched for
clusters of symptoms that warrant further scrutiny. For diseases
where symptoms coincide with the infectious period, such as most
influenza variants, such symptomatic surveillance can further track
the progression of an epidemic and provide direct feedback for miti-
gation strategies, such as quarantines, lock-downs, or vaccinations.

Recent efforts have advanced cell-phone metadata, such as the
call-detail records (CDR), as a potential universal data source to aug-
ment symptomatic surveillance [7, 29, 45]. First, CDR data include
the (anonymized) caller and recipient numbers, a timestamp of the
call or text, and the GPS-coordinates of the cellular tower through
which the call was routed. They thus provide time-series for indi-
vidual mobility and social interactions—behaviors that may differ
when the person is ill (cf. studies such as [46] on the connection
between cell phone calls and physical contacts). Second, in contrast
with aggregated mobility models [12], CDR data may be linked
with health data at the individual level while accommodating pri-
vacy concerns [45], allowing deviations from individual routines—
such as staying home when ill—to be detected. Third, CDR data
are already recorded by virtually every mobile-network provider
for billing purposes within an established regulatory and privacy
framework. Disease monitoring using an existing data source, such
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as CDR logs, is easier and cheaper than alternatives.Important
ethical and privacy concerns can be addressed using data deiden-
ti�cation protocols between health o�cials and mobile operators
(cf. Appendix A). Finally, cell-phone use is ubiquitous (105 mobile
subscriptions per 100 inhabitants; 97% of the world population cov-
ered by a mobile network) whereas Internet access is less pervasive
(57% of the world population) and heavily skewed towards a�u-
ent regions (19% of individuals in the least developed countries
(LDC) have Internet access), according to 2020 estimates [26]. Many
lower and middle-income countries lack resources for direct pub-
lic health monitoring, standing to bene�t most from inexpensive
disease monitors.

Key technical challenges must be resolved to make individual
CDR-based methods practical for epidemiological surveillance. Us-
ing linked health and CDR data from the H1N1v epidemic in Iceland
in 2009, Vigfussonet al.[45] showed that individual mobility is re-
duced around the day of in�uenza-like illness diagnosis. While it is
interesting that infection produces measurable behavioral changes
from sparse CDR data, the key question is whethermeasurable
behavioral changes imply infection symptoms, which would permit
estimation of the number of people that are taken ill at a point in
time (symptomatic prevalence). This direction is challenging for
several reasons, including networked signals (involving individu-
als' behaviors regarding both themselves and their social contacts),
temporal routines (requiring the capture of dynamic behavioral
patterns), and weak supervision (because disease labels are sparse
and only weakly correlated with behavioral anomalies).

Here, we work towards the goal of estimating population-level
disease prevalence. Formulating the problem as an individual dis-
ease prediction task, we augment the existing individual-level fea-
tures [45] with a social context to capture regular contacts and
group interactions to better distill routine social interaction pat-
terns. Central to our approach are graph neural networks (GNNs)
[21, 28, 39] that have recently been adapted to model dynamic
and temporal networks. Existing research into dynamic GNNs has
predominantly been focused on modeling network formation and
evolution in the context of link prediction [13, 35, 51], but such
GNNs are not yet suited to tracking dynamic social behaviors of in-
dividuals and their routines. On the other hand, several traditional
(non-GNN-based) dynamic and temporal network models have
been designed to capture emergent patterns during network evolu-
tion, and to identify abnormal individuals or subgraphs [3, 34, 47].
Yet these approaches were also less suitable, since they are not
designed to incorporate node features or be trained for speci�c
tasks, such as disease prediction.

In this paper, we propose a novel integrated GNN forDynamic
Network Anomalymodeling (GraphDNA) to meet the goal of de-
tecting deviations from an individual's routine social behaviors
for predicting disease onset. Broadly,GraphDNA combines two
key modules concerning dynamic social behavior prediction and
anomaly-based disease prediction. The former module employs a
graph convolutional neural network (GCN) model [28] to capture
individuals' social behaviors and builds it into a long-short term
memory (LSTM) model [23] to record the dynamic patterns of such
behaviors. The latter module then combines a data-driven learnable
logistic regression (LR) model [24] and a temporal-pattern-oriented

statistical Gaussian tail probability (GTP) model [1] to predict dis-
ease diagnosis from anomalies in the social behavior dynamics.

In our experiments on the same labeled dataset from the H1N1v
epidemic in Iceland [45], we evaluateGraphDNA by comparison
to the most relevant baselines from state-of-the-art including dy-
namic GNNs and other temporal or networked anomaly detection
models. With a focus on estimating the Date-of-Diagnosis (DoD)
of diagnosed individuals, we demonstrate the advantages of our
GraphDNA method on the generic task of supervised dynamic
network anomaly detection. We also apply the individual infer-
ence ofGraphDNA to the larger population, tracking the epidemic
curve within the diagnosed population and, further, �nding an
illness-associated behavioral change signal in the whole population.
Finally, we analyze key design decisions, hyper-parameter settings,
and provide an e�ciency study ofGraphDNA.

2 BACKGROUND
2.1 Syndromic Surveillance
Keeping with technological developments and new data sources,
syndromic surveillance systemsemerged in the 2000s to �seek to
use existing health data in real time to provide immediate analysis
and feedback to those charged with investigation and follow-up of
potential outbreaks� [ 22]. In 2009, Google Flu ushered in the era of
big data syndromic surveillance through passively collected data
sources by using aggregated search engine queries for �u-like symp-
toms to estimate regional in�uenza levels with a lag of only one
day [19]. Google Flu's approach, however, was later found to have
been �awed, missing non-seasonal in�uenza outbreaks and over-
estimating disease burden, and was shut down in 2015. Prominent
researchers characterized the project's indi�erence to supplement-
ing the existing body of science and instead seeking to replace
it with black-box models as an example of �big data hubris� [31].
Research into other data sources for use in syndromic surveillance,
such as social media, has followed [36, 38], built around technolo-
gies used primarily in high-income countries.

Aggregated CDR data, such as rates of population movement
between cell-phone towers [29], have informed epidemiological
models for cholera [6], dengue fever [49], malaria [8, 48], Ebola [30],
in�uenza [44], and recently SARS-CoV-2�the pathogen that causes
COVID-19 [12, 14]. Because these models lack linkage at the in-
dividual level, they rely on correlations between the aggregated
data and other datasets, thereby limiting their statistical power and
generality [17]. Individual CDR data were used during COVID-19
to infer likely contacts of infection in Israel, with staunch privacy
objections [20] (cf. Appendix A).

2.2 Dynamic Network Anomaly Modeling
Anomaly detection refers to the data mining process that measures
the deviations of objects of interest from the majority group [2, 10].
One of the most common scenarios of anomaly detection is on
sequential data (e.g., time-series), where the algorithm is often com-
posed by a sequence modeling part and a deviation scoring part
[11]. For instance, [1, 16, 25, 33, 55] employ sequential neural net-
works such as LSTM and HTM (hierarchical temporal memory) to
model sequential records and then access the likelihood of anom-
alies based on the models' predictions. Recent studies for many
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emerging real-world applications concern the more complicated
problem of anomaly detection on graph data [32]. For example,
[3, 34, 47] detect abnormal nodes in graphs based on their devia-
tions from normal node clusters without supervision. [47] combines
one-class classi�cation with GNNs for graph anomaly detection in
a supervised manner, whereas [43] models node and edge features
using time-series. However, these methods are designed only for
graphs with �xed structure.

Real-world networks can be modeled as dynamic graphs to rep-
resent evolving objects and relationships among them [32, 50].
Extensive research has been done into dynamic network model-
ing, including tasks such as temporal link prediction [13, 35, 51]
and e�cient graph streaming [5, 15, 18]�none of which encom-
pass anomaly detection. AddGraph [54] and NetWalk [53] are two
methods that are closest to our setting of dynamic network anom-
aly modeling. AddGraph employs temporal GCN to detect anoma-
lous edges but cannot trivially detect anomalous nodes, whereas
NetWalk leverages a DeepWalk-based framework to detect both
anomalous nodes and edges, but cannot readily incorporate node
attributes or task-speci�c supervision.

3 THE GRAPHDNA FRAMEWORK
3.1 Dataset Analysis

Description. The data set from Iceland contains CDR data for
93,409 people (about a quarter of the Icelandic population) over a
3-year period beginning in February 2009, with 87,773 individuals
making calls during the 1-year period beginning in February 2009
when the H1N1v epidemic occurred. The CDR records are linked
with in�uenza-like illness (ILI) diagnosis data for 1,434 individuals
who provide a spatially representative sample (A¡ 0”86) of the ho-
mogeneous Icelandic population [45]; we focus only on an individ-
ual's �rst ILI diagnosis. Each record contains the encrypted source
and destination numbers for a call placed over a cell-phone tower,
the GPS coordinates of the cell-phone tower, a timestamp, and the
duration of call; similar metadata for text messages (SMS) are also
included in the CDR data. No content of calls or text messages are
included. The linked health dataset includes the encrypted number
and the Date of Diagnosis (DoD) of ILI by healthcare providers in
Iceland for the owner of that number.

The CDR data reveals rich movement and social patterns. Com-
mon contacts and their own interactions give a proxy for daily
communication networks. The GPS location of a call gives a proxy
for a person's location; a series of such locations provides a proxy
for movement; and a series of movements can act as proxy for rou-
tine patterns, such as weekday commute to and from work. Existing
studies identi�ed that the movement patterns were di�erent on the
day before the DoD and up to three days after were signi�cantly
di�erent from regular days, speci�cally that 1.1�1.4 fewer unique
tower locations were visited on average [45]. They also found that
signi�cantly fewer calls were placed but that calls were longer
on the day following diagnosis. Prior work did not consider more
advanced movement, social features, or dynamics.

Node features. We conducted principled analysis of the many
node features that can be constructed from the CDR data, including
location_num (number of unique tower recorded), avg_len (average

call length), tot_len (total call length), call_cnt (call count), degree
(number of contacts), clus_coe� (cluster coe�cient), abg_lon (aver-
age longitude), avg_lat (average latitude), all of which are varying
by day. Intuitively, multiple features may indicate disease onset or
diagnosis. We studied feature correlations based on the days from
DoD to quantify such potential. Speci�cally, since these predomi-
nantly ordinal attributes usually did not follow normal distributions,
we measured feature correlations using the Spearman's Correlation
Coe�cient (SCC) [42].

Link features. To account for people's connections in the phone
call network, we conduct thesocial behaviorsof every individual,
that includes their own behaviors (node features) together with
those of their neighbors in the phone call network. For simplicity,
we reduce social behaviors to features of a node together with the
aggregate of the node features of its direct neighbors. In addition to
binary indicators of whether two people were in contact during a
day, the CDR data further allow us to extract various link features,
such as call counts and (total) call durations. Before designing more
complicated models beyond elementary GCN [28], we extend our
data analysis over the correlations with days from DoD to study
the potential impact of such link features in disease prediction.

Diagnostic features. Unlike during COVID-19, no large-scale con-
trol interventions (such as lock-downs or restaurant closures [12])
were imposed during the H1N1 epidemic in Iceland [41].

Figure 1 demonstrates the results of our node and link feature
analysis based on their correlations with days from diagnosis based
on the training data. Although the absolute correlation values are
small, they are statistically signi�cant with?-value 0.01, and are
good indicators towards the utilities of these single features (as
concluded from a similar analysis in [45]). Based on the correlation
scores, we set an empirical threshold to select the top �ve node fea-
tures as a trade-o� between model capacity and simplicity. For the
link features, we found that unweighted links already encompass
the strongest signal towards the DoD, obviating the need for more
complicated GCN designs to model link features.

Combining nodes and links, in Figure 2, we visualize the dy-
namic social behaviors of individuals via three prominent node
features aggregated through the (weighted/unweighted) links in
the direct neighborhoods, where deviations are clearly observed
around the DoD. Such observations motivate our goal of predicting
symptomatic but unreported disease infections based on dynamic
network anomalies in the CDR data.

Other features. While we rely on analyzing real data, both to
identify the node and link features and to justify the design of our
models, we underscore the �greedy� nature of such analysis and the
potential over-simpli�cation of the problem. However, the focus of
our work is to provide the �rst fundamental framework of sympto-
matic disease prediction based on dynamic network anomalies in
CDR data, and believe that model simplicity is crucial.

3.2 Problem Formulation

Input. From CDR, we construct daily snapshots of the cell-phone
call network as graphsG = f � ¹Cº = ¹+• � ¹Cº• � ¹Cººg)C=1. Here,+ is
the set of all vertices (individuals) who have at least one call record,
� ¹Cº is the set of unweighted directed links at timestamp (day)C,
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Figure 1: Node and link feature analysis : Spearman's CC be-
tween social behaviors and days from diagnosis. We set an empirical
threshold (dashed line) to choose relevant node features for inclusion.
Unweighted links�links without additional features�were found to
be the most useful.

Figure 2: Dynamic social behaviors of diagnosed people
vs. days from DoD: We observe clear deviations of social behav-
iors around the DoD. The shaded interval marks the period between
days -1 to +3 days from DoD when the largest deviations are observed.

i.e., 4¹Cº
8 9 = 1 if there is at least one call fromE8 to E9 on dayC, and 0

otherwise, and� ¹Cº denotes the behavioral features at timestamp
C, i.e., 5¹Cº

8 2 R� denotes the individual behavioral features of
E8 on dayC. We model the complete year, between 02/01/2009 to
02/01/2010, to capture the entire 2009 H1N1v outbreak in Iceland,
and useC2 f0•1• ” ” ” •)= 364g to denote the relative days within
that time frame.

Within + , we pay special attention to the subset+ 0 � + who
had a record for an in�uenza-like illness (ILI) diagnosis during the

one year period.. 2 Rj+ 0j� j ) j stores the day of ILI diagnosis (DoD)
labels of people in+ 0 (~¹Cº

8 = 1 if E8 has a positive diagnosis on
dayC, and 0 otherwise). Recovery from in�uenza may take several
days and anomalous behavior is often observed in the several days
surrounding the DoD [45]. We thus follow common practice [9]
and prior work to de�ne the extended DoD labels~. , where ~~¹Cº

8 = 1

if ~¹C0º
8 = 1 andC2 »C0 � 1• C0¸ 3¼, and 0 otherwise.

Output. The primary goal of our work is to predict the DoD ofE8 2
+ 0, through modeling the connection between people's dynamic
social behaviors and disease diagnoses based on the phone call
graphsG given above. Beyond+ 0, the model should also generalize
to the larger population+ , where much of the diagnosis labels are
unavailable, and yet provide disease prediction�whether and when
an individual gets infected and shows symptoms consistent with
behavioral anomalies in the labeled input. Such estimates could
be used to monitor the e�ective disease burden of a population
during an epidemic, as long as some data are available about how
symptoms a�ect behavior. Estimates could be further broken down
by, e.g., age, region, sub-populations, as needed to inform policy
and intervention strategy [45].

3.3 Model Overview
The main aim of our work is to model people's behaviors inG
from CDR data, and measure deviations from routine to facilitate
symptomatic surveillance. To meet this goal, we design a two-
stage framework: (1) dynamic network behavior prediction, and (2)
anomaly-based disease prediction, which can be further integrated
through iterative training.

We survey our proposedGraphDNA framework in Figure 3. In
the �rst stage, a sequential graph representation learning module
is designed to capture people's daily behaviors in phone call graphs
G and then make consecutive predictions on their next-day behav-
iors. For people with diagnosis labels, only data on healthy days
are used in this stage. In the second stage, an anomaly detection
module is designed to compare the predicted behaviors with the
true behaviors on each day and make predictions about whether a
person might have fallen ill and show symptoms of H1N1v on that
day.

We use a subset of people with diagnosis labels+ 1
train � + 0and

the entire set of non-diagnosed people+ � + 0 to train the dynamic
social behavior prediction module in stage one. We then use a
disjoint subset of people with diagnosis labels+ 2

train � + 0 to train
the anomaly-based disease prediction module in stage two. Another
disjoint set+val � + 0 is used to iteratively validate and improve
the model design as well as tune the model hyper-parameters, and
the �nal disjoint set+test � + 0 is held out until the �nal testing and
reporting of the results.

3.4 Dynamic Social Behavior Prediction Module
To model people's routine behavior over time in cell-phone call
graphs, we design a dynamic graph model to predict people's be-
haviors at each day (i.e., 5¹Cº

8 •8E8 2 +• C2 f1•2• ” ” ” •)g) based on

their own past behaviors (i.e., f 5¹C0º
8 j C0 = 0• ” ” ” • C� 1g) and the

past behaviors of their neighbors (i.e., f 5¹C0º
9 j C0 = 0• ” ” ” • C� 1;E9 2
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Figure 3: An overview of ourDynamic Network Anomalymodeling
(GraphDNA).

N ¹E8• C0•  ºg, whereN ¹E8• C0•  º denotes the -hop neighborhood
of E8 in graph� ¹C0º). To e�ciently encode such dynamic social be-
haviors, we design an integrated model of GCN [28] and LSTM [37]
that we train on the node set�+ = + 1

train [ + � + 0.

Social behavior modeling. Motivated by recent advances in GCNs
for node representation learning in content-rich networks [28], we
employ GCN for modeling of static social behaviors of individuals
based on the neighborhood of each node on each day in the cell-

phone call graphs (i.e.,
n
5¹Cº
8 • 5¹Cº

9 j 92 N ¹E8• C•  º
o

•8E8 2 �+• C2

f 0•1• ” ” ” •)g). We encode this information into representation vec-
tors � ¹Cº ¹ º

8 through recursive operations

� ¹Cº ¹: º = q
�
� ¹Cº� ¹Cº ¹: � 1º, ¹: º ¸ 1¹: º

�
• (1)

where� ¹Cº is the normalized adjacency matrix with self-loop on day
C,, ¹: º and1¹: º are the learnable parameters of the GCN model,
q is a non-linear activation function such as LeakyReLU, and: 2
f 1•2• ” ” ” •  g. � ¹Cº ¹0º = � ¹Cº is the feature matrix on dayC. Based
on our data analysis in Section 3.1, we used the binary directed
adjacency matrix� ¹Cº 2 f0•1g# � # and real-valued feature matrix
� ¹Cº 2 R# � � of selected node features. The number of GCN layers
 (also denoted as! 1) is a tunable hyper-parameter. To capture a
distillation of common patterns, we share and train the same GCN
model across all nodesE8 2 �+ and all daysC2 f0•1• ” ” ” •)g.

Dynamic social behavior modeling. To integrate the history of
past behaviors and model the dynamics of social behaviors, we fur-
ther employ an LSTM model [37] based on the outputs of the GCN
model. Speci�cally, given the sequence of representation vectors as
the outputs of the GCN model (i.e., f � ¹Cº

8 j C= 0• ” ” ” •)� 1g•8E8 2 �+ ),
the LSTM model seeks to predict the node features of the next days
(i.e., f 5¹Cº

8 jC= 1• ” ” ” •)g•8E8 2 �+ ), which is computed through the
standard recursive operations of LSTM following [37]. The number
of LSTM layers! 2 is a tunable hyper-parameter. Given an input
behavior representation of a nodeE8 on dayC(i.e., � ¹Cº

8 ), the �nal
output of the LSTM model is the predicted behavior (node feature)
of E8 on dayC¸ 1 (i.e., 5¹Ç 1º

8 º.

To capture the common patterns, we share and train the same
LSTM model across the representation and feature sequences of all
nodesE8 2 �+ , which we do in an end-to-end fashion jointly with
the GCN model through the following objective function:

min
� 1•� 2

Õ

E82+

)Õ

C=1

L 1

�
5¹Cº
8 • 5̂¹Cº

8

�
• (2)

where � 1 and � 2 denote the parameters of the GCN model and
LSTM model, respectively. Here,L 1 is a loss function such as MSE.
We detail the training process in Algorithm 1.

3.5 Anomaly-based Disease Prediction Module
We focus on the task of DoD prediction not only because we only
have positive labels of diagnosed people in the dataset but also
due to the crucial impact of accurate detection of patient DoD on
disease transmission control. Following past studies [45] and our
data analysis in Section 3.1, our central hypothesis is that the DoD
labels may be predicted to an extent based on people's deviations
from their routine behaviors (i.e., anomalies) as captured in the
cell-phone call graphs.

To detect anomalies, we �rst compute the deviation scores be-
tween the predicted behaviors and real behaviors for all people in
another training set+ 2

train that is disjoint from �+

B¹Cº
8 = 5̂¹Cº

8 � 5¹Cº
8 • 8E8 2 + 2

train• C2 f1•2• ” ” ” •)g” (3)

Every individualE8 2 + 2
train is associated with a sequence of) � 1

� -dimensional vectorsfB¹Cº
8 jC= 1•2• ” ” ” •)g, from which we will

seek to predict the extended DoD labelsf ~~¹Cº
8 jC= 1•2• ” ” ” •)g.

We design and experiment with three representative types of
anomaly detection models based on the output of our dynamic
social behavior prediction stage: (1) a deep learning model based
on logistic regression (LR) [24], (2) a statistical model based on
Gaussian tail probabilities (GTP) [1], and (3) a hybrid model that
integrates the �rst two.

Deep learning model. Since the DoD labels~. are binary, we
devise a LR model for binary classi�cation [24]. To mitigate noise
and asynchronous anomalies across di�erent features, we smooth
the input sequences over a rolling window. We have

~¹Cº
8 = f ¹"!% ¹~B¹Cº

8 ºº•8E8 2 + 2
train• C2 f1•2• ” ” ” •)g• (4)

where ~B¹Cº
8 = mean¹” ” ” •B¹C� 1º

8 •B¹Cº
8 •B¹Ç 1º

8 • ” ” ”º. We pad both ends
of the sequence with zeroes. Here, the window size
 0 is a tunable
hyper-parameter,f is the sigmoid function, MLP is the multilayer
perceptron with LeakyReLU activation, and the number of layers
! 3 is another tunable hyper-parameter.

The LR model is trained with the following objective function

min
� 3

Õ

E82+ 2
train

)Õ

C=1

L 2

�
~~¹Cº
8 •~̂¹Cº

8

�
• (5)

whereL 2 is a loss function such as cross-entropy. To counter the
propensity of LR to simply predict the majority class when the class
labels are imbalanced, we employ a top-: selection mechanism
during testing where we predict the top: ~̂C

8's as 1 (illness) for each
E8 2 +val [ +test, and then set: to 5 since the largest interval of
concern around the DoD is 5 days ([t-1, t+3]).
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Statistical model. While LR provides an e�ective way of searching
the feature space and �nding the inductive bias with the help of
training data, it ignores dynamic contexts and is not designed to
capture temporal anomalies. On the other hand, anomaly detection
has been explored in temporal settings through statistical models
such as the Gaussian Tail Probability (GTP) model [1]. Following
their design, to e�ectively detect temporal anomalies from the
� -dimensional time-series data of the deviation scores of each
individual E8 (i.e., fB¹Cº

8 j C= 1•2• ” ” ” •)g), we �rst apply two rolling
windows, 1 and, 2 of sizes
 1 and
 2 as follows

, 1 = »max¹0• C� 
 1•2º•max¹0• C� 
 1•2º ¸ 
 1 � 1¼

, 2 = »max¹0• C� 
 2•2º•max¹0• C� 
 2•2º ¸ 
 2 � 1¼•
(6)

where 
 1 ¡ 
 2 are two tunable hyper-parameters. We then model
the values in, 1 as normal distributions, and use values in, 2 to
compute the recent short-term average. An anomaly likelihood of
B¹Cº
8 based on the GTP is computed as

?¹Cº
8 = 1 � &

©


«

mean
�
B¹Cº
8 j C2 , 2

�
� mean

�
B¹Cº
8 j C2 , 1

�

std
�
B¹Cº
8 j C2 , 1

�
ª
®
®
¬

• (7)

where& represents the Gaussian tail probability approximation
function [27]. The total anomaly probability ofE8 on dayCis com-
puted as?̂¹Cº

8 =
Î �

3=1 ?¹Cº ¹3º
8 , which is directly used for the predic-

tion of ~~8 with the same top-: selection mechanism.

Hybrid model. The GTP model adds temporal context to the de-
viation scores and is thus more suitable for anomaly detection in
the dynamic social behavior data. However, the multi-dimensional
behavioral features are not parameterized for the task of symptom
(DoD) prediction. To this end, we propose a novel hybrid model
that combines the power of both worlds�by simply replacing the
~B¹Cº
8 in Eq.(4)with ?¹Cº

8 in Eq.(7). Sequence smoothing with
 0 is
no longer needed due to the sliding windows, 1 and, 2.

3.6 Training Algorithms
The detailed training algorithms of the two modules are outlined
in Algorithms 1 and 2. We note that ourGraphDNA framework
does not rely on more hyper-parameters than the basic ones for
classic GCN, LSTM, LR, and GTP models. In this work, we train the
two stages separately and achieve promising results for symptom
prediction in the end. Potentially, the two stages can also be trained
jointly (iterative or end-to-end), which we leave as an interesting
direction for future work.

Complexity analysis. The training of the GCN model in stage
one takes$ ¹# 2

1) ! 1�� º time; the training of the LSTM model
takes$ ¹# 1) ! 2�� º time in each epoch, where# 1 = j �+ j � # =
j+ j. In stage two,$ ¹# 2) ¹
 1 ¸ 
 2ºº time is taken to calculate the
GTP, and$ ¹# 2! 3� 2º time is taken to train the LR model, where
# 2 = j+ 2

train j � # = j+ j. ) • ! 1• !2• !3• �• �• 
 1•
 2 are all constant
numbers:) is 364, and all others are smaller than 100.

4 EXPERIMENTS
In this section, we evaluateGraphDNA by conducting extensive
experiments on the CDR dataset, with a focus on the following
research questions (RQs).

Algorithm 1: Dynamic Social Behavior Prediction

Input: f � ¹Cº j C= 0• ” ” ” •)g, �+ = + 1
train [ + � + 0, # GCN

layers! 1, # LSTM layers! 2, hidden layer sizes�
Output: 5¹Cº

8 •8E8 2 +• C2 f1•2• ” ” ” •)g
1 while not convergeddo
2 for C 0 to ¹) � 1º do
3 � ¹Cº  GCN(� ¹Cº ; ! 1, � )

4 for E8 2 �+ do
5 for C 0 to ¹) � 1º do

6 5̂¹Ç 1º
8  LSTM(� ¹Cº ; ! 2, � )

7 loss L 1¹f 5¹Cº
8 g, f 5̂¹Cº

8 g)
8 Update the GCN and LSTM model parameters

� 1 and� 2 according to the loss

Algorithm 2: Anomaly-based Disease Prediction (Hybrid)

Input: f � ¹Cº jC= 0• ” ” ” •)g, f 5̂¹Cº
8 jE8 2 +• C= 1•2• ” ” ” •)g,

+ 2
train, # LR layers! 3, hidden layer sizes� , GTP

window sizes
 1 and
 2

Output: f ~̂¹Cº
8 •8E8 2 +• C2 f1•2• ” ” ” •)g

1 while not convergeddo
2 for E8 2 + 2

train do
3 for C 0 to ¹) � 1º do

4 ?¹Cº
8  GTP

�
B¹Cº
8 ; 
 1•
 2

�

5 ~̂8  LR
�
?¹Cº

8 ; ! 3

�

6 loss L 2

�
~~¹Cº
8 •~̂¹Cº

8

�

7 Update the LR model parameters� 3 according
to the loss

RQ1 How doesGraphDNA perform compared to closest baselines
from state-of-the-art on DoD prediction?

RQ2 DoesGraphDNA have the potential to be generalized for
disease prediction in the larger population?

RQ3 How does each major component ofGraphDNA contribute
to the overall performance?

RQ4 What are the e�ects of di�erent tunable model hyper-parameters
on GraphDNA?

RQ5 Is the running time ofGraphDNA comparable to existing
methods?

4.1 Experimental Settings

Dataset. The Iceland CDR dataset has a total of 87,773 distinct
nodes, and an average of 54,867 nodes and 30,451 links across
the 365 graph snapshots. The nodes comprise two types: the 1,414
diagnosed nodes+ 0and the remaining non-diagnosed nodes+ � + 0.
There are DoD labels for diagnosed nodes, but we do not know if
any individuals in the non-diagnosed set were infected or not. We
divide the diagnosed nodes+ 0 into + 1

train, + 2
train, +val, and+test as

discussed in Section 3.3 with a ratio of 3:3:2:2. We use+ 1
train and

+ 2
train to train the two stages of our model, respectively.
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Table 1: Anomaly detection performance comparison. All results are averaged from 5 random data splits, passing signi�cance test with? = 0”01.

Metrics
Model

Micro Precision Micro Recall Micro AUC Micro F1 Macro Accuracy
NetWalk 0.0529� 0.0019 0.1599� 0.0028 0.5025� 0.0005 0.0773� 0.0004 0.1672� 0.0007
LSTM-AD 0.0386� 0.0035 0.2836� 0.0047 0.4995� 0.0003 0.0667� 0.0003 0.3016� 0.0014
OddBall 0.0362� 0.0001 0.3530� 0.0001 0.4988� 0.0001 0.0648� 0.0001 0.3578� 0.0001
OCGNN 0.1754� 0.0009 0.5491� 0.0073 0.5043� 0.0033 0.2586� 0.0043 0.5749� 0.0046
GraphDNA-w/o-GCN 0.0490� 0.0018 0.1356� 0.0006 0.0694� 0.0005 0.0693� 0.0006 0.1441� 0.0013
GraphDNA-w/o-LSTM 0.2326� 0.0063 0.6792� 0.0034 0.5855� 0.0040 0.3333� 0.0017 0.6871� 0.0061
GraphDNA-w/o-LR 0.2138� 0.0036 0.4652� 0.0063 0.5728� 0.0037 0.2807� 0.0012 0.4723� 0.0029
GraphDNA-w/o-GTP 0.0871� 0.0005 0.2356� 0.0016 0.5167� 0.0022 0.1222� 0.0015 0.2372� 0.0018
GraphDNA 0.2344� 0.0106 0.6986� 0.0054 0.5895� 0.0019 0.3384� 0.0019 0.7005� 0.0087

Baselines.We adapted the following state-of-the-art algorithms
for our task of DoD prediction based on the dynamic cell-phone
call graphs constructed from the CDR dataset.

� NetWalk[53]: an anomalous node detection method that is clos-
est to our dynamic network setting. It learns and dynamically
updates the representations of non-attributed networks as they
evolve in an unsupervised manner.

� LSTM-AD[33]: an algorithm using stacked LSTM networks for
anomaly detection in multi-variate time-series data. Since it
cannot model network data, we provide it only with dynamic
node features.

� OddBall[3]: an unsupervised method to detect abnormal nodes
in static networks. Since it cannot handle dynamic networks, we
compute a separate model of it for every timestamp.

� OCGNN[47]: a one-class classi�cation framework that combines
GNN with the one-class objective for attributed network anomaly
detection in a supervised manner. Since it cannot handle dynamic
networks, we compute a separate model for every timestamp.

For the supervised baselines, the same+ 1
train [ + 2

train [ + � + 0 is
used for training,+val is used for hyper-parameter tuning, and+test
is used for performance reporting. The unsupervised baselines are
run on the whole+ and tested on+test. When making predictions
on+test, the same top-: selection mechanism is used to predict:
positive DoDs for each individual.

Evaluation metrics. Based on the predicted DoD labelŝ. and
extended true DoD labels~. , we compute the following metrics
adopted from the standard evaluation of group classi�cations.

� Micro Precision, Micro Recall, Micro AUC, and Micro F1, which
represent the Precision, Recall, AUC and F1 scores averaged
across all the testing individuals in+test.

� Macro Accuracy, which is the percentage of testing individuals
in +test who have at least one correct DoD prediction.

The suite of metrics compares prediction results with ground-truth
from di�erent perspectives, thus comprehensively comparing the
performance of evaluated algorithms.

Parameter settings. We tune and set the hyper-parameters of
GraphDNA as the following default values: we set the number of
GCN layers! 1 to 2, LSTM layers! 2 to 1, and LR layers! 3 to 2;
we set the embedding size� of all layers in all models to 16; the
sizes of rolling windows in GTP are set to
 1 = 100and 
 2 = 3.
To ensure fair comparison, we use the same hyper-parameters for

Figure 4: Average disease scores (ADS) of diagnosed group and whole
population vs. daily diagnosed number (DDN) in the period of 2009
H1N1v outbreak in Iceland. Thin lines denote the medians/values of
the ADS/DDN, thick lines indicate the smoothed medians/values, and
shading delineates the 1st�3 rd quantiles of the ADS.

all of our model ablations. For the baselines, we also optimize their
hyper-parameters on+val.

4.2 DoD Prediction Comparison (RQ1)
Table 1 shows thatGraphDNA achieves the best performance
across all metrics in the scenario of CDR-based DoD prediction. We
highlight the following detailed observations.

� While not being fully consistent across the baselines, the multiple
metrics we use demonstrate the same signi�cant improvements
of GraphDNA. Speci�cally,GraphDNA achieves 16.9%-33.6%
relative gains over the strongest baseline across all metrics, indi-
cating its superiority in the task of CDR-based DoD prediction.

� Although we have included the most relevant algorithms as
baselines, none of them can properly integrate all important
signals in our scenario, thus leading to unsatisfactory results
across all metrics.

� Compared with LSTM-AD and OddBall, NetWalk focuses on
structural anomalies and make cautious predictions, thus achiev-
ing better precision but worse recall.

� OCGNN is the strongest baseline, likely due to its proper leverage
of imbalanced task supervision, which indicates the importance
of available DoD labels from the CDR data.
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(a) Hidden Layer Sizes� (b) # LSTM Layers! 2 (c) # LR Layers! 3

Figure 5: Performance ofGraphDNAwith varying hyper-parameters (averaged from 5 random data splits). The best baseline here is OCGNN.

4.3 Anomaly Curve during Epidemic (RQ2)
Beyond predicting the DoD of diagnosed people, we examine the
potential of GraphDNA to estimate wider disease infection among
the entire population. In Figure 4, we visualize the average disease
score (ADS) in the diagnosed group (+test) and the whole population
(+ ) predicted byGraphDNA, versus the diagnosed number (DDN)
in the ground-truth of+ 0. The main peak of theGraphDNA ADS es-
timate among the diagnosed group coincides with the ground-truth
peak of H1N1v outbreak in Iceland in October 2009, suggesting that
the ADS model captures behavioral anomalies associated with ill-
ness. The model also picks up anomalies during the winter holidays
in December 2009. Interestingly, a small but signi�cant anomaly sig-
nal also arises in the whole population during the epidemic (green
curve). Notably, the model was not picking up time-of-year related
artefacts, as evidenced by the baseline (orange curve)�showing
ADS inference by the same model trained on a control group in
which we matched an undiagnosed person with each diagnosed per-
son 1:1 at random and assigned them the latter's DoD. This supports
the conclusion that the model is identifying illness-speci�c anom-
alies in the whole population�a promising information source. We
caution, however, that further research is warranted for predictive
epidemic estimation since the ADS scores in our model are based
on training data from the entire 1-year period.

4.4 In-depth Model Analysis (RQ3-5)

Ablation analysis (RQ3). Table 1 also shows that each constituent
part of GraphDNA contributes signi�cantly to its overall perfor-
mance. We further summarize several key observations as follows.

� Removing the GCN model causes the most signi�cant perfor-
mance drop, demonstrating the importance of modeling the
neighborhood behaviors for DoD prediction�the key di�erence
from our work to previous studies on the same CDR dataset [45].

� Surprisingly, removing the LSTM model actually does not sig-
ni�cantly degrade performance�consistent with the reasonable
performance of OCGNN. Perhaps evolutionary patterns are not
be a key factor for DoD prediction; perhaps LSTM is not the
ideal model to capture such network evolution.

� Both the LR and GTP models are indispensable toGraphDNA,
supporting our design principle of integrating the e�ective data-
driven learning ability of LR with the anomaly-based feature
engineering of GTP.

In summary, the ablation test justi�es the e�ciency of our model
design. Each of the main components contributes to the accuracy
and robustness ofGraphDNA.

Hyper-parameter analysis (RQ4). Comprehensive experiments
are done for hyper-parameter tuning, and the results are presented
in Figure 5. We runGraphDNA with various combinations of
hyper-parameters and plot the performances holding each hyper-
parameter to be �xed. We highlight three important observations:

� The hyper-parameters we tested have minimal impact on the
performance ofGraphDNA, maintaining signi�cant margins
from the best baseline across a vast range of values.

� Larger embedding sizes, fewer LSTM layers, and fewer LR layers
generally improve results due to di�erent trade-o�s between
model capacity and over�tting.

� The standard deviations remain acceptable across di�erent set-
tings, indicating thatGraphDNA's hyper-parameter are robust.

Due to the di�culty in implementing and running deep GCNs, we
have not studied the performance ofGraphDNA with the number
of GCN layers! 1 greater than 2. While having signi�cantly larger
training and testing times, we have observed the performance of
GCN with ! 1 = 2 to be only slightly better than that with! 1 = 1,
and thus lack compelling need to grow! 1 beyond 2 at the moment.

E�ciency analysis (RQ5). We observe the computational cost
of GraphDNA to be similar to those of OCGNN, which is slightly
larger than those of LSTM-AD and NetWalk, yet within the same
order of magnitude (detailed results and analysis in Appendix B).

5 CONCLUSION
Disease outbreak detection is di�cult: population surveys are slow
and skewed, and traditional syndromic surveillance requires the in-
tegration of a health-care data collection system with a responsive
public health body to function adequately. Detecting behavioral
anomalies through cell-phone metadata, as discussed here, o�ers
a passive and universal alternative to infectious disease surveil-
lance. Using real-world linked cell-phone and health data from the
H1N1v pandemic in Iceland in 2009, we showed howGraphDNA
identi�ed individual behavior change indicative of disease symp-
toms and found evidence of illness-related anomalies in the entire
population that could be used to track the prevalence of symptoms.
These estimates could inform transmission models, policy choices
(e.g., targeted lockdowns, quarantines, vaccination campaigns) and
provide direct observation of societal costs.
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