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Abstract 
This study introduces a novel application of a Generative Pre-
trained Transformer (GPT) model tailored for photoplethys-
mography (PPG) signals, serving as a foundation model for 
various downstream tasks. Adapting the standard GPT archi-
tecture to suit the continuous characteristics of PPG signals, 
our approach demonstrates promising results. After pre-train-
ing on our extensive dataset that contains more than 200 mil-
lion 30s PPG samples, the model shows performance compa-
rable to or surpassing current state-of-the-art (SOTA) meth-
ods in tasks like heart rate estimation. A standout feature of 
our GPT model is its inherent capability to perform genera-
tive tasks such as signal denoising effectively, without the 
need for further finetuning. This success is attributed to the 
generative nature of the GPT framework. Looking ahead, we 
aim to further explore its generative abilities and investigate 
its implication on its other downstream tasks.  

 Introduction 
The emergence and success of large language models 
(LLMs) like BERT (Delvin et al. 2019) and GPT (Radford 
et al. 2018) have revolutionized our understanding of foun-
dation models in artificial intelligence. These models, char-
acterized by their extensive pretraining on large datasets 
without explicit supervision, demonstrate remarkable versa-
tility across a range of downstream tasks via finetuning. This 
concept of foundation models has particularly significant 
implications in the realm of clinical data analysis. In clinical 
settings, the challenge often lies in the limited availability of 
labeled training samples. Foundation models, with their in-
herent flexibility and generalizability, offer a promising so-
lution to this bottleneck. 
 The architecture and training methodologies of founda-
tional models in natural language processing provide a tem-
plate that can be adapted to other domains. BERT's ap-
proach, centered on masked word reconstruction and next 
sentence prediction, contrasts with GPT's focus on predict-
ing the next token in a sequence. This sequential processing 
capability opens up intriguing possibilities for the analysis 

of time-series data in healthcare, such as Photoplethysmog-
raphy (PPG) signals. PPG signals, akin to sequences of con-
tinuous tokens, are ripe for exploration through the lens of 
NLP-inspired models. 
 In this work, we introduce a novel PPG foundation model, 
utilizing the GPT architecture as our base. Our model is pre-
trained on a dataset comprising more than 200 million 30-
second PPG signals. While adhering to many of the design 
choices common to widely recognized open-source LLMs, 
such as Llama from Meta, we have innovatively adapted the 
embedding and output layers to cater specifically to the 
characteristics of PPG signals.  
 The contributions of this study are manifold. We demon-
strate the robust capabilities of our model across various 
downstream tasks, including classification, regression, and 
generative applications. We also provide insights into how 
we may adapt techniques from NLP to the domain of con-
tinuous time series data.  

Related Work 
Inspired by the transformative success of the transformer ar-
chitecture in capturing long-range dependencies, several 
works have adapted this framework for time series analysis. 
PatchTST, introduced by Nie et al. (2023), innovatively 
treats each time series patch as a discrete token, training a 
feature extractor through masked reconstructions. Zerveas 
et al. (2020) diverged from this approach by considering 
each timestamp as the fundamental unit of information, em-
ploying a transformer encoder as the backbone. While these 
methods leverage the encoder architecture, there's a growing 
interest in utilizing the transformer decoder, aligning more 
closely with the GPT model's predictive capabilities. Nota-
bly, EarthPT (Smith, Fleming, Geach, 2024) adopts a GPT-
like structure for Earth Observation data, treating each ob-
servation as a token. Our model distinguishes itself by treat-
ing patches as tokens, similar to PatchTST, which offers 
computational efficiency and potentially richer local feature 



representations due to the reduced sequence length inherent 
in our approach. 
 The exploration of PPG signals through deep learning 
methodologies, such as the convolutional recurrent regres-
sor by Ismail et al. (2022) for heart rate estimation and the 
novel deep recurrent network by Chowdhury et al. (2020) 
for blood pressure estimation, underscores the potential of 
advanced models in extracting meaningful features from 
PPG data. However, the application of transformer-based 
models, particularly with adaptations from the GPT archi-
tecture, presents a novel frontier in enhancing the accuracy 
and efficiency of PPG signal analysis.  

Method: GPT Architecture and Pretraining 
In leveraging the Generative Pre-trained Transformer (GPT) 
framework for analyzing continuous time-series PPG sig-
nals, we preserved the core components of GPT while mak-
ing key adjustments to suit the unique characteristics of 
physiological signals. The decision to employ GPT was 
driven by its proven capability in capturing complex de-
pendencies within sequential data, making it a promising 
candidate for time-series analysis.  

Our model was pretrained on a dataset containing 30s 
PPG signals, all resampled to 40Hz. Prior to feeding PPG 
signals into the model, we first normalize each sample	𝑋 ∈
ℝ!"## 	into [0, 1]!"##  by min-max normalization. That is: 

𝑋 =	
𝑋 −min	(𝑋)

max(𝑋) −min	(𝑋) 

	Then we reshape the normalized signal into 30 consecutive, 
non-overlapping patches,	𝑋 = {𝑥!, 𝑥", … , 𝑥#$} , with each 
patch	𝑥% ∈ ℝ&$	encapsulating 1 second of the signal. The 
code, model weights and training hyperparameters will later 
be made publicly available. 
  We trained two models, GPT-19M and GPT-85M, where 
the former is only trained on 5% of the entire dataset due to 
the cost. GPT-85M was trained for 5 epochs, each taking 
approximately 45 hours on 4 A6000 GPUs. 	

Embedding 
The embedding layer serves a pivotal role in our model, 
transforming each patch into a high-dimensional vector rep-
resentation. Our model uses a simple yet effective linear 
layer to map each patch to a vector of dimension 𝑑'.   
 In the standard GPT implementation, we typically shift 
the entire sequence to the right by injecting a special token 
such as [SOS] in front to denote start of sentence and drop-
ping the last token. We employ a similar technique. How-
ever, instead of injecting special numbers in front of the PPG 
sequence, a learnable vector ℎ(  of dimension 𝑑'  is regis-
tered to the model directly and prepended to the embedded 
PPG sequence. Therefore, the whole embedded PPG se-
quence is {ℎ(, ℎ!, ℎ", … , ℎ")} . This approach not only 

facilitates the model's training by providing a consistent 
starting point for each sequence but also helps mitigate the 
issue of out-of-distribution patches that could otherwise im-
pair the linear embedding layer's effectiveness. Since the 
signal is always 30s long in the pretraining phase, the tradi-
tional [EOS] (end of sequence) token is rendered unneces-
sary.  

Stacked Transformer Decoder 
Our stacked transformer decoder layer follows the common 
design choices. Prior to attention module and feed-forward 
network (FFN), we employ root mean square normalization 
(RMSNorm), introduced by Zhang and Sennrich (2019), in-
stead of layer normalization (LN). This choice is motivated 
by RMSNorm's potential to enhance model training dynam-
ics. In addition, we use rotary positional embedding (RoPE), 
introduced by Su et al. (2023), to capture relative positional 
information of the sequence.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Diagram Illustrating GPT Model Design 

Prediction Head and Loss Function at Pretraining 
In adapting the GPT architecture for continuous PPG signal 
prediction, our model's prediction head diverges from the 
typical categorical output seen in NLP tasks. This necessi-
tates a tailored approach to both the prediction mechanism 
and the choice of loss function. 
 A natural choice is to directly map hidden vectors back to 
the input space and use a distance loss function like MSE. 
However, our initial experiments with MSE led to model 
collapse, where the model predominantly predicts the mean 
value of the normalized signals, converging to a non-in-
formative constant around 0.5. We conjecture that the cause 
of this issue is the fact that MSE has support over the entire 
real line while the signal is normalized to [0, 1]  interval, 
which poses a significant distribution mismatch.   



 To address this issue, we use a distribution-based loss 
function that has support of (0, 1), called logit-Laplace dis-
tribution loss (Ramesh et al. 2021). Instead of predicting the 
input signal, the model predicts vectors 𝜇, 𝑏, each having the 
same shape as input, representing the location and scale pa-
rameters of the distribution.  
 The logit-Laplace distribution is given by applying a sig-
moid transformation over a Laplace distributed random var-
iable. Its probability distribution function (PDF) is given by: 

𝑓(𝑥|𝜇, 𝑏) =   
1

2𝑏𝑥(1 − 𝑥) exp	 >−
|logit(𝑥) − 𝜇|

𝑏 C 

where 𝑥 is ground truth, 𝜇 is the predicted location parame-
ter and 𝑏 is the predicted scale parameter. It can be shown 
that minimizing the negative log likelihood of a Laplace dis-
tribution is equivalent to minimizing L1 distance loss, and 
applying the sigmoid transformation restricts the support to 
(0, 1) open interval, making the negative log of the above 
PDF a suitable loss function.  
 However, the normalization of signals to the [0, 1] inter-
val poses a challenge at the boundaries. Due to the nature of 
the min-max normalization, we are guaranteed that 0 and 1 
will occur in each 30s sample, and either will cause the de-
nominator 2𝑏𝑥(1 − 𝑥) go to 0. To avoid this numerical is-
sue, we perform an invertible transformation on 𝑥 to ensure 
that it is in [0.1, 0.9] interval. This approach is favored over 
adding a small constant 𝜖 to the denominator, which will 
likely cause instability in training because then the term 1/𝜖 
will occur in the loss function for every training sample.  

Method: Supervised Finetuning 
A key advantage of the GPT architecture is its adaptability 
to varying sequence lengths. This attribute is particularly 
beneficial in finetuning, where the sequence length may be 
different from the 30-second segments used in pretraining, 
allowing for seamless adjustment to the specific require-
ments of each task. 
 We explored 2 types of downstream heads, one linear and 
the other attention based. In the finetuning process, we de-
fined our loss function as a linear combination of the objec-
tive loss 𝐿*, corresponding to the finetuning objective, and 
signal modeling loss 𝐿', which is logit-Laplace distribution 
loss obtained on the downstream dataset, similar to the com-
bined loss function proposed by Radford et al. (2018).  

Linear Prediction Head 
In the finetuning phase for downstream tasks, our model em-
ploys a linear prediction head to transform the output of the 
last transformer decoder block, which has dimension 
(sequence	length, 𝑑'),  into specific predictions for binary 
classification or regression tasks.  
 To achieve this, we adopt a straightforward yet effective 
strategy of concatenating the output tensor, followed by the 

application of a linear layer. This approach, despite its sim-
plicity, has demonstrated robust performance across our 
evaluated tasks, as detailed in the subsequent results section. 
The ability to utilize the entire sequence for prediction, ra-
ther than relying solely on the final token's representation 
(Luo et al. 2023), ensures a comprehensive integration of 
temporal features. 
 While this approach has demonstrated promising results, 
it is important to acknowledge the computational consider-
ations this method entails. As the sequence length in-
creases, the computational complexity of mapping a tensor 
from shape (1, sequence	length × 𝑑') to the target shape 
escalates.  

Attention-based Prediction Head 
Another approach leverages the attention mechanism to bet-
ter capture the relationship between patch representations, 
potentially making the model more robust when dealing 
with long sequences. We compute attention scores among 
patch representations use them as coefficients to sum over 
the model output along the temporal dimension, so that the 
original model output tensor of dimension 
(sequence	length, 𝑑') is reduced to a vector in ℝ+!. This 
final feature vector is used for downstream task prediction. 

Finetuning Process 
In our finetuning framework, we synergize the objective 
loss 𝐿*with the signal modeling loss 𝐿'to formulate a com-
prehensive loss function: 𝐿(𝑦, 𝑦,, 𝑋, 𝑋′) = 𝐿*(𝑦, 𝑦′) +
𝜆𝐿'(𝑋, 𝑋′), where 𝑋, 𝑦 are PPG signals and labels of the da-
taset and 	𝑋′, 𝑦′ are model predictions of the signal and label. 
Empirically, we observed that this delivered much better 
performance and faster convergence compared to using ob-
jective loss only.  
 For regression tasks, we use the standard MSE as objec-
tive loss. Note that logit-Laplace loss does not apply here 
because the labels of the regression task (such as heart rate 
estimation) are not normalized to [0, 1]. For classification 
tasks, we use cross entropy as per standard. Signal modeling 
is done in the same way as it is in the pretraining phase, and 
hence uses logit-Laplace distribution loss.  
 A notable innovation in our finetuning process is the dy-
namic scheduling of the scaling parameter 𝜆 . While Rad-
ford et al. originally proposed to fix a scaling parameter 𝜆 
for the auxiliary loss, we found that it is more effective to 
use a dynamic scheduling technique that anneals 𝜆 to 0.  

Method: Unsupervised Signal Denoising 
Signal denoising is a critical preprocessing step in PPG sig-
nal analysis, aimed at enhancing signal quality and reliabil-
ity for downstream tasks. We use the Segade model (Jain et 
al. 2023) to produce signal quality index sequence (SQI  



  
 
 
 
 
sequence), which is the same length as the input signal. The 
SQI sequence is bounded within the interval [0, 1]. A data 
point is deemed "bad quality" if its SQI is below 0.5, and 
similarly, a patch is labeled as such if over 50% of its con-
stituent points are of bad quality. In this denoising procedure, 
GPT is tasked with reconstructing patches identified as poor 
quality, while patches that are not flagged are kept as is to 
retain the original signal as much as possible.  
 While the generative application of GPT for denoising 
bypasses the need for explicit finetuning, it's worth noting 
the model's unidirectional nature as a limitation. This con-
straint may impede its performance, particularly when en-
countering low-quality patches early in the signal sequence, 
an issue more easily fixed when using bi-directional infor-
mation like many current models do. Despite this, the ex-
ploratory nature of this work opens avenues for future in-
vestigations.  
 In moving forward, we aim to assess the impact of such 
denoising on downstream task performance and devise new 
ways to prompt the GPT model for higher reconstruction 
quality. To showcase the model's current prowess in signal 
recovery, we have included denoising examples in the ap-
pendix. For these demonstrations, we randomly select PPG 
samples outside the training set and mask out a certain per-
centage of the patches to mimic a noisy patch. We then ask 
the GPT to recover the original sequence. Through compar-
ison with ground truth, we see that GPT can recover the 
original sequence faithfully even when up to half of it was 
compromised by artificial noise. However, the reconstruc-
tion quality notably diminishes when 70% of the signal is 
masked, a decline possibly linked to a higher concentration 
of masked patches early in the sequence. 
 
 

 
 
 

Results 
Here we present finetuning results on various benchmarks. 
Our downstream tasks include heart rate estimation, atrial 
fibrillation detection, blood pressure estimation and detect-
ing false arrhythmia alarms. The results reported come from 
the best between linear head prediction and attention head 
prediction.  
 Except for blood pressure estimation, all results reported 
in GPT-85M contains 2 entries. The first entry comes from 
a held-out test set, randomly sampled from the dataset, and 
the second entry comes from 5-fold cross validation. Be-
cause all downstream datasets are relatively small (except 
for BP estimation), cross validation result may be more val-
uable than that obtained from a randomly sampled test set.  
 In addition, we do not filter any bad quality signals when 
obtaining the results reported above. Due to different data 
preprocessing schemes, the table above only provides a ref-
erence.  

Conclusion and Future Work 
This work presents a novel PPG foundation model. We keep 
the main component of GPT intact, while adapting the em-
bedding and prediction layer to better suit the characteristics 
of PPG. We demonstrate that our trained model not only ex-
cels in a diverse set of downstream tasks but can also be used 
for generative tasks without further finetuning. We believe 
that similar techniques may be employed for other physio-
logical signals and even continuous time series in general.  
 As a part of our future work, we plan to further investigate 
GPT’s ability in generative downstream tasks and potential 
avenues in which it may better support other supervised 
tasks.  

Task Dataset SOTA GPT-19M GPT-85M 
Blood Pressure 

Estimation 
Vital SBP (Wang et al. 2022) 10.1 (Chowdhury et al. 2020) 9.17 8.794	(Held-out) 
Vital DBP (Wang et al. 2022) 7.64 (Chowdhury et al. 2020) 12.5 7.119	(Held-out) 

Heart Rate 
Estimation 

WESAD  (Schmidt et al., 2018) 3.63 (Bieri et al. 2023) 3.97 3.769/4.102 
DaLiA (Reiss et al. 2019) 2.61 (Bieri et al. 2023) 1.92 3.102/1.887 
IEEE (Zhang et al. 2015) 3.18 (Bieri et al. 2023) 2.97 2.986/3.220 

AF Detection Stanford (Torres-Soto and Ash-
ley. 2020) 0.67 (Das et al. 2022) 0.77 0.826/0.904 

False Arrhythmia 
Alarm Detection 

False Alarm Real Time 
(Clifford et al. 2015) 0.81 (Clifford et al. 2015) 0.57 0.763/0.731 

False Alarm Retrospective 
(Clifford et al. 2015) 0.85 (Clifford et al. 2015) 0.61 0.772/0.751 

Respiration Rate BIDMC (Pimentel et al. 2016) 1.51 (Kumar et al. 2022) 1.91 1.791/1.477 

Table 1: Summary of Results 
Heart rate and blood pressure estimation results are recorded in MAE, Stanford dataset recorded in F1, and false alarm da-

tasets are recorded in custom metric. 
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Appendix 
Sample reconstructions for 30% mask (noise) 
 

 
 

Sample reconstructions for 50% mask (noise) 

 

Sample reconstruction for 70% mask 


