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ABSTRACT

Heterogeneous graphs containing multiple types of nodes and links
are widely used to model complex real-world data mining appli-
cations. Nowadays, it is common that large and informative het-
erographs are separately collected and stored by multiple data
owners. Therefore, it is natural to consider the federated learning
across distributed heterographs, where each local owner holds a
sub-heterograph that contains private nodes whose information
cannot be shared with others and whose behaviors may be biased
from the distribution of the global heterograph (the union of all
sub-heterographs). Towards this innovative yet demanded setting,
we propose two major techniques: (1) FedHG, which trains a type-
aware GCNmodel using a sample-based normalization over FedAvg
to integrate multi-types of node features, link structures, and task
labels across sub-heterographs; (2) FedHG+, which jointly trains a
type-aware missing neighbor generator with the type-aware GCN
to deal with incomplete sub-heterogeneous neighborhoods. We
theoretically analyze the effectiveness of both FedHG and FedHG+,
regarding their expressiveness in capturing heterogeneous higher-
order relations and neighborhood distributions, both extended with
generalization analysis on the federated learning setting. Empirical
results on two real-world heterograph datasets from different appli-
cations with synthesized distributed sub-heterographs demonstrate
the effectiveness and efficiency of our proposed techniques.
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1 INTRODUCTION

In the real world, heterogeneous graphs (heterographs) containing
rich types of nodes and links can well capture and abstract infor-
mation from complex applications [39], such as citation prediction
on bibliographical networks [26], patient profiling on clinical net-
works [27]) and recommender systems [2, 12, 19, 32]. Herein, we
take the healthcare system as an instance, as shown in Fig. 1. For
each hospital, it independently records its patients’ profiles that con-
tain various types of information, such as patients’ demographics,
laboratory testing data, medical treatments, and diagnosis history.
By modeling patients, symptoms, medicines, and procedures as
nodes of different types and linking every patient with his/her pre-
sented symptoms, received procedures, prescribed medicines, and
other co-diagnosed patients, the hospital holds a heterograph.

Multiple service providers in the same domain, e.g., hospitals,
often separately collect local data possibly with certain selection
biases compared to the entire global data. Similarly, in the healthcare
system example, residents in a city can visit different hospitals based
on their locations, specialties, personal preferences, and so on. Thus,
each hospital possesses a local subset of the global clinical data.
When each hospital constructs a local clinical heterograph, it can
be regarded as a heterogeneous subgraph (sub-heterograph) of the
entire heterograph constructed with all healthcare data generated in
the city. Due to privacy protection regulations and interest conflicts,
hospitals cannot directly share their sub-heterographs with others.
However, given a city-level task such as pandemic prediction, the
question arises as how to obtain a global heterographmodel without
actually putting the sub-heterographs together?

Federated learning (FL) [15] introduces a novel way of collab-
oratively learning a model across multiple data owners without

https://doi.org/XXXXXXX.XXXXXXX
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Figure 1: A toy example of the real-world clinical hetero-

graph. The medicine nodes (green) and symptom nodes

(black) are public nodes, while the patient nodes (orange)

are private nodes. Fig. 1(a) shows a global clinical hetero-

graph of the city (which cannot be directly obtained in the FL

setting), whereas Fig. 1(b) shows three sub-heterographs ob-

tained by three hospitals (A, B, C), individually.

compromising local raw data. FL has achieved remarkable progress
for traditional machine learning tasks, such as CV and NLP, espe-
cially when data are identically distributed [45]. Besides, FL also
exhibits exciting potential in resolving learning tasks on relational
data, i.e., graphs [37, 42]. However, they primarily focus on homoge-
neous graphs (homographs), which cannot handle the diversity of
node and link types. Extending the merit of [42] that studies FL over
homographs, this paper formulates and addresses two novel and
unique challenges in FL over distributed heterographs as follows.

Challenge 1: How to collaboratively learn a generalized het-

erograph mining model over distributed sub-heterographs?

For nodes in a real-world distributed heterograph system, rather
than being categorized into different types according to semantics,
they can further be grouped according to the level of privacy they
need. Specifically, we separate the heterogeneous types of nodes
into public and private ones. Public nodes are those whose identities
and features can be publicly accessed by every data owner in the
system (e.g., medicines and procedures on clinical heterographs). In
contrast, private nodes have their identities and features privately
collected and preserved by data owners (e.g., patients and admission
records in the healthcare system). Given nodes of different privacy
levels, there are three sub-challenges here: (1) How to design a
graph mining model effective at learning from a heterograph with
multiple types of nodes; (2) How to collaboratively train this model
across the distributed sub-heterographs under potential local bi-
ases; (3) How to avoid leaking private nodes’ information in the
collaboration process.

Solution 1: FedHG: Federated learning of a type-aware GCN.

For sub-challenge 1, we first propose a type-aware GCN (T-GCN),
which uses different encoders to accommodate the semantics and
features of different types of nodes, and devises different message
passing functions to capture the different types of links; then, we

theoretically justify this design by showing its ability to approxi-
mate the message passing functions of any heterogeneous higher-
order meta-paths.1 For sub-challenge 2, we propose a sample-based
normalization over FedAvg [21] to train T-GCN across distributed
heterographs in a federated learning setting, and theoretically prove
its effectiveness by showing an equivalence between model train-
ing with our framework and on the actual union of all distributed
sub-heterographs. For sub-challenge 3, we argue about the privacy
guarantee of our framework by showing that under the worst as-
sumption where a malicious local data owner can reconstruct the
features of a private node merely from the shared gradients, it still
cannot confidently reveal the existence of the node in other data
owners, due to the weight aggregation mechanism and our T-GCN’s
separate handling of features of different types of nodes. We term
this distributed sub-heterographs FL framework as FedHG.
Challenge 2: How to deal with incomplete local neighbor-

hoods during FedHG? Similar to other message-passing-based
graph learning models, T-GCN mines the heterograph through con-
volving node features based on graph structures, i.e., projecting and
aggregating neighbors’ information for nodes on the heterograph
into the embedding vector of local neighborhoods. However, the
same private nodes can have different neighbors in different local
heterographs, and such information cannot be shared across the
local data owners. For example, a patient can visit several hospitals,
where each visit of the patient can include different examinations
and diagnoses, which shall not be shared across hospitals. There-
fore, for every sub-heterograph containing the patient, it only has
a partial neighborhood of the patient compared to the complete
neighborhood he/she shall present. As a consequence, when vanilla
FedHG is applied, the system can only aggregate the knowledge
learned from incomplete local neighborhoods on sub-heterographs.
Such incompleteness degenerates the final performance.
Solution 2: FedHG+: Reconstructing local neighborhoods

along with FedHG. To assist FedHG in aggregating more general-
ized graph information across sub-heterographs, we get inspired
by the success of the missing neighbor generator (NeighGen) pro-
posed in [42], and design a type-aware version of NeighGen, i.e.,
T-NGen, whose goal is to enhance T-GCN’s local graph convo-
lution process via approximating the one executed on the global
heterograph. Specifically, T-NGen mends the heterogeneous neigh-
borhood of each node in a local sub-heterograph by generating
neighbors of similar nodes in other local sub-heterographs. We
theoretically prove that our T-NGen module can capture the local
neighborhood distributions when trained on a single heterograph,
and training it with a similar sample-based normalization technique
on top of FedAvg can allow it to approximate the neighborhood
distribution on the union of all sub-heterographs. We further argue
about the privacy guarantee of the framework with the additional
T-NGen module. We show that even if a malicious local data owner
can predict the neighbors of a private node in other data owners, it
cannot confidently know to which node these neighbors are linked
due to the protected features of private nodes in FedHG. We term
this improved framework as FedHG+.

1Meta-path is the de facto tool in heterographs [29], which has been leveraged to
model complex message passing mechanisms by various recent studies on GNNs for
heterographs [20, 34, 39, 41]
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We conduct experiments on two distributed heterograph systems
realistically synthesized with different numbers of data owners
from real-world benchmark datasets of two different application
scenarios, to empirically verify the utility of our proposed methods.
We observe that both our proposed models exceed locally trained
classifiers in all tested scenarios.

2 RELATEDWORKS

Mining heterographs. Heterographs have been widely used to
model complex real-world applications, with earlier works largely
relying on pre-definedmeta-paths for the characterization of semantic-
rich relations and distances among nodes [26, 28, 30, 40]. Recent rep-
resentation learning on heterographs started withmeta-path guided
random walks and proximity preservation [8, 9], followed by vari-
ous designs of heterogeneous graph neural networks [11, 20, 35, 46].
Despite the exterior designs of models, the underlying need for min-
ing heterographs has hardly changed– the comprehensive modeling
of complex semantics along heterogeneous meta-graphs and within
heterogeneous neighborhoods. However, to the best of our knowl-
edge, none of the existing works on heterographs have studied the
emerging setting of federated learning.

Federated learning on graphs. Recently, there has been a rapidly
increasing amount of work studying federated learning (FL) on
graphs. Assuming nodes are fully aligned across data owners, [22,
43] have studied the vertical FL setting where node features and
structures vary across local devices. In the more common setting
of horizontal FL setting, [10] proposed an open-source benchmark
system for federated GNNs, which adapts to various FL algorithms,
GNN models, and data distributions; [37] proposed a clustered FL
framework that can be applied on graphs from different domains
for graph-level classification; [33] focused on semi-supervised node
classification over distributed subgraphs– these works all tried to
address the data heterogeneity problem in homogeneous graphs,
but ignored the possibility of inter-graph links across local devices.
Some recent works [1, 3, 42] studied the distributed graph setting
under the consideration of cross-graph links, but they have only
studied it on homogeneous graphs. [36] studied FL over the bipar-
tite user-item graph for recommendation and [4] studied FL over
knowledge graphs for their completion. However, these graphs are
still different from the general heterographs with multi-types of
nodes and links as we consider in this work.

3 FL OVER HETEROGRAPHS

3.1 Problem Formulation

Notations.We denote a global heterograph as𝐻 = {𝑉 𝑝 ,𝑉 𝑠 , 𝐸, 𝜑,𝜓,

𝑋𝑝 , 𝑋𝑠 }. 𝑉 𝑝 ∪ 𝑉 𝑠 includes all nodes on 𝐻 , where each node 𝑣 is
associated with a node type 𝜑 (𝑣) and attributed with a feature
vector 𝑥𝑣 ∈ 𝑋𝑝 ∪ 𝑋𝑠 with dimension 𝑑𝜑 (𝑣) . 𝑉 𝑝 is the set of public
nodes, whereas 𝑉 𝑠 is the set of private nodes. 𝐸 denotes the set of
all links on 𝐻 . Each 𝑒 ∈ 𝐸 is associated with an edge type 𝜓 (𝑒),
which is determined by the types of nodes on its two ends. Note that
in this work, we consider heterographs without multiple types of
links between two specific types of nodes, but our methods extend
trivially beyond this constraint.

In the FL setting, we have the central server 𝑆 , and𝑀 data owners
{𝐷𝑖 |𝑖 ∈ [𝑀]} with distributed subgraphs {𝐻𝑖 |𝑖 ∈ [𝑀]}. Slightly

different from 𝐻 , we denote 𝐻𝑖 = {𝑉 𝑝 ,𝑉 𝑠
𝑖
, 𝐸𝑖 , 𝜑,𝜓, 𝑋

𝑝 , 𝑋𝑠
𝑖
} as the

sub-heterograph of 𝐻 owned by 𝐷𝑖 , for 𝑖 ∈ [𝑀]. While the global
graph 𝐻 conceptually exists, no entity is able to aggregate all sub-
heterographs to really get 𝐻 . Every data owner has a copy of the
same set of public nodes 𝑉 𝑝 with shared identities and features.
For private nodes in 𝑉 𝑠

𝑖
, the corresponding owner 𝐷𝑖 privately

preserves their identities and features 𝑋𝑠
𝑖
.

Problem setup. According to the system described above, the
global graph 𝐻 has its all nodes distributed in𝑀 sub-heterographs.
Note that we divide nodes into public nodes and private nodes
according to their privacy levels, and we have 𝑉 𝑝 ∩ 𝑉 𝑠 = ∅. For
private nodes, we have 𝑉 𝑠 =

⋃𝑀
𝑖=1𝑉

𝑠
𝑖
, but |𝑉 𝑠

𝑖
∩ 𝑉 𝑠

𝑗
| ≥ 0, for

𝑖, 𝑗 ∈ [𝑀] and 𝑖 ≠ 𝑗 . That is, one private node can appear in
multiple local heterographs, with different node features, but the
data owners are unaware of this– both the identifies and features
of private nodes in other heterographs are kept private.

We consider the downstream task of classifying private nodes
on 𝐻 , which is one of the most common tasks in a distributed
heterograph system (e.g., profiling of patients or authors). For a
set of private nodes 𝑉 𝑡 ⊂ 𝑉 𝑠 which are to be classified, each node
𝑣 ∈ 𝑉 𝑡 is labeled with 𝑦𝑣 ∈ 𝑌 , where 𝑦𝑣 is a 𝑑𝑦-dimensional one-
hot vector. For a typical message-passing-based graph learning
model, predicting a node’s label requires an ego-graph of the node
drawn from the heterograph (i.e., an ego-heterograph). Therefore,
querying a node 𝑣 ∈ 𝑉 𝑡 on graph 𝐻 is equal to querying its ego-
heterograph, which we denote as 𝐻 (𝑣), and the query distribution
on 𝐻 is D𝐻 , i.e., (𝐻 (𝑣), 𝑦𝑣) ∼ D𝐻 .

We formulate our goal of federated node classification on het-
erographs as follows.

Goal. The system exploits an FL framework to collaboratively learn
on isolated sub-heterographs, {𝐻𝑖 }𝑖∈[𝑀 ] , across 𝑀 data owners,
without sharing the information of private nodes, to obtain a global
node classifier 𝐹 . The learnable weights 𝜃 in 𝐹 are optimized on
queried ego-heterographs following the distribution of ones drawn
from the global heterograph𝐻 .We formulate the problem as finding
𝜃∗ that minimizes the risk R on 𝐻 by aggregating local risks as

𝜃∗ = arg min R(𝐹 (𝜃 |𝐻 )) = 1
𝑀

𝑀∑︁
𝑖

R𝑖 (𝐹𝑖 (𝜃 |𝐻𝑖 ))), (1)

where R𝑖 is the local empirical risk defined as
R𝑖 (𝐹𝑖 (𝜃 |𝐻𝑖 )) B E(𝐻𝑖 (𝑣),𝑦𝑣 )∼D𝐻𝑖

[ℓ (𝐹𝑖 (𝜃 ;𝐻𝑖 (𝑣)), 𝑦𝑣) ] . (2)

3.2 FedHG

To collaboratively learn a heterograph mining model across the
distributed heterograph system with proper privacy protection,
we design a type-aware GCN (T-GCN) stemming from Relational-
Graph Convolution Network (RGCN) [25] and modify the vanilla
FedAvg framework to achieve better model generalization.

RGCN is defined as an 𝐿-layer simple propagation model for
calculating the forward-passing update of a node 𝑣 on a multi-
relational graph, e.g., a knowledge graph. For 𝑙 ∈ [𝐿], the 𝑙-th layer
message passing with RGCN is as follows

ℎ𝑙𝑣 = 𝜎
©­«
∑︁
𝑟∈𝜓

∑︁
𝑢∈N𝑟 (𝑣)

𝑐𝑣,𝑟𝑊
𝑙
𝑟 ℎ

𝑙−1
𝑢 +𝑊 𝑙

0ℎ
𝑙−1
𝑣

ª®¬ , (3)

where ℎ𝑙𝑣 ∈ R𝑑𝑙 is the hidden state of node 𝑣 in the 𝑙-th layer with
𝑑𝑙 the dimension of this layer. 𝜎 (·) is the activation function,N𝑟 (𝑣)
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denotes the set of nodes in relation 𝑟 with 𝑣 . 𝑐𝑣,𝑟 is a normalization
constant.𝑊 𝑙

𝑟 and𝑊 𝑙
0 are the weight matrices for relation 𝑟 and

self-connection in the 𝑙-th layer, respectively.
Originally designed for knowledge graph completion, RGCN ig-

nores the diversity of node types, which can cause the misalignment
of the input spaces when nodes have different features. For example,
recall the clinical heterograph, where patient nodes’ features have
different semantics and dimensions from medicine nodes’ features.

To properly incorporate the node feature information into the
message-passing process, we propose a type-aware GCN (T-GCN)
on heterographs with node-type-aware convolutions.

T-GCN. As shown in Fig. 2, our T-GCN contains two components,
i.e., (1) type-aware encoders: a set of type-aware feedforward neural
networks (FNNs) to accommodate the semantics and features of var-
ious types of nodes, and (2) type-aware message-passing functions:
a set of type-aware graph convolution networks (GCNs) to model
different types of neighbors during the heterograph convolution.

For a node 𝑣 of type 𝜑 (𝑣), T-GCN first aligns its features via the
type-aware encoder as ℎ0

𝑣 =𝑊𝜑 (𝑣)𝑥𝑣, where𝑊𝜑 (𝑣) is the learnable
weights for the encoder.

For 𝑙 ∈ [𝐿], the 𝑙-th layer message passing with T-GCN for node
𝑣 is as follows

ℎ𝑙𝑣 = 𝜎
©­«

∑︁
𝑢∈N(𝑣)

𝑐N(𝑣),𝜑 (𝑢)𝑊
𝑙
𝜑 (𝑢),𝜑 (𝑣)ℎ

𝑙−1
𝑢 +𝑊 𝑙

0ℎ
𝑙−1
𝑣

ª®¬ , (4)

where N(𝑣) is 𝑣 ’s heterogeneous neighborhood, 𝑐N(𝑣),𝜑 (𝑢) is a
normalization constant for 𝑣 ’s 𝜑 (𝑢)-type neighbors within N(𝑣),
and𝑊 𝑙

𝜑 (𝑢),𝜑 (𝑣) is the learnable weights for the message passing
function on the link between 𝜑 (𝑢) and 𝜑 (𝑣) types of nodes.

We theoretically analyze the ability of T-GCN to approximate
the message passing functions of any heterogeneous higher-order
meta-paths in Theorem 3.1. Its proof follows the one of Theorem
2.1 in [18], and is provided in Appendix A.

Theorem 3.1 (Modeling Meta-paths with A Composition
of 𝑅 Functions). For a heterograph 𝐻 defined in Section 3.1 with
𝑅 types of relations, we assume there is an oracle function 𝑂̂ that
takes in a target node 𝑣 ’s meta-paths information M𝑣 ∈ R𝑑 on
𝐻 , and outputs the 𝑣 ’s ground-truth label 𝑦𝑣 ∈ R𝑑 . When M𝑣 is
absolutely continuous with respect to the Lebesgue measure, for any
given approximation error 𝜀 and 𝑅 functions {𝐹𝑟 |𝑟 ∈ [𝑅]}, there exists
a composition function 𝐶𝑜𝑚𝑝 (·|{𝐹𝑟 |𝑟 ∈ [𝑅]}) : R𝑑 → R𝑑 , which
is viewed as the gradient function of an FNN 𝑢 (·) : R𝑑 → R with
ReLU activation, of depth 𝐿 = [log2 𝑛] and width 𝑁 = 2𝐿, where
𝑛 = 𝑂 ( 1

𝜀𝑑
). For the 1-Wasserstein distance measurement𝑊1 (·, ·), we

have

EM𝑣∼𝐻 [𝑊1 (𝑂̂ (M𝑣),𝐶𝑜𝑚𝑝 (M𝑣 |{𝐹𝑟 |𝑟 ∈ [𝑅]})] < 𝜀.

Normalized FedAvg. To collaboratively learn the proposed T-
GCN across distributed sub-heterographs with proper privacy pro-
tection, we propose an FL framework with sample-based normal-
ization over FedAvg.

For a queried node 𝑣 ∈ 𝑉 𝑡 , a globally shared (𝐿 + 1)-layer T-
GCN classifier 𝐹 integrates 𝑣 and its 𝐿-hop multiple types of neigh-
borhood on graph 𝐻 to conduct prediction with learnable parame-
ters𝑊 = {𝑊𝜑 } ∪ {𝑊 𝑙

𝜑,𝜑 }𝐿𝑙=1.

With 𝐹 outputting the inference label 𝑦𝑣 = Softmax(ℎ𝐿𝑣 ) from
ℎ𝐿𝑣 computed with Eq. 4, we defined the supervised loss function
ℓ (𝑊 |·) as the cross-entropy function shown below

ℓ (𝑊 |𝐻 (𝑣), 𝑦𝑣) = − [𝑦𝑣 log𝑦𝑣 + (1 − 𝑦𝑣) log (1 − 𝑦𝑣)] . (5)

In our FL setting, sub-heterographs are independently collected
with potential selection bias. The non.i.i.d. distributions of training
data sampled from sub-heterographs (D𝐻𝑖

) can bring non-trivial
degeneration for the FL model’s performance when evaluated with
queries from the global distribution (D𝐻 ) [16]. Thus, we design
sample-based normalization over FedAvg to reweigh the contri-
bution of individual nodes to the training process based on the
number of samples in each sub-heterograph.

Specifically, we introduce a locally computed sample-based nor-
malization term into the model updating process. During each
epoch 𝑒 , every 𝐷𝑖 locally computes the normalized gradients as

∇ℓ̃ (𝑊 |𝐻𝑖 ) =
∑︁
𝑦∈𝑌

( |𝑉 𝑡
𝑖
|

|𝑉 𝑡 | ∇ℓ (𝑊 | { (𝐻𝑖 (𝑣), 𝑦) |𝑣 ∈ 𝑉 𝑒
𝑖 , 𝑦𝑣 = 𝑦 })

)
, (6)

where 𝑉 𝑒
𝑖
⊆ 𝑉 𝑡

𝑖
contains the sampled training nodes for epoch 𝑒 .

Then 𝐷𝑖 updates the model with𝑊𝑖 ←𝑊 − 𝜂∇ℓ̃ (𝑊 |𝐻𝑖 ), where
𝜂 is the learning rate, and sends 𝑊𝑖 to the central server 𝑆 . Af-
ter collecting the latest {𝑊𝑖 |𝑖 ∈ [𝑀]}, 𝑆 sets𝑊 as their average
and broadcasts𝑊 to all data owners, which finishes one round of
training on 𝐹 . After 𝑒𝑐 epochs, the entire system retrieves 𝐹 as the
outcome global classifier, which is not limited to or biased towards
the queries in any specific data owner.

We also theoretically analyze FedHG’s effectiveness in obtaining
a classifier that generalizes as the one trained on the union of all sub-
heterographs in Theorem 3.2. Its proof follows the one of Theorem
3 in [38] and is omitted due to the space limitation.

Theorem 3.2 (Generalization Boundof FedHG). For FedHGwith
𝑀 data owners communicating with the central server to retrieve
a classifier parameterized by 𝑊 = E[𝑊𝑖 ], we denote that each
data owner 𝐷𝑖 , where 𝑖 ∈ [𝑀], has an independent training set
𝑆𝑖 = {(𝐻𝑖 (𝑣), 𝑦𝑣) |𝑣 ∈ 𝑉 𝑡

𝑖
}. With denoting the optimal global weights

as𝑊 ∗, which is retrieved from training on the ego-heterographs sam-
pled from the global heterograph, and assuming the expectation of 𝑆 =

{𝑆𝑖 }𝑖∈[𝑀 ] as 𝜇 , FedHG’s generalization error, i.e., gen(𝜇; 𝐹𝑒𝑑𝐻𝐺),
is given by

−E[ 1
|𝑉𝑇 |

∑︁
𝑖∈[𝑀 ]

∑︁
𝑣∈𝑉𝑇

𝑖

𝜓 ∗−1
+

(
𝐼

(
𝑆𝑖,𝑣 ;𝑊 ∗

))
] ≤ gen(𝜇; 𝐹𝑒𝑑𝐻𝐺)

≤ E[ 1
|𝑉𝑇 |

∑︁
𝑖∈[𝑀 ]

∑︁
𝑣∈𝑉𝑇

𝑖

𝜓 ∗−1
−

(
𝐼

(
𝑆𝑖,𝑣 ;𝑊 ∗

))
],

where 𝑆𝑖,𝑣 = (𝐻𝑖 (𝑣), 𝑦𝑣) ∈ 𝑆𝑖 ;𝜓∗−1
+ ,𝜓∗−1

+ are defined in Appendix B.

Privacy discussions. Under the worst-case assumption where a
malicious local data owner (attacker) can reconstruct the original
features of a private node 𝑣 merely from the shared model weights
during FL, the attacker has no reference to map these features
to a specific private node in other sub-heterographs, because the
original features of private nodes are never shared and can be rather
different across data owners. Moreover, the normalized weight
aggregation mechanism also helps to further prevent the attacker
from inferring the membership of 𝑣 to any specific sub-heterograph.
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Figure 2: Joint training of T-NGen with T-GCN. This figure shows an example of training the joint model with a one-hop

ego-heterograph of an orange-type node 𝑎1. Within the figure, different colors denote different node types. The unnumbered

nodes are the generated neighbors outputted by T-NGen.

4 MISSING NEIGHBOR GENERATION

Private nodes appearing in multiple sub-heterographs can have
different local neighborhoods, each of which thus only has incom-
plete information. Aggregating such biased ego-heterographs can
degenerate the federated classifier’s performance for queries drawn
from the global heterograph. To obtain a generalized global classi-
fier with FedHG, we propose a novel type-aware missing neighbor
generator, T-NGen, to correct the local neighborhood distributions
of each private node by generating its potential missing neighbors.

4.1 T-NGen

Similar to the purpose of NeighGen [42], for a queried private
node drawn from a specific sub-heterograph, we design T-NGen to
generate its possible neighbors in all local sub-heterographs. Note
that T-NGen differs from NeighGen in the necessity to deal with
multiple types of neighbors under privacy concerns. By using a
properly trained T-NGen model, the local data owner can mend
the incomplete neighborhood of each private node by predicting its
missing neighbors in other data owners and adding them as virtual
neighbors. After data owners mend their incomplete local neigh-
borhoods with generated missing neighbors, they can obtain the
mended sub-heterographs with neighborhood distributions follow-
ing the ones on the global heterograph. In this way, the heterograph
convolution process on each mended sub-heterograph is similar to
the one executed on the global heterograph.

Model structure. Technically, as shown in Fig. 2, T-NGen consists
of two modules, which can be regarded as the heterogeneous ex-
tensions of NeighGen in [42], i.e., a type-aware encoder ℎ𝑒 and a
type-aware generator ℎ𝑔 as follows.

ℎ𝑒 : A T-GCN model, i.e., an (L+1)-layer T-GCN encoder, with
parameters 𝜃𝑒 . For node 𝑣 ∈ 𝑉 𝑠

𝑖
on the input graph𝐻𝑖 , ℎ𝑒 computes

node embeddings 𝑍𝑖 = {𝑧𝑣 = ℎ𝐿𝑣 ∈ R𝑑𝑧 |𝑣 ∈ 𝑉 𝑠
𝑖
} w.r.t. Eq. (4).

ℎ𝑔 : A generative model reconstructing multiple types of missing
neighbors for the input heterograph based on the node embedding
of the center node. ℎ𝑔 contains two submodules of dHGen and
fHGen, where dHGen is a type-aware linear regression model pa-
rameterized by 𝜃𝑑𝜑1,𝜑2 and fHGen is a type-aware feature generator

parameterized by 𝜃 𝑓𝜑1,𝜑2 , where𝜑1 and𝜑2 are the types of the center
node and its neighbor.

Specifically, for a queried private node 𝑣 , dHGen and fHGen re-
spectively predicts the numbers and corresponding features of its
various types of missing neighbors. Specifically, when T-NGen gen-
erates 𝑣 ’s 𝜑2 type neighbors, dHGen predicts 𝑛𝑣,𝜑2 , and fHGen gen-
erates a set of neighbor features 𝑥𝑣,𝜑2 ∈ R𝑛𝑣,𝜑2×𝑑𝜑2 .

Both dHGen and fHGen are constructed as type-aware FNNs,
while fHGen is further equipped with a Gaussian noise generator
N(0, 1) that generates 𝑑𝑧-dimensional noise vectors and a random
sampler 𝑅. For node 𝑣 ∈ 𝑉 𝑠

𝑖
, fHGen is variational, which generates

the missing neighbors’ features for 𝑣 after inserting noises into
the embedding 𝑧𝑣 for each possible missing node type 𝜑2, while
𝑅 ensures fHGen to output the features of a specific number of
𝜑2-type neighbors by sampling 𝑛𝑣,𝜑2 feature vectors from the fea-
ture generator’s output. Mathematically, to retrieve the 𝜑2-type
neighbors for a node 𝑣 of type 𝜑1, we have

𝑛𝑣,𝜑2 = 𝜎 (𝜃𝑑𝜑1,𝜑2 · 𝑧𝑣), 𝑥𝑣,𝜑2 = 𝑅
(
𝑓 (𝑣, 𝜑2), 𝑛𝑣,𝜑2

)
,

where 𝑓 (𝑣, 𝜑2) = 𝜎

(
𝜃
𝑓
𝜑1,𝜑2 · (𝑧𝑣 + N(0, 1))

)
.

(7)

Expectations for T-NGen lie in two aspects: (1) generation-wise:
generating realistic structures and feature distributions, and (2)
generalization-wise: enabling local data owners to achieve a similar
graph convolution process as the one on the global heterograph.
To satisfy the described expectations, we introduce our training
methods for T-NGen in the following.

4.2 Local training of T-NGen

To fulfill the generation-wise expectation for T-NGen, we start from
learning on a single sub-heterograph. To obtain neighborhoods’
structures and feature distributions for the supervised training
of T-NGen, we design a heterograph mending simulation based
on [42] to first locally simulate the incomplete neighborhoods by
separately impairing private and public neighborhoods. Specifically,
we first hideℎ% of the local private nodes and their links to simulate
the private neighbors that are not locally recorded. Then, for the
remaining private nodes, we randomly hide ℎ% of their links to
public nodes. We denote the set of hidden nodes as 𝑉ℎ

𝑖
⊂ 𝑉 𝑠

𝑖
, and

the set hidden links as 𝐸ℎ
𝑖
⊂ 𝐸𝑖 . We have the impaired local sub-

heterograph as 𝐻𝑖 = {𝑉 𝑝

𝑖
,𝑉 𝑠

𝑖
, 𝐸𝑖 , 𝜑,𝜓, 𝑋

𝑝 , 𝑋𝑠
𝑖
}, where𝑉 𝑠

𝑖
= 𝑉 𝑠

𝑖
\𝑉ℎ

𝑖
,

𝐸𝑖 = 𝐸𝑖 \ 𝐸ℎ𝑖 , and 𝑋
𝑠
𝑖
= 𝑋𝑠

𝑖
\ 𝑋ℎ

𝑖
.
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Accordingly, based on the local ground-truth missing nodes 𝑉ℎ
𝑖

and links 𝐸ℎ
𝑖
, the training of T-NGen on the impaired local graph

𝐻𝑖 boils down to jointly training dHGen and fHGen as follows

L𝑛 = 𝜆𝑑L𝑑 + 𝜆𝑓 L 𝑓 =
1
|𝑉 𝑠
𝑖
|

∑︁
𝑣∈𝑉̄ 𝑠

𝑖

( ∑︁
𝜑2∈𝜑

𝑐𝑣,𝜑2 (𝜆
𝑑L𝑑

𝑣,𝜑2 + 𝜆
𝑓 L 𝑓

𝑣,𝜑2 )
)
,

(8)
where 𝜆𝑑 and 𝜆𝑓 are two tunable hyper-parameters, 𝑐𝑣,𝜑2 is a

normalization term. Herein,L𝑑 forces dHGen to learn the structural
information on local 𝐻𝑖 , whereas L 𝑓 encodes realistic local node
feature distributions into fHGen. Specifically, for a 𝜑1-type node
𝑣 ∈ 𝑉 𝑠

𝑖
, the calculations of dHGen’s loss L𝑑 and fHGen’s loss L 𝑓

on 𝑣 ’s predicted 𝜑2-type missing neighbors are

L𝑑
𝑣,𝜑2 =𝐿𝑆1 (𝑛𝑣,𝜑2 − 𝑛𝑣,𝜑2 ), (9)

L 𝑓
𝑣,𝜑2 =

∑︁
𝑘∈[max(𝑛𝑣,𝜑2 ,𝑛𝑣,𝜑2 ) ]

min
𝑢∈N𝜑2

𝑖
(𝑣)∩𝑉ℎ

𝑖

( | |𝑓 (𝑣, 𝜑2) [𝑘 ] − 𝑥𝑢 | |22), (10)

where 𝐿𝑆1 is the smooth L1 loss, 𝑓 (𝑣, 𝜑2) [𝑘 ] ∈ R𝑑𝜑2 is the 𝑘-th
predicted feature in 𝑓 (𝑣, 𝜑2). N𝜑2

𝑖
(𝑣) ∩ 𝑉ℎ

𝑖
contains 𝑣 ’s 𝜑2-type

neighbors hidden into 𝑉ℎ
𝑖
. N𝜑2

𝑖
(𝑣) ∩ 𝑉ℎ

𝑖
, which can be retrieved

from𝑉ℎ
𝑖
and 𝐸ℎ

𝑖
, provides ground-truth for locally training T-NGen.

Now we theoretically analyze the ability of T-NGen in capturing
the missing neighbor distribution when trained on a local hetero-
graph in Theorem 4.1. The proof follows the one of Theorem 2.1 in
[18], and it is omitted due to the space limitation.

Theorem 4.1 (Local 𝑟 -type Neighborhood Generation). In
a heterograph 𝐻 defined in Section 3.1, for a relation 𝑟 with the
node type of the predicted end with feature dimension 𝑑 , and an
input node embedding 𝑧 ∼ 𝑍 in dimension 𝑑 , if the local 𝑟 -type
neighborhood distribution 𝑃𝑟 lies in a bounded space of R𝑑 , for an
FNN 𝑢𝑟 (·): R𝑑 → R, which satisfies the assumptions for the FNN in
Theorem 3.1, the 1-Wasserstein distance𝑊1 (𝑃𝑟 ,∇𝑢𝑟 (𝑍 )) < 𝜀 holds
for any 𝜀 > 0. ∇𝑢𝑟 (𝑍 ) is the 𝑟 -type neighborhood distribution that is
generated from the embedding space 𝑍 through the mapping ∇𝑢𝑟 (·).
4.3 FedHG+

To satisfy the second generalization expectation for T-NGen, we pro-
pose an FL framework, FedHG+, to enable data owners to securely
transfer diverse neighborhoods’ information across the system.
Intuitively, perceiving neighborhood information across entities
fosters the T-NGen’s ability to generate more diverse neighbors.

Jointly train T-NGen with T-GCN. To improve the quality of
T-NGen’s generated nodes to better accommodate the downstream
task, we embed downstream task labels into T-NGen by jointly
training it with a T-GCN classifier.

After getting the predicted missing neighbors from T-NGen, the
data owner mends the local sub-heterograph and then feeds the
mended sub-heterograph into a T-GCN classifier. The classifier
provides a supervised loss L𝑐 for the joint model, which is cal-
culated following Eq. (5) by substituting the 𝐻𝑖 with the mended
sub-heterograph 𝐻 ′

𝑖
. Combining Eq. (8) with L𝑐 , we train the joint

model by minimizing the following objective function
L𝑛 = 𝜆𝑑L𝑑 + 𝜆𝑓 L 𝑓 + 𝜆𝑐L𝑐 , (11)

where 𝜆𝑐 is an additional hyper-parameter.

Federated learning of the joint model.We introduce FedHG+
as the federated training process for the joint model of T-NGen
and T-GCN. It is worth noting that in consideration of enhancing
a T-NGen’s capability in transferring features learned from the
system to a local sub-heterograph, so as to serve the downstream
task better, in the FL process, each data owner separately updates
its exclusive T-NGen model. Without loss of generality, we use 𝐷𝑖

as an example to describe the FedHG+ process.
FedSage+[42] provides an insight into how to federally train the

missing neighbor generator. Yet it requires data owners to send
their node embeddings and models across the system, which can
leak nodes’ information [44]. As nodes to be reconstructed with
missing neighbors in distributed heterograph system are private,
in this work, for T-NGen, we design a secure FL process that does
not require the sharing of embeddings so as to reduce the exposure
of private nodes.

Technically, there are four steps in an epoch of FedHG+. Firstly,
𝐷𝑖 sends its joint model, i.e., T-NGen𝑖 and the T-GCN classifier,
to all data owners in the system. Next, 𝐷𝑖 gets the gradient ∇L𝑛

𝑖
computed with Eq. (11). Note that the joint classifier’s gradient
∇L𝑐

𝑗
is normalized by applying Eq. (6). Simultaneously, for 𝑗 ∈

[𝑀] \ {𝑖} in parallel, data owner 𝐷 𝑗 fixes ℎ𝑒 and gets the gradient
∇L𝑛

𝑗
computed with Eq. (11), whose 𝑉 𝑠

𝑖
and 𝐻 ′

𝑖
are substituted by

𝑉 𝑠
𝑗
and 𝐻 ′

𝑗
respectively. Similarly, ∇L𝑐

𝑗
is normalized by applying

Eq. (6) on 𝐻 ′
𝑗
. Then, data owners send the gradients back to 𝐷𝑖 .

Finally, 𝐷𝑖 updates joint model’s learnable parameters with 𝜃𝑖 ←
𝜃𝑖 −

∑
𝑗 ∈[𝑀 ] 𝜆 𝑗∇L𝑛

𝑗
to retrieve the latest T-NGen𝑖 and T-GCN of

this epoch, where 𝜆 𝑗 ’s are tunable hyper-parameters.
After retrieving the federally trained T-NGen models across all

data owners, every data ownermends its respective sub-heterograph
by leveraging T-NGen on 𝑔% of its private nodes. On obtaining
mended sub-heterographs, data owners perform FedHG according
to the description in Section 3.2 and retrieve the shared generalized
T-GCN classifier. The respective generalization bound is given in
Theorem 4.2, whose proof is in Appendix C.

Theorem 4.2 (Generalization Bound of FedHG+). For the
system defined in Section 3.2, the FL process of training the joint
model for a data owner via FedHG+ requires communication among
𝑀 data owners. We denote each data owner 𝐷𝑖 (𝑖 ∈ [𝑀]) has an
independent training set retrieved from the mended graph 𝐻 ′

𝑖
as

𝑆 ′
𝑖
= {(𝐻 ′

𝑖
(𝑣), 𝑦𝑣) |𝑣 ∈ 𝑉 𝑠

𝑖
} , whereH ′

𝑖
(𝑣) is the local ego-heterograph

of node 𝑣 drawn from the mended sub-heterograph 𝐻 ′
𝑖
, and 𝑦𝑣 is

𝑣 ’s label. Similarly, we denote the training set retrieved from the
original sub-heterographs (with incomplete neighborhoods) as 𝑆𝑖 =
{(𝐻𝑖 (𝑣), 𝑦𝑣) |𝑣 ∈ 𝑉 𝑠

𝑖
}. With denoting optimal global weights as𝑊 ∗

𝑖
re-

trieved from training on the ego-heterographs sampled from the global
heterograph (with complete neighborhoods), FedHG+’s generalization

error, i.e., gen
(
E𝑆′

𝑖,𝑣
; 𝐹𝑒𝑑𝐻𝐺+

)
, is given by

−E[ 1
|𝑉 𝑠 |

∑︁
𝑖∈[𝑀 ]

∑︁
𝑣∈𝑉 𝑠

𝑖

𝜓 ∗−1
+ (𝐼 (𝑆′𝑖,𝑣 ;𝑊 ∗𝑖 )) ] ≤ gen(E𝑆′

𝑖,𝑣
; 𝐹𝑒𝑑𝐻𝐺+)

≤ E[ 1
|𝑉 𝑠 |

∑︁
𝑖∈[𝑀 ]

∑︁
𝑣∈𝑉 𝑠

𝑖

𝜓 ∗−1
− (𝐼 (𝑆′𝑖,𝑣 ;𝑊 ∗𝑖 )) ],

and we have 𝜓∗−1
− (𝐼 (𝑆 ′𝑖,𝑣 ;𝑊 ∗

𝑖
)) ≤ 𝜓∗−1

− (𝐼 (𝑆𝑖,𝑣 ;𝑊 ∗
𝑖
)), namely the

upper bound is tighter than that of Theorem 3.2.
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Privacy discussions. We consider a malicious local data owner
who can use its T-NGen model to generate the neighborhood struc-
tures and features of any private node. Yet it can only do this for its
own private nodes, because it has no access to the original features
and the incomplete neighborhoods of others’ private nodes. Due to
the weight aggregation mechanism, it is difficult for the malicious
data owner to infer a generated neighbor’s original data owner.

5 EXPERIMENTS

We conduct comprehensive experiments on two real-world hetero-
graphs constructed from benchmark datasets in two application
scenarios and compare the models toward the practical node classifi-
cation task. The further in-depth analysis illustrates the advantages
of our proposed techniques.

5.1 Experimental settings

We choose a large real-world bibliographical dataset DBLP [31]
and a widely used clinical dataset MIMIC-III [14] to simulate the
distributed heterograph system.

Author

Paper

Field of studyKeyword

Venue

(a) DBLP

Medicine Procedure

Insurance

Admission type
Patient

Admission

(b) MIMIC-III

Figure 3: Schemas of two real-world heterographs. Green

nodes are public nodes, and orange nodes are private nodes.

DBLP:We construct a heterograph of authors, papers, venues, fields
of study, and keywords fromDBLP. The schema of this bibliographic
heterograph is shown in Fig. 3(a). We construct sub-heterographs
using the venue information– we chose 𝑀 largest venues with
the most number of papers, and construct each sub-heterograph
based on all papers published in the corresponding venue. For each
public node, we use the average GloVe embedding (300-dim) [23]
of all words in its name as the node feature. For each private node,
to simulate local features, each data owner computes an average
over the node features of its all 2-hop public neighbors on the local
heterograph. We categorize authors into five classes according to
the number of their total citations in the entire dataset and use the
downstream task of citation classification, which is a common and
challenging task on the bibliographic graphs [5, 13, 24].

MIMIC-III: For MIMIC-III, we construct a heterograph of patients,
admission records, admission types, medicines, procedures, and
insurance types. The schema of this clinical heterograph is shown in
Fig. 3(b). We construct the sub-heterographs w.r.t. insurance types–
since the entire dataset only contains five insurance types, we use
𝑀 = 3, 5 for this dataset. After selecting 𝑀 insurance types, we
construct each sub-heterograph based on all admissions with the
corresponding insurance type. All public nodes are one-hot encoded.
As for private nodes, patients’ features contain their demographic
information, and features of the admission records are the lab test

Table 1: Statistics of the datasets and the synthesized dis-

tributed heterograph system with different numbers of data

owners. T is the number of node types; #C denotes the num-

ber of classes in the downstream task; 𝑀 is the simulated

number of data owners; |𝑉 𝑝 ∪𝑉 𝑠 | and |𝐸 | are the total number

of nodes and links in all data owners, respectively; |𝑉 𝑝 ∪𝑉 𝑠
𝑖
|

and |𝐸𝑖 | are the averaged number of nodes and links in each

data owner (the same nodes or links can appear in multi-

ple data owners); Δ𝐸 denotes the average number of missing

neighbors in each data owner. We further show the averaged

missing ratio of local neighbors.

Data-( |T |,#C) DBLP-(5,5) MIMIC-III-(6,5)

M 3 5 10 3 5

|𝑉 𝑝 ∪𝑉 𝑠 | 369,531 546,309 883,519 43,747 44,792
|𝐸 | 5,388,638 8501,978 13,103,128 2,332,254 2,393,110

|𝑉 𝑝 ∪𝑉 𝑠
𝑖
| 134,665 124,220 105,402 16,801 10,888

|𝐸𝑖 | 1,859,946 1803,856 1485,254 751,826 461,873
Δ𝐸𝑖 302,166 494,570 588,221 27,406 18,017

(13.98%) (21.52%) (28.37%) (3.52%) (3.75%)

results. We categorize patients into five classes according to the
average length of their staying in ICU. The downstream task is thus
to predict the severeness of the patients’ diseases, with the ICU
time as labels [6, 7].

For T-GCN model, in the DBLP dataset, we implement it with
5 layers, while in the MIMIC-III dataset, we implement it with 3
layers. For T-NGen model, we implement its ℎ𝑒 as the same T-
GCN model (5 layers for the DBLP and 3 layers for the MIMIC-III),
dHGen as a set of type-aware 3-layer FNNs, and fHGen as the
combination of a set of type-aware 3-layer FNNs and a Gaussian
random sampler. We train models on DBLP using batch size 256,
and setting training epochs to 50. In MIMIC-III, we use batch size
32, and set training epochs to 50. For both datasets, we sample 4
instances for each type of the node-pair combination at each layer.
The training-validation-testing ratio is 50%-10%-40%.

Based on our observations in hyper-parameter studies, for the
graph hiding portion ℎ and the graph generating ratio 𝑔, we set
ℎ% ∈ [20%, 80%] (varying across datasets and number of clients) and
fix 𝑔% = 20%. All loss weights 𝜆s are simply set to 1. Optimization is
done with RAdam [17] with a learning rate of 0.001. We implement
FedHG and FedHG+ in Python and execute all experiments on a
server with 8 NVIDIA GeForce GTX 1080 Ti GPUs. All code and
data are released on Github. 2

Since we are the first to study the novel yet the important set-
ting of sub-heterograph federated learning, there are no existing
baselines. We conduct a comprehensive ablation evaluation by com-
paring FedHG and FedHG+ with three natural baseline models,
i.e., 1) T-GCN𝑔𝑙𝑏 : the T-GCN model trained on the original global
heterograph without data partitioning (as an upper bound for any
FL framework without considering T-NGen), 2) T-GCN𝑠𝑖𝑛 : one T-
GCN model trained solely on each sub-heterograph, 3) T-GCN𝑠𝑖𝑛+:
the T-GCN plus T-NGen model jointly trained solely on each sub-
graph. The metric used in our experiments is the node classification

2https://github.com/zkzhangke/FedHGN

https://github.com/zkzhangke/FedHGN
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Table 2: Node classification results on two datasets with vary-

ing numbers of clients. Averaged accuracy and the corre-

sponding std are provided.

DBLP MIMIC-III

Model M=3 M=5 M=10 M=3 M=5

T-GCN𝑠𝑖𝑛 0.3336 0.3360 0.3296 0.7002 0.5782
± 0.0103 ± 0.0306 ± 0.0525 ±0.3643 ± 0.3912

T-GCN𝑠𝑖𝑛+ 0.3325 0.3432 0.3215 0.7690 0.4743
±0.0024 ± 0.0402 ± 0.0763 ± 0.313 ±0.3965

FedHG 0.3336 0.3837 0.3356 0.7401 0.6873
±0.0003 ± 0.0214 ± 0.0019 ± 0.2165 ±0.2654

FedHG+ 0.3343 0.4322 0.3673 0.8054 0.8492

± 0.0006 ± 0.0142 ± 0.0051 ± 0.0954 ±0.0565

T-GCN𝑔𝑙𝑏 0.6419 0.7680 0.7041 0.9201 0.9206
± 0.0010 ±0.0014 ± 0.0011 ± 0.0002 ± 0.0004

accuracy on the queries sampled from the testing set on the global
heterograph. For globally (or federally) trained models of T-GCN,
FedHG, and FedHG+, we report the average accuracy over five ran-
dom repetitions, while for locally trained models of T-GCN𝑠𝑖𝑛 and
T-GCN𝑠𝑖𝑛+, the scores are further averaged across𝑀 local models.
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Figure 4: Training curves of compared frameworks.

FedHG 20% 50% 80% T-GCNglb
Hiding Portion h%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Te
st

 A
cc

ur
ac

y

0.3837 0.4022 0.412 0.4322

0.768

(a) DBLP with 𝑔% = 20%.

FedHG 20% 50% 80% T-GCNglb
Hiding Portion h%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Te
st

 A
cc

ur
ac

y

0.6873 0.915 0.8492 0.7389 0.9206

(b) MIMIC-III with 𝑔% = 20%.
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(d) MIMIC-III with ℎ% = 50%.

Figure 5: Hyper-parameter studies on T-NGen.

5.2 Experimental results and analysis

Overall performance analysis. Comprehensive experimental
results shown in Table 2 empirically verify the non-trivial elevations
brought by FedHG and FedHG+ in federated node classification.

Primarily, we can observe from the results that FedHG+ improves T-
GCN𝑠𝑖𝑛 by an average of 10.22% across all settings on two datasets,
which demonstrates its superior utility in this novel and important
setting. Meanwhile, it significantly dismisses the average accuracy
drop brought by the incomplete neighborhood problem– FedHG+
narrows the absolute accuracy reduction of FedHG, when compared
with the upper-bound model T-GCN𝑔𝑙𝑏 , by at most 16.19%.

The notable gaps between a locally obtained classifier and a feder-
ally trained classifier, i.e., by comparing T-GCN𝑠𝑖𝑛 or T-GCN𝑠𝑖𝑛+with
FedHG or FedHG+, prove the benefits brought by the collaboration
across local data owners. When comparing FedHG+ with FedHG,
the considerable elevation brought by T-NGen corroborates the as-
sumed degeneration brought by incomplete neighborhoods and val-
idates the effectiveness of our innovatively designed T-NGen mod-
ule. Notably, when each sub-heterograph has a relatively larger
amount of missing neighbors (e.g., MIMIC-III with five data owners
in Table 2), FedHG+ significantly exhibits its robustness in resist-
ing the information loss compared to FedHG. It is worth pointing
out that observation of the comparatively smaller gaps between
T-GCN𝑠𝑖𝑛 and T-GCN𝑠𝑖𝑛+ indicate that our T-NGen is uniquely
crucial in the sub-heterograph FL setting.
In-depth model analysis. Take MIMIC-III with five data owners
as an example, we visualize the training loss, testing accuracy, and
training time along 40 epochs in obtaining the node classifier with
all compared frameworks in Fig. 4. From subfigures (a) and (b), we
observe that FedHG+ can consistently achieve convergence with
rapidly improved testing accuracy (larger loss value due to addi-
tional objectives but rather close performance towards T-GCN𝑔𝑙𝑏 ),
while FedHG struggles to converge with acceptable accuracy. This
again asserts our assumption on the non-negligible degeneration
that can be caused by locally incomplete neighborhoods. The locally
trained models of T-GCN𝑠𝑖𝑛 and T-GCN𝑠𝑖𝑛+ are easier to converge,
perhaps due to their less complex local heterographs, but they do
not achieve good performance after convergence, because simply
averaging multiple biased models do not lead to a good one. The
locally trained T-NGen seems to help the convergence of local T-
GCN, but it does not help improve the performance either, again
indicating the unique advantage of our model designs in the fed-
erated learning setting. Finally, regarding the training time, the
inclusion of T-NGen does not incur significantly more training
time for FedHG+ compared with FedHG. Due to the additional
communications and computations in FL, both FedHG and FedHG+
consume observably more training time compared to T-GCN𝑔𝑙𝑏 ,
but the overhead is tolerable given their unique benefit in avoiding
direct data sharing or centralizing.
Hyper-parameter studies. We compare the downstream task
performance under different hiding portions ℎ% and generating
ratio 𝑔% with on two datasets both with the five data owner setting.
Results are shown in Fig. 5, where Fig. 5(a) and 5(b) show results
when 𝑔% is fixed, and Fig. 5(c) and 5(b) show results with ℎ% fixed.

Bothℎ% and𝑔% affect the local neighborhood completion process.
As observed from Fig. 5(a) and 5(b), choosing a proper ℎ%, which
controls the learning of neighborhood distribution through the local
neighborhood incompleteness simulation, can constantly elevate
the final testing accuracy. Notably, when ℎ% is set to a value close
to the actual amount of missing neighbors (c.f. Table 1 last row),
the model obtained from FedHG+ achieves the best performance.
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As the hyper-parameter determines the number of nodes to be
mended to local sub-heterographs, 𝑔% is crucial in controlling the
model expressiveness and computation overhead trade-off for a
local data owner. Referring to Fig. 5(c) and 5(d), we can observe
that choosing a relatively small 𝑔% can assist local data owners in
achieving satisfying downstream task performance without overly
extending the local sub-heterographs’ sizes.

6 CONCLUSION

In this work, we consider the innovative yet demanded setting of
federated learning across distributed heterographs. We propose
FedHG to apply FL across distributed heterographs without com-
promising the information of private nodes, and design FedHG+ to
overcome the local neighborhood incompleteness problem. Empiri-
cal results and theoretical analysis corroborate the effectiveness of
our proposed techniques. Important future directions might include
the experimental analysis of more different datasets, communica-
tion compression techniques to reduce FL overhead, and further
rigorous analysis on privacy and model robustness.
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A. PROOF FOR THEOREM 3.1

Theorem 3.1 (Modeling Meta-paths with A Composition
of 𝑅 Functions). For a heterograph 𝐻 defined in Section 3.1 with
𝑅 types of relations, we assume there is an oracle function 𝑂̂ that
takes in a target node 𝑣 ’s meta-paths information M𝑣 ∈ R𝑑 on
𝐻 , and outputs the 𝑣 ’s ground-truth label 𝑦𝑣 ∈ R𝑑 . When M𝑣 is
absolutely continuous with respect to the Lebesgue measure, for any
given approximation error 𝜀 and 𝑅 functions {𝐹𝑟 |𝑟 ∈ [𝑅]}, there exists
a composition function 𝐶𝑜𝑚𝑝 (·|{𝐹𝑟 |𝑟 ∈ [𝑅]}) : R𝑑 → R𝑑 , which
is viewed as the gradient function of an FNN 𝑢 (·) : R𝑑 → R with
ReLU activation, of depth 𝐿 = [log2 𝑛] and width 𝑁 = 2𝐿, where
𝑛 = 𝑂 ( 1

𝜀𝑑
). For the 1-Wasserstein distance measurement𝑊1 (·, ·), we

have EM𝑣∼𝐻 [𝑊1 (𝑂̂ (M𝑣),𝐶𝑜𝑚𝑝 (M𝑣 | {𝐹𝑟 |𝑟 ∈ [𝑅 ] }) ] < 𝜀.

Proof Theorem 3.1 can be obtained by properly revising Theorem
2.1 in [18], which we state as follows.

Lemma .1 (Theorem 2.1 in [18]). Let 𝑃 and 𝑄 be the target and
the source distributions respectively, both defined on R𝑑 . Assume that
E𝑥∼𝑃 | |𝑥 | |3 is bounded and 𝑄 is absolutely continuous with respect to
the Lebesgue measure. It holds that for any given approximation error
𝜀, setting 𝑛 = 𝑂 ( 1

𝜀𝑑
), there is a fully connected and feed-forward deep

neural network 𝑢 (·) of depth 𝐿 = [log2 𝑛] and width 𝑁 = 2𝐿, with
𝑑 inputs and a single output and with ReLU activation such that for
1-Wasserstein distance measurement,𝑊1 (𝑃,∇𝑢 (𝑄)) < 𝜀 holds. Here,
∇𝑢 (·) is the function R𝑑 → R𝑑 induced by the gradient of 𝑢 while
∇𝑢 (𝑄) is the distribution that is generated from the distribution 𝑄

through the mapping ∇𝑢 (·).
With setting 𝑃 = 𝑂̂ (M𝑣) and 𝑄 = M𝑣 , where M𝑣 is abso-

lutely continuous with respect to the Lebesgue measure. Obviously,
𝑂̂ (M𝑣), as a set of label vectors, is absolute a bounded 3-order
moment. Thus, by setting the 𝐶𝑜𝑚𝑝 (·|{𝐹𝑟 |𝑟 ∈ [𝑅]}) : R𝑑 → R𝑑 as
the gradient function of the feed-forward deep neural network 𝑢 (·)
in Lemma A.1, Theorem 3.1 is proved.

For a better empirical performance, our case adopts 𝑅 type-aware
FNNs for the 𝑅 𝐹𝑟 functions in Theorem 3.1 and composes these
FNNs by T-GCN. We argue that the design of T-GCN can approxi-
mate any higher-order meta-paths’ message passing functions.

B. DEFINITION OF𝜓 IN THEOREM 3.2

Definition B.1 (Revisiting the Lemma 1 in [38]). Let (𝑋,𝑌 ) ∼
𝑃𝑋𝑌 , (𝑋,𝑌 ) ∼ 𝑃𝑋𝑃𝑌 , andΛ𝑓 (𝑋,𝑌 ) (𝜆) = logE

[
e𝜆 (𝑓 (𝑋,𝑌 )−E[𝑓 (𝑋,𝑌 ) ])

]
denote the cumulative generating function of 𝑓 (𝑋,𝑌 ). For𝑏+ ∈ (0,∞],
if we can find a convex function 𝜓+ : [0, 𝑏+) → R with 𝜓+ (0) =
𝜓 ′+ (0) = 0 satisfying Λ𝑓 (𝑋,𝑌 ) (𝜆) ≤ 𝜓+ (𝜆) for 𝜆 ∈ [0, 𝑏+), then

−𝜓 ∗−1
+ (𝐼 (𝑋 ;𝑌 )) ≤ E[𝑓 (𝑋,𝑌 ) ] − E[𝑓 (𝑋,𝑌 ) ],

where𝜓∗−1
+ denotes the inverse of the Legendre dual of𝜓+.

Similarly, for 𝑏− ∈ (0,∞], if we can find a convex function 𝜓− :
[0, 𝑏−) → R with 𝜓− (0) = 𝜓 ′− (0) = 0 satisfying Λ𝑓 (𝑋,𝑌 ) (𝜆) ≤
𝜓− (−𝜆) for 𝜆 ∈ (−𝑏−, 0], then

E[𝑓 (𝑋,𝑌 ) ] − E[𝑓 (𝑋,𝑌 ) ] ≤ 𝜓 ∗−1
− (𝐼 (𝑋 ;𝑌 )) .

C. PROOF FOR THEOREM 4.2

Theorem 4.2 (Generalization Bound of FedHG+). For the
system defined in Section 3.2, the FL process of training the joint
model for a data owner via FedHG+ requires the communication
among 𝑀 data owners. We denote each data owner 𝐷𝑖 (𝑖 ∈ [𝑀])

has an independent training set retrieved from the mended graph
𝐻 ′
𝑖
as 𝑆 ′

𝑖
= {(𝐻 ′

𝑖
(𝑣), 𝑦𝑣) |𝑣 ∈ 𝑉 𝑠

𝑖
} , where H ′

𝑖
(𝑣) is the local ego-

heterograph of node 𝑣 drawn from the mended sub-heterograph 𝐻 ′
𝑖
,

and 𝑦𝑣 is 𝑣 ’s label. Similarly, we denote the training set retrieved from
the original sub-heterographs (with incomplete neighborhoods) as
𝑆𝑖 = {(𝐻𝑖 (𝑣), 𝑦𝑣) |𝑣 ∈ 𝑉 𝑠

𝑖
}. With denoting optimal global weights as

𝑊 ∗
𝑖
retrieved from training on the ego-heterographs sampled from

the global heterograph (with complete neighborhoods), FedHG+’s

generalization error, i.e., gen
(
E𝑆′

𝑖,𝑣
; 𝐹𝑒𝑑𝐻𝐺+

)
, is given by

−E[ 1
|𝑉 𝑠 |

∑︁
𝑖∈[𝑀 ]

∑︁
𝑣∈𝑉 𝑠

𝑖

𝜓 ∗−1
+

(
𝐼

(
𝑆′𝑖,𝑣 ;𝑊 ∗𝑖

))
] ≤ gen

(
E𝑆′

𝑖,𝑣
; 𝐹𝑒𝑑𝐻𝐺+

)
≤ E[ 1

|𝑉 𝑠 |
∑︁

𝑖∈[𝑀 ]

∑︁
𝑣∈𝑉 𝑠

𝑖

𝜓 ∗−1
−

(
𝐼

(
𝑆′𝑖,𝑣 ;𝑊 ∗𝑖

))
],

and we have𝜓∗−1
−

(
𝐼

(
𝑆 ′
𝑖,𝑣

;𝑊 ∗
𝑖

))
≤ 𝜓∗−1
−

(
𝐼

(
𝑆𝑖,𝑣 ;𝑊 ∗

𝑖

))
, namely the

upper bound is tighter than that of Theorem 3.2.

Proof We first need to justify that FedHG+ is an instance of the
described FL process in Theorem 3 of [38]. FedHG+ that sets the
number of users as𝑀 , chooses all𝑀 users at each round of training,
fixes the non-negative loss function as the loss defined in Eq. (11),
and instantiates the fusion function as a sample-based normalized
FedAvg, is obviously an instance of FL defined in [38].

Therefore, with respectively substituting the general FL frame-
work to FedHG in Theorem 3 of [38], we have the generalization
bound for FedHG+ in Theorem 4.2 proved.

Next, we prove the tighter upper bound of FedHG+, when com-
pared to FedHG. We first denote the training set containing the
same training nodes while retrieved from the global heterograph
(with complete neighbors) as 𝑆+

𝑖
= {(𝐻+

𝑖
(𝑣), 𝑦𝑣) |𝑣 ∈ 𝑉 𝑠

𝑖
}. And

then we denote all training data retrieved from the global complete
heterograph as 𝑆+ = {𝑆+

𝑖
}𝑖∈[𝑀 ] .

Given the sampling probability of a node 𝑣 ∈ 𝑉 𝑠
𝑖
in a local sub-

heterograph 𝐻𝑖 as 𝑃 (𝑆𝑖,𝑣), we have 𝑃 (𝑆𝑖,𝑣) = 𝑃 (𝑆 ′
𝑖,𝑣
) = 𝑃 (𝑆+

𝑖,𝑣
).

Then we have the mutual information (MI) between 𝑃 (𝑆𝑖,𝑣) and
the generalized model’s weights as𝑊 ∗ as 𝐼 (𝑃 (𝑆𝑖,𝑣),𝑊 ∗). By denot-
ing the joint distribution of 𝑆𝑖,𝑣 and𝑊 ∗ as 𝑃 (𝑆𝑖,𝑣,𝑊 ∗), we have
𝐼 (𝑃 (𝑆𝑖,𝑣,𝑊 ∗) ∝ 𝑃 (𝑆𝑖,𝑣,𝑊 ∗) log 𝑃 (𝑆𝑖,𝑣,𝑊 ∗).

As𝑊 ∗ is obtained by𝑊 ∗ ← arg min𝑊 ℓ (·; 𝑆+), we have 𝐼 (𝑃 (𝑆+
𝑖,𝑣
,

𝑊 ∗) ≥ 𝐼 (𝑃 (𝑆𝑖,𝑣,𝑊 ∗) . By mending the original impaired sub-heter-
ograph with generated neighbors during FedHG+, similarly, we
have 𝐼 (𝑃 (𝑆 ′

𝑖,𝑣
,𝑊 ∗) ≥ 𝐼 (𝑃 (𝑆𝑖,𝑣,𝑊 ∗) .

Referring to the Definition E.1 that𝜓∗−1
− is defined as the inverse

of the Legendre dual of a convex function𝜓−. With𝜓− : [0, 𝑏−) →
R having𝜓− (0) = 𝜓 ′− (0) = 0 and satisfying Λ𝑓 (𝑋,𝑌 ) (𝜆) ≤ 𝜓− (−𝜆)
for 𝜆 ∈ (−𝑏−, 0], we have𝜓∗−1

−
(
𝐼

(
𝑆 ′
𝑖,𝑣

;𝑊 ∗
𝑖

))
≤ 𝜓∗−1
−

(
𝐼

(
𝑆𝑖,𝑣 ;𝑊 ∗

𝑖

))
.

Denoting 𝐼
(
𝑆𝑖,𝑣 ;𝑊 ∗

𝑖

)
= I and 𝐼

(
𝑆 ′
𝑖,𝑣

;𝑊 ∗
𝑖

)
= I′ we have

E[ 1
|𝑉 𝑠 |

∑︁
𝑖∈[𝑀 ]

∑︁
𝑣∈𝑉 𝑠

𝑖

𝜓 ∗−1
− (I) ] ≤ E[

1
|𝑉 𝑠 |

∑︁
𝑖∈[𝑀 ]

∑︁
𝑣∈𝑉 𝑠

𝑖

𝜓 ∗−1
− (I′) ] .

Hence we conclude our proof.
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