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Abstract. Functional Magnetic Resonance Imaging (fMRI) has signif-
icantly advanced our understanding of human brains by capturing dy-
namic neural activities, providing basis for causal analysis between brain
regions. However, conventional correlation-based analyses often fail to
account for the directionality and complexity of neural interactions. We
propose an approach that integrates Granger causality with graph-based
deep learning to better capture effective connectivity between brain re-
gions. Specifically, we compare three methods: Multilayer Perceptron
(MLP)-based approaches on flattened time series, Graph Convolutional
Networks (GCNs) using undirected connectivity, and a GCN framework
incorporating directed Granger-causal influences into brain graph con-
struction. Through the optimization of Granger parameters such as the
lag order via Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC), we investigate the impact of different graph
construction methods on connectome-based outcome prediction. The di-
rected graph framework demonstrates robustness to hyperparameter vari-
ations, while also providing biologically plausible insights into brain func-
tionalities that complement undirected correlation-based graphs. Evalua-
tions on classification and regression tasks using large-scale fMRI datasets
reveal that directionality preserves predictive performance while offer-
ing additional understanding of information flow within brain networks.
These findings emphasize the potential of Granger-causality-informed
graphs for robust, nuanced, and causality-aware fMRI analyses.

1 Introduction
Functional magnetic resonance imaging (fMRI) has significantly advanced our
understanding of brain function by non-invasively measuring blood oxygen level-
dependent signals (BOLD), thus capturing dynamic aspects of neural activity.
However, many existing analyses continue to rely on static, undirected pair-
wise correlations between regions of interest (ROIs), overlooking the directional
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and causal nature of neural interactions [7]. This omission limits our ability
to determine how brain regions causally influence each other and restricts our
understanding of the underlying mechanisms of neural communication.

Recent advances in effective connectivity emphasize modeling how activity
causally propagates between brain regions, rather than merely identifying co-
activation patterns [1, 2]. Granger causality (GC) is a well-established technique
for estimating effective connectivity that provides a robust statistical framework
to infer directed influences from time-series data, offering deeper insights into
the flow and directionality of neural interactions than correlation-based methods
[3–5]. In recent years, Graph Neural Networks (GNNs) have attracted broad in-
terest for modeling graph-structured interactions between brain regions. Several
pioneering methods have been developed for cognition assessment and neural
disorder detection [6–8]. However, to the best of our knowledge, most existing
neuroimaging applications of GNNs are built on correlation-based brain connec-
tivity, which overlooks the causal directionality inherent in brain activity.

In this work, we propose a novel framework that integrates Granger-causal
directed graphs with Graph Convolutional Networks (GCNs) to rigorously model
effective connectivity in fMRI data. We validate our approach on the Adolescent
Brain Cognitive Development Study (ABCD) and the Philadelphia Neurodevel-
opmental Cohort (PNC) datasets, which are large neurodevelopmental cohorts
well-suited for studying how functional networks evolve over development. Our
approach centers on four insights. First, while correlation-based connectivity
captures co-activation patterns, it overlooks the causal directionality essential
for understanding how neural signal propagate. We address this by construct-
ing directed adjacency matrices via Granger causality, capturing asymmetrical
information flow across brain regions. Second, we systematically tune Granger
parameters (e.g., lag order) using the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC), ensuring both statistical validity and scal-
ability to large fMRI datasets. Third, integrating these Granger-causal graphs
enables GCNs to explicitly model directed causal influences in brain networks,
leveraging both local and global connectivity patterns for more accurate clin-
ical outcome prediction. Finally, our Granger-causality-informed GCN directly
models directed, causal influences, offering a complementary perspective to tra-
ditional correlation-based methods. Comprehensive validation shows that incor-
porating causality-guided connections delivers robust, competitive performance
across diverse clinical tasks, while revealing deeper insights into neural informa-
tion flow. Overall, our contributions bridge the gap between statistical causal in-
ference and graph-based deep learning, addressing limitations of static functional
connectivity analysis and paving the way for a new generation of causality-aware
fMRI studies.

2 Problem Formulation
This study aims to perform downstream prediction using resting-state fMRI
(rs-fMRI) data by modeling the brain as a network of interacting regions. To
enhance predictive accuracy and interpretability, we incorporate directionality
and causal inference into graph-based connectivity representations [12].
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Using rs-fMRI data from multiple cohorts, BOLD signals are recorded across
N Regions of Interest (ROIs) over T time steps. For a given subject m, the
data is represented as a matrix X(m) ∈ RN×T , where x

(m)
i,t denotes the BOLD

intensity at ROI i and time step t. Each subject is associated with a label y(m),
which may correspond to a continuous cognitive score or a categorical behavioral
classification, depending on the prediction task. The objective is to construct
graph-based connectivity representations from X(m) and use them to predict
ŷ(m) while capturing causal relationships within brain networks to improve the
understanding of functional brain organization and its connection to cognition
and behavior.

3 Method
In this section, we first introduce two existing fMRI-based brain analysis paradigms:
MLP-Based approaches and graph-based models utilizing undirected functional
connectivity. We then present the proposed method based on Granger causal-
ity, which can capture directional interactions between brain regions, providing
insights into causal relationships and temporal dependencies that are not de-
tectable in undirected correlation-based networks.

Multilayer Perceptron-Based Methods
A baseline approach to fMRI-based prediction is to apply a Multilayer Percep-
tron (MLP) directly to the BOLD signals, treating the data as a high-dimensional
input. Instead of explicitly modeling connectivity between brain regions, this
method learns feature representations through fully connected layers.

For a given subject m, the fMRI data X(m) ∈ RN×T is flattened into a feature
vector z(m) ∈ RN ·T , which serves as the input to an MLP:

ŷ(m) = fθ(z
(m)),

where fθ represents the MLP model with learnable parameters θ. The MLP
consists of multiple fully connected layers, each followed by a non-linear activa-
tion function.

Graph-Based Models
For each subject m, the node feature matrix X(m) ∈ RN×T is derived from
time-series BOLD signals, where N represents the number of ROIs and T rep-
resents the number of time steps. Each row of X(m) encapsulates the temporal
activity of an ROI. Adjacency matrices encode ROI relationships in two forms.
Undirected graphs represent functional connectivity based on Pearson correla-
tion coefficients, producing symmetric adjacency matrices C(m) ∈ RN×N . Di-
rected graphs capture effective connectivity using Granger causality, resulting in
directed adjacency matrices A(m) ∈ RN×N .

Undirected Graphs: Functional Connectivity. Functional connectivity be-
tween ROIs is computed using Pearson correlation coefficients. For each subject
m, the adjacency matrix C(m) is defined as:
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where µ
(m)
i and µ

(m)
j are the mean values of ROI i and ROI j time-series,

respectively. The resulting graph G(m) models symmetric relationships between
ROIs, with edge weights reflecting the strength of functional connectivity.

Directed Graphs: Effective Connectivity. Effective connectivity is cap-
tured using Granger causality [3–5]. First, each ROI time-series is segmented
into overlapping sliding windows with a specified window size W and step size
S. For each window w, the mean signal is computed as

x̄
(m)
i,w =

1

W

∑
t∈w

x
(m)
i,t

which produces a window-averaged time-series X̄(m) ∈ RN×Wwindows . Next,
for every window and each ROI pair (i, j), a Vector Autoregressive (VAR) model
of order L is fitted to predict the time-series of ROI j from its own past values
and those of ROI i, mathematically expressed as

xj(t) = αj,0 +

L∑
k=1

αj,kxj(t− k) +

L∑
k=1

βj,kxi(t− k) + ϵj(t),

where αj,0 is the intercept, αj,k and βj,k are lag coefficients, and ϵj(t) is the
error term [9]. Hypothesis testing then determines whether the coefficients βj,k

are significantly non-zero; if so, a directed edge (i → j) is added to the adjacency
matrix A(m). Finally, causal relationships detected over multiple windows are
aggregated to construct the final binary matrix:

A
(m)
ij =

{
1 if ROI i Granger-causes ROI j,
0 otherwise.

The directed graph G(m)
dir = (V, Edir) encodes causal influences, capturing the

flow of information among ROIs.
We evaluate the constructed graphs using a Graph Convolutional Network

(GCN) [7, 10]. Specifically, GCNs are applied separately to undirected C(m) and
directed A(m). In undirected GCNs, C(m) serves as the adjacency matrix for
symmetric feature propagation, while directed GCNs use A(m) to incorporate
directional dependencies. The model generates embeddings, which are evaluated
on downstream classification and regression tasks.

4 Experiments
Our experimental design is structured to address three central research ques-
tions. RQ1: Does model performance vary across different graph construction
methods? To answer this, we compare models based on flattened time-series
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data, undirected correlation graphs, and directed Granger-causal graphs. RQ2:
What parameters best optimize Granger-causal graphs? We systematically tune
hyperparameters such as window size, step size, and lag order using model se-
lection criteria (e.g., AIC and BIC) to identify the optimal configurations for
constructing directed graphs. RQ3: How do directed connectivity insights com-
plement undirected graphs? We compare the interpretability and neurobiological
insights derived from directed Granger-causal graphs with those from undirected
correlation-based graphs, focusing on their respective contributions to under-
standing brain connectivity.

4.1 Experimental Settings
Datasets. We use two large-scale neuroimaging datasets: the Adolescent Brain
Cognitive Development Study (ABCD) and the Philadelphia Neurodevelopmen-
tal Cohort (PNC).

Table 1: Summary of Datasets and Tasks
Dataset Task Atlas # Subjects # Time Steps # Nodes Response # Classes

ABCD [12] Classification HCP 360 7,901 512 360 Gender 2
ABCD [12] Regression HCP 360 4,613 1,024 360 Cognitive Score –
PNC [13] Classification Power 264 503 120 264 Gender 2

# Nodes: The number of brain Regions of Interest (ROIs) used for constructing connectivity
matrices (e.g., the HCP 360 atlas divides the brain into 360 ROIs).

ABCD Dataset. The ABCD dataset tracks 9-10-year-olds through early
adulthood with repeated MRI scans [12]. It includes 7,901 subjects, parcellated
using the HCP 360 atlas [7, 12], with a balanced gender distribution. For gender
prediction tasks, 512 time steps are used, while regression tasks predicting the
Cognition Summary Score utilize 1,024 time steps. Samples with fewer than
1,024 time steps were excluded, resulting in 4,613 samples for regression.

PNC Dataset. The PNC dataset comprises 503 subjects from the University
of Pennsylvania and Children’s Hospital of Philadelphia, also with a balanced
gender distribution [13]. Each subject provides 120 time steps of rs-fMRI data
from 264 ROIs, with preprocessing steps including motion correction, normal-
ization, and bandpass filtering [13].

Metrics. For binary gender classification, we use the Area Under the Re-
ceiver Operating Characteristic (AUC), Accuracy, and F1 Score, reflecting the
model’s ability to distinguish between classes, overall correctness, and balance
of precision and recall. The classification threshold is set at 0.5 as a standard
choice for binary classification. For cognitive score regression, Mean Squared
Error (MSE) is employed to measure the average squared difference between
predicted and actual scores.

Implementation Details. All models were optimized using Adam with a
learning rate and weight decay of 1 × 10−4 (fine-tuned as in BrainGB), with
data split 80:20 (train:test) and the training set further partitioned via k-fold
cross-validation to keep subjects exclusive to one set [7, 11]. We used binary
cross-entropy for classification, MSE for regression, training up to 100 epochs
with early stopping (patience = 10), a batch size of 16 (validation checked every
5 epochs), and mixup regularization (mixup=1). Experiments were repeated 5
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times with different seeds. We evaluated two architectures: the MLP, which
flattens time-series data and passes it through two fully connected (FC) layers
(512 and 256 units, ReLU, dropout = 0.5) with sigmoid (classification) or linear
(regression) output; and the GCNs, which utilize two graph convolution layers
(256 units, ReLU), followed by a 256-unit FC layer (dropout = 0.5) and an
output layer with sigmoid or linear activation.

Baselines We compare our proposed model with a range of baselines: (i)
MLP Approach—a time-series MLP that directly encodes BOLD data with-
out network modeling; (ii) Direction-Free Deep Learning Approaches—including
BrainNetCNN, FCNet, and BrainGB with functional connectivity (BrainGB
w/FC), which exploit correlation-based connectivity features via BrainGB’s GCN
architecture to model ROI relationships without directionality [7, 17, 18]; (iii)
Effective Connectivity Method—which estimates directed interactions using the
Noise-Diffusion Network (NDNetwork) followed by a GCN module [7, 10, 16].

4.2 Model Performance (RQ1)

Table 2: Performance Comparison Across Models and Tasks
Type Method Dataset: PNC Dataset: ABCD

AUC
↑

Acc
↑

F1
↑

AUC
↑

Acc
↑

F1
↑

MSE
↓

Time-series MLP 53.80 53.28 52.48 51.29 50.38 49.17 106.43
Direction-Free BrainNetCNN [18] 52.73 54.16 53.33 54.36 53.29 54.10 85.81

FCNet [17] 52.95 51.64 50.82 50.36 51.29 50.10 103.65
BrainGB w/FC [7, 10] 56.39 56.74 55.32 63.32 59.74 59.33 79.93

Effective Connectivity NDNetwork [10, 16] 54.46 53.58 50.95 TLE TLE TLE TLE
Directed (Ours) BrainGB w/GC [4, 5, 10, 7] 56.74 56.35 54.93 63.76 59.65 59.56 81.32

Bold values denote the best performance, underlined values the second-best. Arrows indicate the
desired direction (↑ = higher is better; ↓ = lower is better), and TLE means training exceeds 72
hours.

Graph-Based Models Outperform MLP. Table 2 shows that graph-based
models outperform the baseline MLP. By incorporating functional connectivity,
these models better capture the spatial and temporal organization of neural
systems than the MLP, which treats each feature independently.

Compatibility of Directed and Undirected Graphs. Our findings indi-
cate that incorporating directionality does not degrade performance—BrainGB
w/GC attains comparable results to the undirected BrainGB w/FC—while also
providing additional insight into causal interactions. In the next section, we
further demonstrate that the dispersed connectivity patterns revealed by the di-
rected model uncover interesting neurobiological patterns, offering complemen-
tary and plausible insights into how the connectome and brain regions interact.

4.3 Hyperparameter Study for Directed Graphs (RQ2)

The construction of directed Granger-causal graphs involves optimizing three
key hyperparameters: window size (W ), step size (S), and lag order (L) for Vec-
tor Autoregressive (VAR) models. These parameters are critical for accurately
capturing temporal dependencies and causal relationships in fMRI time-series
data.



Causal Brain Connectivity in fMRI Analysis 7

The window size (W ) defines the number of consecutive time steps in each
window, where larger values capture longer temporal dependencies. The step
size (S) determines the shift between windows; smaller values improve tem-
poral resolution by increasing overlap, while larger steps reduce computational
load but may miss finer dynamics. The lag order (L) specifies the number of
past time steps considered in the VAR model, balancing complexity and predic-
tive accuracy. Higher lag orders risk overfitting, whereas lower ones may omit
significant temporal dependencies.

To select the optimal L, we employ the Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC). AIC is calculated as AIC = 2k −
2 ln(L), where k is the number of model parameters and ln(L) is the log-likelihood
[14]. BIC applies a stricter penalty for complexity, defined as BIC = k ln(n) −
2 ln(L), where n is the number of observations [15]. The lag order minimizing
both AIC and BIC is chosen as optimal.

We conducted a grid search over combinations of W , S, and L, summarized
in Table 3.

Table 3: Grid Search Results for Granger Causality Hyperparameters
Window
Size (W )

Step Size
(S)

Lag
Order
(L)

AIC [14] BIC [15] AUC Accuracy F1

32 16 1 79.59 83.90 63.32 59.44 59.33
32 16 2 78.10 85.11 62.82 58.93 58.75
32 16 3 77.34 86.92 63.03 59.19 59.08
32 32 1 78.40 82.70 63.62 59.61 59.71
32 32 2 77.72 84.73 63.12 59.21 59.01
32 32 3 76.96 86.53 63.76 59.65 59.56

64 32 1 167.37 173.79 62.53 58.02 58.07
64 32 2 166.26 176.90 63.04 58.58 58.56
64 32 3 165.43 180.21 63.58 59.05 59.07
64 64 1 161.80 168.23 62.89 58.20 58.24
64 64 2 160.97 171.61 63.20 58.64 58.62
64 64 3 160.44 175.21 63.55 59.00 59.03

128 64 1 352.23 360.76 61.82 57.94 57.83
128 64 2 350.05 364.24 62.19 58.21 58.19
128 64 3 348.88 368.68 62.40 58.54 58.32
128 128 1 339.90 348.43 62.71 58.86 58.60
128 128 2 337.63 351.81 63.05 59.11 58.99
128 128 3 336.39 356.18 63.36 59.33 59.22

Bold values denote the best performance, underlined values the second-best.

Findings Despite the assumption that lower AIC and BIC would yield bet-
ter results, performance remained robust under various hyperparameter settings.
Table 3 shows that although (W = 32, S = 32, L = 3) achieves the lowest
AIC (76.96) and highest AUC (63.76%) and Accuracy (59.65%), (W = 32, S =
32, L = 1) attains the lowest BIC (82.70) and the highest F1 score (59.71%).
These variations underscore a trade-off when balancing AIC versus BIC, yet
both settings deliver competitive performance. More broadly, the grid search
reveals that small adjustments to window size, step size, and lag order gener-
ally yield stable outcomes, suggesting that meaningful temporal dependencies
are captured across a spectrum of configurations rather than relying solely on
minimizing AIC or BIC.
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4.4 Neurological Insights (RQ3)

Fig. 1: Plots are from the ABCD dataset using the HCP 360 atlas, with nodes reordered
into six functional network regions. Connectivity strength is rescaled to [0,1] for direct
comparison. The top row compares undirected and directed connectivity matrices and
chord plots (top 0.2% strongest connections), while the bottom row presents directed
connectivity matrices under various modeling parameters, illustrating how these choices
impact inferred connectivity.

In Figure 1, the undirected connectivity in panel a reveals discernible neuro-
logical structure, with intra-regional clustering aligned with key networks such as
the Sensorimotor (SM), Default Mode (DMN), and Visual (Vis) regions [19, 20].
In contrast, the directed connectivity in panel b emphasizes asymmetric, hierar-
chical interactions that disrupt such clustering. Thus, while undirected connec-
tivity captures reciprocal co-activation from shared inputs, directed connectivity
exposes broader, causal inter-regional influences. Moreover, because undirected
connectivity is symmetric—with each connection represented twice—the chord
plot in panel c shows roughly half as many unique edges as that from the di-
rected matrix in panel d, reinforcing that undirected approaches reflect primarily
intra-network co-activation.

The bottom row presents directed adjacency matrices (panels e–h) derived
from Granger causality analyses under various hyperparameter settings (“W32
S8 L1,” “W32 S8 L2,” “W32 S16 L1,” and “W64 S8 L1”), which modulate sparsity
and network structure. These variations offer plausible neurological insights, such
as elucidating how SM activation may precede and potentially drive changes
in other networks. However, as evidenced in Table 2, while tuning parameters
like window size, step size, and lag order can optimize model fit in terms of
lower AIC and BIC, they do not necessarily translate into enhanced predictive
performance. This highlights the complexity of interpreting effective connectivity
and underscores the need for careful calibration when inferring causal neural
dynamics.

Even in a resting state, the brain exhibits spontaneous, organized activity
that reflects its intrinsic functional architecture. For example, the sensorimotor
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cortex may remain active in a baseline readiness to process sensory inputs or
prepare motor responses. Recent studies suggest that resting-state connectivity
is not mere noise but rather reveals stable network patterns, even in the absence
of overt tasks [21]. In this view, specific activations in regions like the sensori-
motor cortex arise because they must remain functionally prepared, preserving
a baseline of interaction that can quickly adapt to external stimuli or initiate
motor actions when necessary.

5 Conclusion
This study integrates directed graph structures into brain connectivity analysis
for gender classification, addressing three key research questions.
RQ1: Graph-based models outperform MLPs by capturing complex neural inter-
actions via functional connectivity, with the directed model (BrainGB w/ GC)
delivering comparable performance to its undirected counterpart (BrainGB w/
FC) while providing additional causal insights.
RQ2: Our experiments show that the directed graph construction using Granger
causality remains stable across varying hyperparameters such as window size and
lag order.
RQ3: While undirected methods capture broad co-activation patterns, directed
graphs reveal dispersed, asymmetrical causal pathways, offering complementary
insights into inter-regional interactions.

Despite promising results, challenges remain, including the computational
demands of Granger causality at higher lag orders and the need for specialized
architectures for directed graphs. Future work should focus on more efficient
causal inference and models tailored to directed connectivity, ultimately ad-
vancing our understanding of neural information flow in cognitive and clinical
settings.

6 Acknowledgment
This research was partially supported by the US National Science Foundation
under Award Number 2319449 and Award Number 2312502.

References
1. Stephan, K.E. et al.: Analyzing effective connectivity with functional magnetic res-

onance imaging. Wiley Interdisciplinary Reviews: Cognitive Science. 1, 3, 446–459
(2010). https://doi.org/10.1002/WCS.58.

2. Chuang, K.C. et al.: Brain effective connectivity and functional connec-
tivity as markers of lifespan vascular exposures in middle-aged adults:
The Bogalusa Heart Study. Frontiers in Aging Neuroscience. 15, (2023).
https://doi.org/10.3389/fnagi.2023.1110434.

3. Granger, C.W.J.: Investigating Causal Relations by Econometric Mod-
els and Cross-Spectral Methods. Econometrica. 37, 3, 424–438 (1969).
https://doi.org/10.2307/1912791.

4. Deshpande, G. et al.: Effective connectivity during haptic percep-
tion: A study using Granger causality analysis of functional mag-
netic resonance imaging data. NeuroImage. 40, 4, 1807–1814 (2008).
https://doi.org/10.1016/J.NEUROIMAGE.2008.01.044.



10 T. Zhang et al.

5. Shojaie, A., Fox, E.B.: Granger Causality: A Review and Recent Advances.
Annual Review of Statistics and Its Application. 9, 1, 289–319 (2022).
https://doi.org/10.1146/annurev-statistics-040120-010930.

6. Li, X. et al.: BrainGNN: Interpretable Brain Graph Neural Net-
work for fMRI Analysis. Medical Image Analysis. 74, 102233 (2021).
https://doi.org/10.1016/J.MEDIA.2021.102233.

7. Cui, H. et al.: BrainGB: A Benchmark for Brain Network Analy-
sis with Graph Neural Networks (Extended Abstract). 4968–4969 (2022).
https://doi.org/10.1109/TMI.2022.3218745.

8. Kan, Xuan, et al. "Dynamic brain transformer with multi-level attention for func-
tional brain network analysis." In 2023 IEEE EMBS International Conference on
Biomedical and Health Informatics (BHI), IEEE, 2023.

9. Sims, C.A.: Macroeconomics and reality. Econometrica. 48, 1, 1–48 (1980).
https://doi.org/10.2307/1912017.

10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv:1609.02907 (2016)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization.
arXiv:1412.6980 (2014)

12. Casey, B.J. et al.: The Adolescent Brain Cognitive Development (ABCD) study:
Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience. 32,
43–54 (2018). https://doi.org/10.1016/J.DCN.2018.03.001.

13. Satterthwaite, T.D. et al.: Neuroimaging of the Philadelphia
neurodevelopmental cohort. NeuroImage. 86, 544–553 (2014).
https://doi.org/10.1016/J.NEUROIMAGE.2013.07.064.

14. Akaike, H.: Akaike’s information criterion. In: International Encyclopedia of Sta-
tistical Science, 25–25. Springer, Berlin, Heidelberg (2011)

15. Neath, A.A., Cavanaugh, J.E.: The Bayesian information criterion: background,
derivation, and applications. Wiley Interdisciplinary Reviews: Computational
Statistics 4(2), 199–203 (2012)

16. Gilson, M. et al.: Estimation of Directed Effective Connectivity from fMRI Func-
tional Connectivity Hints at Asymmetries of Cortical Connectome. PLOS Compu-
tational Biology. 12, 3, (2016). https://doi.org/10.1371/JOURNAL.PCBI.1004762.

17. Riaz, A. et al.: Fcnet: a convolutional neural network for calculating functional con-
nectivity from functional mri. Connectomics in NeuroImaging: First International
Workshop, CNI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC,
Canada, September 14, 2017, Proceedings 1. Proceedings 1, 70–78 (2017).

18. Kawahara, J. et al.: BrainNetCNN: Convolutional neural networks for brain net-
works; towards predicting neurodevelopment. NeuroImage. 146, 146, 1038–1049
(2017). https://doi.org/10.1016/J.NEUROIMAGE.2016.09.046.

19. Smallwood, J. et al.: The default mode network in cognition: a topo-
graphical perspective. Nature Reviews Neuroscience. 22, 8, 503–513 (2021).
https://doi.org/10.1038/S41583-021-00474-4.

20. Hale, T.S. et al.: Visual network asymmetry and default mode network func-
tion in ADHD: An fMRI study. Frontiers in Psychiatry. 5, 81, 81 (2014).
https://doi.org/10.3389/FPSYT.2014.00081.

21. Preti, M.G., Bolton, T.A.W., Van De Ville, D.: The dynamic functional con-
nectome: State-of-the-art and perspectives. NeuroImage. 160, 41–54 (2017).
https://doi.org/10.1016/j.neuroimage.2016.12.061.


