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ABSTRACT
The data generated in many real-world applications can be mod-
eled as heterogeneous graphs of multi-typed entities (nodes) and
relations (links). Nowadays, such data are commonly generated
and stored by distributed clients, making direct, centralized model
training unpractical. While the data in each client are prone to
local bias distributions, generalizable global models are still in fre-
quent need for large-scale applications. However, the large number
of clients enforce significant computational overhead due to the
communication and synchronization among the clients, whereas
the biased local data distributions indicate that not all clients and
parameters should be computed and updated at all times. Motivated
by specifically designed preliminary studies on training a state-of-
the-art heterogeneous graph neural network (HGN) with the vanilla
FedAvg framework, in this work, we propose to leverage the charac-
teristics of heterogeneous graphs by designing dynamic activation
strategies for the clients and parameters during the federated train-
ing of HGN, named FedDA. The effectiveness and efficiency of our
proposed techniques are backed by both theoretical and empirical
analysis– We mathematically illustrate its efficiency gain; mean-
while, we demonstrate the significant performance gains of FedDA
and corroborate its efficiency gains with extensive experiments
over multiple realistic FL settings synthesized based on real-world
heterogeneous graphs.
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Figure 1: Toy example of a real-world clinical heterograph.

1 INTRODUCTION
Heterogeneous graphs (heterographs) constructed with multiple
types of nodes and links can well record and model complex real-
world application scenarios [40], such as citation prediction on
bibliographical networks [29], patient profiling on healthcare net-
works [30]), emergency medical service [37] and recommender
systems [4, 12, 19, 33]. Herein, we take the healthcare system as
an example, as illustrated in Fig. 1. For each hospital, it records
the patients’ healthcare profiles independently, which contain vari-
ous types of information, such as demographics, laboratory testing
results, medical treatments, and diagnosis histories. By regarding
patients, drugs, procedures, and diseases as nodes of different types
and linking every patient with his/her prescribed drugs, operated
procedures, diagnosed diseases, and other closely interacted pa-
tients, the hospital possesses a clinical heterograph.

Within one domain, there can be numbers of service providers
(e.g., clinics). In contrast to general centralized global data, for each
data owner, the locally collected and preserved data can be prone
to selection biases. In the healthcare system example, a clinic with
the specialty in heart diseases can attract more patients with the
corresponding medical needs, whereas a clinic possessing a pres-
tigious psychology department can collect more data regarding
psychological disorders. Meanwhile, the heart disease clinic can
record more links between surgeries and patients than the psycho-
logical disease clinic. Thus, each data owner possesses a biased local
subset of the global clinical data. When each of them constructs a
local clinical heterograph, it can be regarded as a non-independent-
identically-distributed (Non-IID) heterogeneous subgraph of the
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entire global heterograph containing all potential healthcare data
generated such as in the city. Due to privacy protection regulations
and interest conflicts, clinics cannot directly share their Non-IID
heterographs with others. However, given a city-level task such as
pandemic prediction, the question arises as to how to efficiently
obtain a generalized global heterograph model without actually
putting all Non-IID heterographs of different data owners together.

Federated learning (FL) [17] was proposed to enable distributed
data owners (clients) to collaboratively learn a global model with-
out sharing local raw data. Originally designed for traditional ma-
chine learning tasks such as in Computer Vision (CV) and Natural
Language Processing (NLP), FL exhibits enormous potential in ef-
fectiveness, especially when data are IID across data owners [48].
Recently, FL also achieves remarkable progress in tackling relational
data mining tasks, i.e., for graph learning [3, 5, 9, 39, 43]. However,
they primarily focus on homogeneous graphs (homographs), which
cannot handle the diversity of node and link types.

Key Findings As the first work on FL over distributed Non-IID
heterographs, we first conduct a preliminary analysis to examine
the pivotal factors that determine the utility of the outcome graph
learningmodel. Specifically, we test the state-of-the-art heterograph
model of Simple-HGN [20] with the FedAvg protocol [22] across our
distributed system. Our empirical results surprisingly and clearly
show that there is a potential for attaining a global model with better
performance yet smaller cost not only with fewer clients involved
in each round of FedAvg but also by gathering only partial gradients
from involved clients. Notwithstanding, when we randomly reduce
the transmitted data along the FL process, the global model can
exhibit more unstable performances. Based on the observations
in our preliminary analysis, we further formulate two natural yet
unique challenges for FL over distributed heterographs.

Challenge: How to dynamically activate clients and parameters to
obtain the final generalized global model efficiently?

Solution: FedDA. Utilizing the returned information from each
clients, we design an FL process termed FedDA. Technically, FedDA
dynamically selects clients according to their returned gradients in
the previous round. In particular, clients returning gradients smaller
than the averaged values will be deactivated in the next round. We
theoretically justify the effectiveness of our client and parameter
selection approach based on previous gradients. Note that, although
FedDA is motivated by our distributed heterogeneous graph setting,
it can potentially generalize to other types of data in the Non-IID
FL setting.

Approaches
We provide two strategies to implement the dynamic activation

of clients and parameters in FedDA towards improved performance
and efficiency. To empirically verify the utility of our proposed
methods, we perform experiments on five distributed heterograph
systems realistically synthesized with different numbers of clients
over two real-world benchmark datasets of heterographs from dif-
ferent application scenarios . Experimental results indicate that
FedDA can lead to a global model with significantly improved
performance and efficiency In-depth training analysis and hyper-
parameter studies further corroborate the improved convergence,
stability, and robustness of FedDA.

2 RELATEDWORKS
2.1 Federated learning on graphs
Federated learning (FL) [18, 42] on graphs has drawn significant
attention from researchers in relevant fields. Existing works on
FL over graph data mainly consider homogeneous graphs (homo-
graphs), whose nodes and links only have a single type. In the
vertical FL setting, [23, 46] studied the scenarios where node fea-
tures and structures on distributed graphs vary across local devices.
In the more common horizontal FL setting, [9] proposed an open-
source benchmark system for federated GNNs; [39] proposed a
clustered FL framework for the graph-level task across graphs from
different domains; [3, 5, 43] studied the distributed graph setting
under the consideration of cross-graph links, but they have only
studied it on homographs.

With the consideration of multiple types of links, [38] studied
FL over the bipartite user-item graph for recommender systems,
and [6] studied FL over knowledge graphs for their completion. In
complex real-world applications, heterographs that include multi-
ple types of both nodes and links can better simulate and model
realistic networks compared to knowledge graphs [29, 40]. The su-
perior richness of information in heterographs not only creates an
emerging need of applying FL over them, but also brings in unique
challenges, such as the Non-IIDness over different types of data.

To the best of our knowledge, this is the first work towards effec-
tive FL over distributed Non-IID heterographs. Besides improving
the performance compared to basic FL, our proposed approach
further steps out to uplift the communication efficiency.

2.2 Strategic training of GNNs
Similar to traditional machine learning models, when the testing
heterograph is considered as a generic graph following the global
data distribution, training a GNN on biased (Non-IID) local hetero-
graphs degenerates its test performance [16, 44]. Several training
strategies designed for CV and NLP [14, 27, 28, 35] tasks in solving
the Non-IID problem have been transferred to graph learning tasks.

For example, inspired by cognitive science, curriculum learn-
ing [1] points out the pivotal role of training sample selection in
machine learning tasks, which is now applied in graphs as well. [36]
proposed a novel methodology for curriculum learning on graphs
that includes novel graph evaluation and selection steps. Neverthe-
less, it tackles the graph-level task (graph classification) and does
not consider the node-level and link-level tasks inside every graph.
Another aspect of tackling the label imbalance issue in the Non-IID
graph learning task is to leverage negative sampling skills [24]. [11]
focused on the recommendation task with knowledge graphs and
proposed a method to generate negative samples by leveraging a
hop mixing technique on selected neighbors.

However, all these works are restricted to the locally (central-
ized) training setting instead of the distributed setting. Existing dis-
tributed GNN algorithms can be classified into two types: "partition-
based" methods [13, 26] partition the graph into different subgraphs
by dropping the edges across subgraphs, thus enjoying low com-
munication cost but suffering from information loss. On the other
hand, "propagation-based" methods [21, 31, 34, 45, 47] do not ignore
the edges across different subgraphs with neighbor communica-
tions among subgraphs to satisfy GNN’s neighbor aggregation but
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may suffer from communication overhead. In summary, our work
considers the FL scenario over distributed graphs, which can jointly
handle the distributed setting and the privacy issue while the exist-
ing works above cannot.

3 PROBLEM FORMULATION
System We denote a global heterograph as 𝐻 = {𝑉 , 𝐸, 𝜑,𝜓, 𝑋 }.
𝑉 includes all nodes in 𝐻 , where each node 𝑣 ∈ 𝑉 is associated
with a node type 𝜑 (𝑣) and attributed with a feature vector 𝑥𝑣 ∈ 𝑋
with dimension 𝑑𝜑 (𝑣) . 𝐸 denotes the set of all links in 𝐻 . Each
𝑒 ∈ 𝐸 is associated with an edge type 𝜓 (𝑒), which is determined
by the types of nodes on its two ends. Note that in this work, we
consider heterographs without multiple types of links between two
specific types of nodes, but our methods extend trivially beyond
this constraint.

In the FL setting, we have a central server 𝑆 , and𝑀 clients D =

{𝐷𝑖 |𝑖 ∈ [𝑀]} with distributed sub-heterographsH = {𝐻𝑖 |𝑖 ∈ [𝑀]}
(here [𝑀] denotes the set of integer from 1 to𝑀). Slightly different
from 𝐻 , we denote 𝐻𝑖 = {𝑉𝑖 , 𝐸𝑖 , 𝜑,𝜓, 𝑋𝑖 } as the sub-heterograph of
𝐻 owned by𝐷𝑖 , for 𝑖 ∈ [𝑀]. While the global graph𝐻 conceptually
exists, no entity is able to aggregate all sub-heterographs to really
obtain 𝐻 .

In a distributed heterograph system, it is common to see the
non-identical distribution of edge types across local devices as data
are generated from heterogeneous applications or locations. For
example, in community clinics, diagnosing patients with lymphoma
and operating craniotomy on patients are much rarer than those
in national hospitals. Similarly, for an online music application,
songs in a certain language (e.g., Japanese) are far more likely to be
favored by users from certain locations (Asia-Pacific).

In this paper, we mainly focus on the issue of local Non-IID edge
types and formulate the problem and respective assumptions as
follows.

ProblemAccording to the system described above, the global graph
𝐻 has its all nodes and edges distributed in 𝑀 sub-heterographs.
Specifically, we have𝑉 = 𝑉1 ∪ · · · ∪𝑉𝑀 , and 𝐸 = 𝐸1 ∪ · · · ∪ 𝐸𝑀 . For
𝑖, 𝑗 ∈ [𝑀] and 𝑖 ≠ 𝑗 , the system allows overlaps, i.e., |𝑉𝑖 ∩𝑉𝑗 | ≥ 0
and |𝐸𝑖 ∩ 𝐸 𝑗 | ≥ 0.

We denote the edge type distribution for an edge set 𝐸𝑖 as the
probability P𝑖 = 𝑃 (𝜓 (𝑒) |𝑒 ∈ 𝐸𝑖 )). For any two different clients
𝐷𝑖 and 𝐷 𝑗 , we have P𝑖 ≁ P𝑗 , which we refer to as biased data
regarding Non-IID link types in distributed heterographs that we
consider in the FL setting.

We consider the downstream task of link prediction over node
pairs in𝐻 , which is one of the most common tasks on heterographs
[20]. Technically, for a pair of nodes on the heterograph, link pre-
diction infers whether there exits an edge between them. Therefore,
we formulate our goal of federated link prediction on heterographs
as follows.

Goal The system exploits an FL framework to collaboratively learn
on isolated sub-heterographs, {𝐻𝑖 }𝑖∈[𝑀 ] , across𝑀 clients, without
direct data sharing, to obtain a global link prediction model 𝐹 with
parameters indexes I. We formulate the link prediction task as a
binary classification problem. The 𝑁 learnable parameters 𝜃 in 𝐹

are optimized on queried pairs of nodes and their neighbors that

are similar to the ones drawn from the global heterograph 𝐻 , and
finally test 𝐹 on the global test data with all types of edges. We
formulate the problem as finding 𝜃∗ that minimizes the loss L on
𝐻 by aggregating local loss values as

𝜃∗ = argminL
(
𝐹 (𝜃 |𝐻 )

)
= 𝐴𝑔𝑔

(
L𝑖

(
𝐹𝑖 (𝜃 |𝐻𝑖 )

) )
, (1)

where 𝐴𝑔𝑔(·) is an aggregation function (e.g., averaging). L𝑖 is the
local empirical loss defined as
L𝑖

(
𝐹𝑖 (𝜃 |𝐻𝑖 )

)
B E𝜓 (𝑒)∼P𝑖 [ℓ (𝐹𝑖 (𝜃 ;𝐻𝑖 (𝑣), 𝐻𝑖 (𝑢)) ,𝜓 (𝑒))] ,

where 𝑒 is the link between 𝑢 and 𝑣 , 𝐻𝑖 (𝑣) is 𝑣 ’s ego-graph (𝑣 and
its neighbors) on 𝐻𝑖 , and ℓ is a task-specific loss function such as
cross-entropy for link classification.

Under basic FL frameworks (e.g., FedAvg), learning from Non-IID
data can rapidly distort the outcomemodel’s performance compared
to the one trained on IID data (drop at most 48.3% in certain CV
tasks [10]). For the complex and highly irregular heterographs, it is
an urgent demand to design an effective and efficient FL method
for the Non-IID setting. Herein, we conduct preliminary studies
on Non-IID heterographs to find out pivotal factors in FedAvg that
determine the outcome graph learning model’s utility.

4 MOTIVATING PRELIMINARY STUDIES
Here, we present intuitive preliminary studies to investigate the
problem of heterograph FL across the distributed system. Specifi-
cally, we adopt the widely used weights-sharing-based FL protocol,
FedAvg [22], with the state-of-the-art heterograph model of Simple-
HGN [20] on a small subgraph from the benchmark heterogeneous
network of DBLP [41]. We are here to observe how Simple-HGN
performs under the vanilla FedAvg framework with biased and
unbiased data in the global downstream task of link prediction.
We construct the following experiments trying to answer these
questions: Should we activate all clients when data are largely bi-
ased? Should we aggregate all parameters when the data are largely
biased? What are some potential enhancements on the traditional
FedAvg framework when applied on the distributed heterographs?

Simple-HGN [20] studied 12 recent state-of-the-art heterogeneous
graph neural networks (HGNs) and found that vanilla Graph At-
tention Networks (GAT)[32], one of the homogeneous GNNs, can
surprisingly outperform all existing HGNs. They further proposed
a simple but strong baseline by improving GAT with adaptions
to heterograph called simple-HGN, which is shown to be signifi-
cantly better than all previous models. Specifically, simple-HGN
follows the common encoder-decoder model structure to perform
link prediction. In the encoder part, they extended the original
graph attention mechanism by including edge type information
into the attention calculation utilizing different edge embeddings.
Moreover, they also extended the network structure with residual
connections between layers and L2 normalization in the final out-
put. As for the decoder module, they incorporate dot product and
DistMult as the score function, which are proved to be suitable for
different datasets. For more details of Simple-HGN, please refer to
Sec.5.1.1 and their original paper [20].

Federated Averaging (FedAvg) [22] proposed FedAvg as a FL
framework to jointly train a global model across distributed clients,
under which a server will activate clients and distribute the global
model at the beginning of each round, and each client will train a
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(a) (b) (c) (d)

Figure 2: Performance curves of FedAvg with different client activation rate (𝐶) and parameter activation rate (𝐷). Fig.2(a) and
2(c) are the results on unbiased data (IID link types) across clients, whereas Fig.2(b) and 2(d) are the results on biased data
(Non-IID link types) as discussed in Section 3. The results we show are max and min scores over five separate runs, in which
the solid lines are the best performance in each round, while the dotted lines are the worst.

model locally with the same objective function and learning rate.
The resulting global model’s weights are updated by the average
of all returned gradients. They also pointed out that the same ini-
tialization for local training can produce significant loss reduction
during training, thus it is crucial for this framework that clients
train their model with the uniformly distributed global weights
starting from the very first round.

4.1 Motivating Observations
We run Simple-HGN under the vanilla framework of FedAvg and
display the trends of model performances along communication
rounds. In Fig.2(a) and Fig.2(b), we randomly select gradients from
𝐶-fraction of clients to aggregate in each round, while in Fig.2(c) and
Fig.2(d), we randomly select gradients of 𝐷-fraction of parameters
to aggregate. We come up with the following two observations
according to the results of our preliminary studies.

Observation 1: With distributed heterographs, more clients
involved in each round does not ensure better performance.
As the results in Fig.2(a) and Fig.2(b) indicate, when we consider
the best performed models over five runs (solid lines), the 80%
and 67% clients versions both achieve comparable or even better
performance than the 100% clients version. However, as for the
worst models (dashed lines), activating less clients may end up
with much worse models, especially when edges types are Non-
IID. That is to say, decreasing the number of involved clients does
not harm the optimal performance yet introduces more instability,
which implies that we may be able to simultaneously enhance the
model performance and communication efficiency by activating
less clients as long as we can find the right group to activate.

Observation 2: When we randomly update only a part of the
parameters in FedAvg, we can still obtain a well-performed
globalmodel.Here we compare FedAvg with its partially aggregat-
ing variations. Specifically, during the aggregation process, instead
of taking the weighted average of all gradients as in FedAvg, we
only take the average of a randomly selected set of gradients with
ratio 𝐷 . As shown in Fig.2(c) and Fig.2(d), similarly to activating
part of the clients, activating less parameters may also end up with
models just as powerful (solid lines), while this random selection
also results in worse performance in the worst case (dashed lines).
Nevertheless, this also implies potential enhancement over FedAvg
by reducing the number of returned gradients. Specifically, if we
deliberately choose the set of returned gradients for each client,

we may be able to end up with a model just as powerful with less
communication cost.

Summary Observation 1 indicates that we can potentially achieve
the same or even better performance with less clients involved
for each round, while Observation 2 implies that we may be able
to gather only a part of the gradients from each clients without
harming the final global model performance. However, according
to the experimental results, there is a need to design appropriate
strategies to adaptively choose groups of clients to contribute as
well as the gradients we want to aggregate along the FL process. In
an ideal case, through leveraging smaller sets of clients and gradi-
ents in each round, such strategies can lead to great enhancement
in communication and computation efficiency, which is an essential
merit in the distributed graph learning system. In the meantime,
these strategies can potentially obtain global models with similar
or even better performance.

Can we design a proper clients and parameter selecting strat-
egy for FL to reduce the instability, benefit the data transmission
efficiency, while assist the system in achieving a satisfactory result
simultaneously?We leave the discussion of our novel FL framework
designs in the following section.

5 METHODOLOGY
As we discussed before, in our FL setting, sub-heterographs are
independently collected with potential selection bias. Based on the
observations of our preliminary studies in Section 4.1, we design a
FL framework with dynamic activation of clients and parameters
(FedDA) on top of FedAvg to alleviate the negative effect brought by
local bias and elevate the communication efficiency simultaneously.
The overall structure of FedDA is presented in Fig.3.

In this section, we first discuss the technical details of Simple-
HGN and FedAvg. Then we present the specific methods to dy-
namically activate clients and parameters during the training of FL.
Finally, we present our proposed FedDA.

5.1 Simple-HGN and FedAvg
5.1.1 Simple-HGN. As described in Sec.4, Simple-HGN (S-HGN)
is adopted from GAT with three enhancements: Learnable type-
wise edge embedding, residual connections between layers, and 𝐿2
normalization on the final output.

Learnable Edge-type Embedding At each layer 𝑙 , S-HGN adopts
a 𝑑𝑙 -dimensional embedding vector ®𝑟 𝑙

𝜓 (𝑒) in order to include the
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Figure 3: Illustrative visualization of FedDA. Best viewed in
color. The clients in dotted boxes and the parameters in white
are the deactivated ones. For each round, the server sends the
activation signals and global model to each activated client.
The activated clients update the model locally for several
epochs and return the gradients of the activated parameters
accordingly. Finally, the server gathers the returned gradients
and update the global model as well as the activation signals.

edge type information into the graph attention mechanism, where
𝜓 (𝑒) is the type of edge 𝑒 . The attention score over edge 𝑒 between
node 𝑢 and node 𝑣 is calculated as following1:

𝛼𝑢𝑣 =

exp
(
𝜎

(
®𝑎𝑇

[
𝑊 ®ℎ𝑢 | |𝑊 ®ℎ𝑣 | |𝑊𝑟 ®𝑟𝜓 (𝑒)

] ))
∑
𝑘∈N𝑢

exp
(
𝜎

(
®𝑎𝑇

[
𝑊 ®ℎ𝑢 | |𝑊 ®ℎ𝑘 | |𝑊𝑟 ®𝑟𝜓 (𝑒)

] )) , (2)

where𝑊𝑟 is a learnable matrix to transform type embeddings, and
𝜎 is LeakyReLU as the activation function.

Residual Connections S-HGN adopts pre-activation residual con-
nection for node representations across layers for link prediction
tasks. The aggregation function at layer 𝑙 is constructed as

®ℎ (𝑙)𝑣 = 𝜎

(∑︁
𝑣∈N𝑢

𝛼
(𝑙)
𝑢𝑣𝑊

(𝑙) ®ℎ (𝑙−1)𝑣 +𝑊 (𝑙)𝑟𝑒𝑠
®ℎ (𝑙−1)𝑢

)
, (3)

where 𝛼 (𝑙)𝑢𝑣 is the attention weight over edge 𝑒 between node 𝑢 and
node 𝑣 , and the activation function here is ELU [7] by default.

𝐿2 Normalization S-HGN performs 𝐿2 normalization on the final
output embeddings before presenting it to the decoder, whichmakes
the dot product of embeddings being equivalent to their cosine
similarity. The normalized embedding for node 𝑣 is calculated as
𝑜𝑣 = ®ℎ (𝐿)𝑣 /| | ®ℎ

(𝐿)
𝑣 | |, where 𝐿 is the total number of layers.

Incorporating with these three enhancements, accompanied with
the multi-head attention mechanism of vanilla GAT, S-HGN is
claimed to achieve the best performance on hetro-graphs with link
prediction task.

5.1.2 FedAvg. FedAvg[22] is a FL framework for training deep
neural networks across decentralized data from clients based on
iterative averaging. Specifically, in each round 𝑡 , the server first
broadcasts the latest global model’s parametersw(𝑡 ) to all activated
clients. Then, for each client 𝑖 , it lets w(𝑡 )

𝑖
= w(𝑡 ) and then updates

the received global model locally as following:

1We omit the superscript 𝑙 in the equation for brevity.

w(𝑡+1)
𝑖

← w(𝑡 )
𝑖
− 𝜂𝑖 · ∇L𝑖

(
w(𝑡 )
𝑖

,B𝑖
)
, ∀ 𝑖 ∈ [𝑀] (4)

where 𝜂𝑖 is the learning rate for local update on client 𝑖 and B𝑖
is the mini-batch sampled from local data on client 𝑖 . Finally, the
server aggregates the local models and takes their weighted average
as the updated global model by round 𝑡 . However, due to privacy
concerns, we assume the server doesn’t own prior knowledge of the
distribution of global and local data, thus we perform the average
without discriminative weights as

w(𝑡+1) ←
∑︁𝑀

𝑖=1
𝑝𝑖w

(𝑡+1)
𝑖

(5)

where 𝑝𝑖 is the aggregation weight and for standard FedAvg it
follows 𝑝𝑖 = 1

𝑀
, ∀ 𝑖 .

5.2 Dynamic Activation of Clients
From our Observation 1 in Section 4.1, the total number of trans-
mitted gradients can be potentially reduced by activating only a
portion of the clients. Thus, to control the client selection, the server
maintains an activation set D𝑡

𝐴
containing the clients to be acti-

vated in round 𝑡 . Here, we present a dynamic activation mechanism
for clients to deliberately choose D𝑡

𝐴
during the training process

of FedDA.
Intuitively, we want to leave out clients with rather trivial con-

tributions in each round. In other words, if most of the returned
gradients from a client are smaller than the average of all clients,
we deactivate this client in the next round. However, we cannot
obtain the contribution of a client in each round without actually
gathering it. To deal with this problem, we estimate the more effec-
tive set of clients in the next round using the returned gradients
from last round.

Furthermore, if we continuously deactivate clients and update
D𝐴 over training, the number of involved clients may be reduced
rapidly and the training will be much biased. Thus, to guarantee
enough exploration and exploitation of clients during FedDA and
prevent the global model from falling into some biased local opti-
mum, we propose two different strategies as following.

Restarting-based Herein we introduce a hyper-parameter 𝛽𝑟 ∈
(0, 1) as a threshold value controlling the number of activated
clients. Particularly, when |D (𝑡+1)

𝐴
| < 𝛽𝑟𝑀 , D (𝑡+1)

𝐴
is set to the

initial values, i.e., D (𝑡+1)
𝐴

← D In this way, after the restart pro-
cess, the server gets all clients back involved with all their latest
parameters. Therefore, it can retrieve a global monitoring of the
capability of each client regarding the current state of the global
model so as to make a more informed decision in the following
communication rounds.

Exploration-based The main idea of the exploration-based strat-
egy is to maintain a certain size of theD (𝑡 )

𝐴
with a hyper-parameter

𝛽𝑒 ∈ (0, 1). Technically, when |D (𝑡 )𝐴
| < 𝛽𝑒𝑀 , the server randomly

explores (𝛽𝑒𝑀 − |D (𝑡 )𝐴
|) clients from the deactivated clients, i.e.,

D\D (𝑡 )
𝐴

, to maintain the number of activated clients as 𝛽𝑒𝑀 . With
this approach, the server can exploit more diverse training infor-
mation from the system and alleviate the selection bias or errors
in choosing the activated clients. Note that, to make this process
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more historically consistent, we do not consider the clients that has
just been deactivated in this round to rejoin D𝐴 in the next round.

5.3 Dynamic Activation of Parameters
From our Observation 2 in Section 4.1, the number of transmitted
gradients of a single activated client can also be potentially reduced
since we can achieve a global model just as powerful by aggregating
only a part of the gradients. To achieve this, the server preserves
a request indices set I (𝑡 ) = {I (𝑡 )

𝑖
|𝑖 ∈ D𝐴}, where I (𝑡 )𝑖

= {0, 1}𝑁
indicates the required parameter indices for a client 𝑖 in round 𝑡 .
For 𝑘 ∈ [𝑁 ], I (𝑡 )

𝑖
[𝑘] = 1 means the server is requesting 𝜃 (𝑡 )

𝑖
[𝑘]

from 𝐷𝑖 in round t, and otherwise if I (𝑡 )
𝑖
[𝑘] = 0.

In fact, the contribution of a client to certain sets of the parame-
ters can be trivial due to the local training data bias. For example,
in the most extreme case, if the downstream task on a client only
perform link prediction on one single type of links, then the weights
in the decoder of S-HGN for other type of links will not be properly
trained, which means aggregating them all is equivalent to giving
the parameters in the last round a residual weight starting from the
very beginning with the random initialization. In this spirit, we de-
sign the central server to first consider the distribution of returned
gradients and come up with a threshold for each parameter. Then,
it signals the clients to only return the gradients of parameters that
are above that threshold2.

Similar to the deactivation of clients, we approximate the larger
set of gradients in the next round using the returned gradients from
last round. That is, for the returned gradient 𝑔 (𝑡 )(𝑖,𝑘) of parameter 𝑘
from client 𝑖 at round 𝑡 , if it is smaller than the average value of all
the gradients for this parameter at round 𝑡 , we ask 𝑖 not to pass the
gradient of 𝑔 in round 𝑡 + 1. Furthermore, with partially activated
parameters, we can extend the deactivation of clients discussed in
Sec.5.2 by considering the amount of contributed gradients. Thus,
we introduce a hyper-parameter 𝛼 to control the occupation rate
of the client, i.e., whether a client is sufficiently contributing to the
FL training process. For 𝑖 ∈ [𝑀], if the portion of the returned gra-
dients compared with the total number of disentangled parameters
𝑁𝑑 is less than 𝛼 , we give up this client in the next round. That is,
if
∑
𝑘∈[𝑁𝑑 ] I

(𝑡 )
𝑖

< 𝛼 · 𝑁𝑑 , D
(𝑡+1)
𝐴

= D (𝑡 )
𝐴
\ {𝐷𝑖 }.

5.4 The FedDA Algorithm
In this section, we introduce the specific algorithms of FedDA, of
which the overall pipeline is shown in Algorithm 1.

5.4.1 Deactivation of Clients and Parameters. The initialization for
D (0)

𝐴
is D, and ∀ 𝐷𝑖 ∈ D (0)𝐴

, I (0)
𝑖

is set to ones.
For the 𝑡-th round of FedDA, the server first broadcasts the cur-

rent model weights 𝜃 (𝑡 ) = {𝜃 (𝑡 ) [𝑘] |𝑘 ∈ [𝑁 ]} and I𝑡 to the clients
in D𝐴 , and then each activated client locally updates the received
model to 𝜃 (𝑡 )

𝑖
= {𝜃 (𝑡 )

𝑖
[𝑘] |𝑘 ∈ [𝑁 ]}. After collecting weights from

the activated clients, for 𝑘 ∈ [𝑁 ], the server updates each 𝜃 (𝑡 ) [𝑘]
as

𝜃 (𝑡+1) [𝑘] = 1∑
𝐷𝑖 ∈D (𝑡 )𝐴

𝐼
(𝑡 )
𝑖
[𝑘]

∑︁{
𝜃
(𝑡 )
𝑖
[𝑘] |I (𝑡 )

𝑖
[𝑘] = 1

}
. (6)

2In this work, we set that threshold to be the mean value, and leave the discussion of
other settings to future work.

Algorithm 1 𝐹𝑒𝑑𝐷𝐴.
Require: Number of total communication rounds 𝑇 , local batch
size 𝐵, number of local epochs 𝐸; indices of all the trainable
parameters [𝑁 ], indices of all the disentangled parameters [𝑁𝑑 ].

Server executes:
initialize 𝜃
for each round 𝑡 ∈ [𝑇 ] do

for client 𝑖 ∈ 𝐷 (𝑡 )
𝐴

do

𝜃
(𝑡 )
𝑖
← ClientUpdate(𝑖, 𝐼 (𝑡 )

𝑖
, 𝜃 (𝑡 ) )

end for
for parameter 𝑘 ∈ [𝑁 ] do

𝜃 (𝑡+1) [𝑘] = 1∑
𝐷𝑖 ∈D

(𝑡 )
𝐴

𝐼
(𝑡 )
𝑖
[𝑘 ]

∑ {
𝜃
(𝑡 )
𝑖
[𝑘] |I (𝑡 )

𝑖
[𝑘] = 1

}
if 𝑘 ∈ [𝑁𝑑 ] then

Deactivate 𝑘 for clients with smaller gradients
end if

end for
Deactivate clients that have less activated parameters
Reactivation(D𝐴,D (𝑡 )𝐴

,D (𝑡+1)
𝐴

)
end for

ClientUpdate(𝑖, 𝐼𝑖 , 𝜃 )
B ← (split training data on 𝐻𝑖 into batches of size 𝐵)
for each local epoch 𝑒 from 1 to 𝐸 do

for batch 𝑏 ∈ B do
𝜃 ← 𝜃 − 𝜂∇(𝜃 ;𝑏)

end for
end for
return {𝜃 (𝑡 )

𝑖
[𝑘] |I (𝑡 )

𝑖
[𝑘] = 1}

Meanwhile, based on the collected gradients, the server updates
its I (𝑡 ) to I (𝑡+1) by evaluating the relative contribution of each
involved 𝐷𝑖 in round 𝑡 . The main idea of the evaluation is that if a
client 𝐷𝑖 ’s contribution for parameters 𝜃 [𝑘] in round 𝑡 is relatively
trivial, the server will not request the 𝑘-th parameters from 𝐷𝑖

in round 𝑡 + 1. Note that the evaluation metric can be any kind
of measurements for the contributions of clients. In this work, as
discussed in Sec.5.3, we set a threshold as the mean value of all
returned gradients, and construct the updating function as follows:

I (𝑡+1)
𝑖

[𝑘] =
{
0, I (𝑡 )

𝑖
[𝑘] = 1 and 𝜃 (𝑡+1) [𝑘] > 𝜃

(𝑡 )
𝑖
[𝑘],

I (𝑡 )
𝑖
[𝑘], otherwise.

(7)

5.4.2 Reactivation of Clients and Parameters. As described in Sec.5.2
and Sec.5.3, there are two different implementation strategies for
reactivating clients and parameters in FedDA. 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 re-initializes
the process whenever there are less than 𝛽𝑟 of total clients to be
involved in the next round, and 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 randomly explores the
deactivated clients and ensures there are at least 𝛽𝑒 of total clients
being activated in each round. Complete pseudo-code for these two
strategies are given in Algorithm 2 and Algorithm 3.

5.4.3 Communication Efficiency Analysis. Here we present a math-
ematical efficiency analysis of our proposed framework FedDA.
Suppose the expectation of the portion of remaining clients after
each round is 𝑟𝑐 and the portion of deactivated parameters is 𝑟𝑝 .
According to the following analysis, with 𝑟𝑐 adn 𝑟𝑝 smaller than
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Algorithm 2 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 strategy for reactivating clients.

Reactivation(D𝐴,D (𝑡 )𝐴
,D (𝑡+1)

𝐴
)

if |D (𝑡+1)
𝐴

| < 𝛽𝑟𝑀 then

D (𝑡+1)
𝐴

← D
I (𝑡+1) ← [1]

end if
return D (𝑡+1)

𝐴
,I (𝑡+1)

Algorithm 3 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 strategy for reactivating clients.

Reactivation(D𝐴,D (𝑡 )𝐴
,D (𝑡+1)

𝐴
)

if |D𝑡
𝐴
| < 𝛽𝑒𝑀 then

sample (𝛽𝑒𝑀 − |D (𝑡 )𝐴
|) clients from D \ D (𝑡 )

𝐴
to

rejoin D (𝑡+1)
𝐴

end if
return D (𝑡+1)

𝐴
,I (𝑡+1)

1, FedDA can indeed enhance the communication efficiency as
expected.

For 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 strategy, the expectation of the amount of commu-
nicated parameters for each iteration before reinitializing can be
calculated as

E[#𝑐𝑝] = 𝑀𝑁
1 − 𝑟𝑡0+1𝑐

1 − 𝑟𝑐
−𝑀𝑁𝑑

𝑟𝑐𝑟𝑝 − (𝑟𝑐𝑟𝑝 )𝑡0+1

1 − 𝑟𝑐𝑟𝑝
, (8)

where 𝑡0 is the number of expected rounds before restarting, which
satisfies the equation 𝑡0 ≥ 𝑙𝑜𝑔𝑟𝑐 𝛽𝑟 . Thus, the expected number of
communicated parameters comparing with vanilla FedAvg is

E[#𝑐𝑝]
𝑡0𝑀𝑁

=
1 − 𝑟𝑡0+1𝑐

1 − 𝑟𝑐
− 𝑁𝑑

𝑁

𝑟𝑐𝑟𝑝 − (𝑟𝑐𝑟𝑝 )𝑡0+1

1 − 𝑟𝑐𝑟𝑝
. (9)

Similarly, for 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 strategy, the expectation of the amount of
communicated parameters for each round starting from the second
round is

E[#𝑐𝑝] = 𝑀𝛽𝑒𝑟𝑐𝛾 (𝑁 − 𝑟𝑝𝑁𝑑 )
−𝑀𝛽𝑒𝑟𝑐 (1 − 𝛾) (𝑁 − ˆ𝑟𝑝𝑁𝑑 )
+𝑀𝑁𝛽𝑒 (1 − 𝑟𝑐 ),

(10)

where 𝛾 is the portion of clients that has been in the activated list
before the last round, and ˆ𝑟𝑝 is their expected portion of deactivated
parameters. Obviously, ˆ𝑟𝑝 ≥ 𝑟𝑝 , which means the communication
costs comparison starting from the second round can be bounded
as

E[#𝑐𝑝]
𝑡0𝑀𝑁

≤ 𝛽𝑒 − 𝛽𝑒𝑟𝑐𝑟𝑝
𝑁𝑑

𝑁
. (11)

6 EXPERIMENTS
We conduct comprehensive experiments on two real-world het-
erographs constructed from open benchmark datasets in two ap-
plication scenarios. We compare the models towards the practical
link prediction task and conduct in-depth analysis to illustrate the
advantages of our proposed techniques. To fully demonstrate the
superiority of our model, we conduct experiments to verify the
following four research questions (RQs):

• RQ1 Compared with FedAvg, does FedDA achieve better
performance in the downstream task?

• RQ2 Can the FedDA enhance communication efficiency as
expected?
• RQ3 How does FedDA converge on real data comparing
with FedAvg and global training?
• RQ4 How does the setting of hyper-parameters (such as 𝛼
and 𝛽) affect FedDA?

6.1 Experimental settings
We use two commonly studied datasets, including one used in the
original paper of S-HGN [20], to study the performance of our
proposed FedDA frameworkStatistics of the datasets are shown in
Table 1, and the schemas of these two heterographs are shown in
Fig.4. Link prediction on these datasets is common and challenging
[2, 8, 15, 25].
• Amazon is a dataset for online purchasing. Following S-
HGN, we use the subset proposed by GATNE [2], which
contains product metadata of electronics categories, with
co-viewing and co-purchasing links. The node features are
1156-dim vectors generated by the price, sales-rank, brand,
and category. The schema of this e-commerce heterograph
is shown in 4(a).
• DBLP is a citation network including nodes of authors,
venues, years and papers. We use a subgraph of the dataset
generated by HNE [41]. Specifically, phrases are extracted
by the AutoPhrase algorithm from paper texts, and their
features are the aggregation of 300-dim word embeddings
generated by word2vec on all paper texts. Author and venue
features are the aggregations of their corresponding paper
features, which are also calculated based on word embed-
dings. In this work, we consider the subgraph containing
all authors who have publications in International Con-
ference on Data Engineering, the years those authors are
active in and the phrases they study. The schema of this
bibliographic heterograph is shown in Fig. 4(b).

(a) Amazon (b) DBLP

Figure 4: Schemas of heterographs constructed fromAmazon
and DBLP data.

Table 1: Statistics of the datasets.

Dataset #Nodes #Node
Types #Edges #Edge

Types Density

Amazon 10,099 1 148,659 2 0.15%
DBLP 114,145 3 7,566,543 5 0.58%

System synthesis. The edges on the global graph of Amazon is
splited into training set (90%) and test set (10%), whereas the edges
on the global graph of DBLP is splited into training set (85%) and
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test set (15%). As for simulating the distributed system, we split
both datasets through random sampling. Specifically, every client
will first randomly select the types of edges they are specialized
with, and sample 𝑟𝑎 of them out of the global graph. Then, for
the rest of the types, they sample 𝑟𝑏 of them, which is set to be a
much smaller value than 𝑟𝑎 . In our experiments, we set 𝑟𝑎 to be
30% and 𝑟𝑏 to be 5%. Note that the biased clients only perform link
prediction with edges they are specialized with, but for global test
data, the downstream link prediction task is performed over all
types of links.

Since our proposed FedDA framework can fit any HGN model,
we just use the default structure of S-HGN, which is a three-layer
model with three-head attention weights. The learning rate is set to
0.0005.We find the best-performed hyper-parameters by grid search
which will be further discussed in Sec.6.2, and find the best 𝛽𝑟 for
𝑅𝑒𝑠𝑡𝑎𝑟𝑡 strategy to be 0.4, 𝛽𝑒 for 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 strategy to be 0.667, and 𝛼
for both strategies to be 0.5. We implement our model on top of the
code from [20] which is based on pytorch3 library. The experiments
are executed on server with 8 NVIDIA GeForce GTX 1080 Ti GPUs.
All code and data are provided in this GitHub repository with clear
instructions4.

Baselines and Evaluation MetricsWe conduct comprehensive
evaluations by comparing S-HGN under FedDA with three natu-
ral baseline frameworks, i.e., 1) Global model: S-HGN trained on
the original global heterograph without data partitioning, which is
supposed to be an upper bound for any FL framework without con-
sideration of the missing links and lack of node alignment between
clients, 2) Local model: S-HGN trained solely on each client locally
(with performance averaged), which is presented as a lower bound
without any consideration from the global view, 3) FedAvg: S-HGN
trained collaboratively across all clients under the vanilla FedAvg
framework. Following previous work, we evaluate the performance
with the metrics of ROC-AUC (Area Under the ROC Curve) and
MRR (Mean Reciprocal Rank), which are the two common met-
rics for link prediction on heterographs. As for communication
efficiency, we report the amount of total transmitted parameters
of two FL frameworks. For global training and FL frameworks, we
report the average performance over five runs, while for local mod-
els, the scores are further averaged across all models trained locally
on each client.

6.2 Experimental results and analysis
FedDA Effectiveness (RQ1):

The first thing to notice is the great gaps between locally trained
and globally trained models, which indicates the potential enhance-
ment if we can properly use the global information gathered through
FL. As it turns out, the FL trained models in the lower part of Tab.2
indeed achieve much better performances than local models, which
also proves the benefits brought by the collaboration across clients.
Furthermore, when comparing FedDA with FedAvg, FedDA con-
stantly achieves better performance. Particularly, the 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 strat-
egy tends to outperform the others on DBLP, while 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 strategy
is more effective for Amazon. Although such gaps are reduced on

3https://pytorch.org/
4https://github.com/dongzizhu/FedDA

Amazon due to the limited number of link types to perform the
prediction for Non-IID clients. Also, it is worth pointing out that
FedDA achieves these better performances with much less com-
munication rounds, activated clients and transmitted parameters,
which will be further discuss in the following RQs.

Communication Efficiency (RQ2):We compare the amount of
total transmitted gradients of FedDA with FedAvg in Tab.3. Note
that to be consistent with Tab.2 and a fair comparison for FedAvg,
we are presenting the results after 40 communication rounds for all
frameworks after which FedAvg is converged to its global optimum,
although FedDA often converges faster than FedAvg as we will
discuss in the next RQ. Even so, according to Tab.3, both imple-
mentation strategies of FedDA can reduce a significant amount
of transmitted parameters, which further proves that the dynamic
activation mechanism is working in reducing the communication
cost as expected. Note that, although we only computed the amount
of transmitted gradients as a measure of efficiency, less transmitted
gradients naturally means less computation on clients (especially
the deactivated ones) and the server.

Convergence Studies (RQ3):Take S-HGNworking on both dataset
with 16 clients as an example, we present the convergence curves in
Fig.5. Notably, 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 and 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 can both achieve better perfor-
mance with significantly less communication rounds. For instance,
FedDAwith 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 on DBLP can achieve a score over 0.537 within
20 rounds, which will take FedAvg 40 rounds. In other words, if we
limit the number of communication rounds for both frameworks,
FedDA would achieve a much better performance. Moreover, if
we take the number of necessary communication rounds into con-
sideration while calculating the transmitted costs, the efficiency
enhancement would become even more significant. For instance, if
we run FedDA with 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 strategy for only 20 rounds on DBLP
with 16 clients, we will have a model just as effective as FedAvg
with 40 rounds, saving approximately 75% transmitted parameters.
Moreover, if we consider the best and the worst performance of
these frameworks like in Sec.4, it appears that FedDA could also
enhance the minimum score comparing with FedAvg activating all
clients as shown in Fig.5(d) and Fig.5(c), which further proves the
dynamic activation strategy is working in stabilizing the FL process
as expected.

Hyper-parameter Studies (RQ4):We compare the link prediction
performance regarding the ROC-AUC curves generated by FedDA
with different 𝛼 , 𝛽𝑒 and 𝛽𝑟 . Results are shown in Fig. 6. In Fig.6(a),
we fix other parameters and study 𝛽𝑟 for 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 strategy, while
for Fig.6(b) and Fig.6(c) we present 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 strategy with different
𝛼 and 𝛽𝑒 . All the results are generated by training S-HGN on DBLP
with 16 clients.

Observed from Fig. 6(a), 𝛽𝑟 affects the final performance signifi-
cantly. Thus, choosing a proper 𝛽𝑟 , which controls the amount of
communication rounds before re-initializing, is crucial to elevate
the final testing accuracy. Furthermore, there appears to be a trade-
off between communication efficiency and final model performance.
That is, if the total number of communication rounds is fixed, then
a smaller 𝛽𝑟 will tolerate less clients being activated before reacti-
vating them all, leading to better communication efficiency while
sacrificing final performance. As for 𝛼 in Fig.6(b), it seems a too
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Table 2: Link prediction results on two datasets with varying numbers of clients. Besides averaged accuracy, we also provide the
corresponding std. FedDA 1 reactivate clients with 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 strategy, FedDA 2 reactivate clients with 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 strategy.

Framework DBLP Amazon

ROC-ACU MRR ROC-ACU MRR

𝐺𝑙𝑜𝑏𝑎𝑙 0.7750 ± 0.0087 0.9015 ± 0.0045 0.9215 ± 0.0046 0.9604 ± 0.0035
𝐿𝑜𝑐𝑎𝑙 0.4980 ± 0.0062 0.7503 ± 0.0045 0.7522 ± 0.0945 0.9066 ± 0.0496

M=4 M=8 M=16 M=8 M=16

ROC-ACU MRR ROC-ACU MRR ROC-ACU MRR ROC-ACU MRR ROC-ACU MRR

𝐹𝑒𝑑𝐴𝑣𝑔
0.5480 0.7804 0.5309 0.7792 0.5382 0.7710 0.9200 0.9661 0.9187 0.9655
± 0.0081 ± 0.0031 ± 0.0044 ± 0.0065 ± 0.0074 ± 0.0085 ± 0.0054 ± 0.0022 ± 0.0033 ± 0.0029

FedDA 1 0.5379 0.7753 0.5443 0.7807 0.5422 0.7822 0.9202 0.9666 0.9201 0.9668
± 0.0025 ± 0.0063 ± 0.0064 ± 0.0061 ± 0.0093 ± 0.0082 ± 0.0023 ± 0.0027 ± 0.0051 ± 0.0032

FedDA 2 0.5504 0.7865 0.5450 0.7807 0.5407 0.7784 0.9200 0.9660 0.9203 0.9645
± 0.0087 ± 0.0093 ± 0.0056 ± 0.0049 ± 0.0042 ± 0.0070 ± 0.0054 ± 0.0022 ± 0.0033 ± 0.0021

(a) DBLP (b) Amazon (c) DBLP (d) Amazon

Figure 5: Training curves of compared frameworks. In Fig.5(a) and Fig.5(b), the curves are average performance of five runs. In
Fig.5(c) and Fig.5(d), the solid lines are the highest score over test data in each round, while the dotted lines are the lowest score.
All curves are generated with 16 clients.

(a) 𝛽𝑟 for 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 Strategy (b) 𝛼 for 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 Strategy (c) 𝛽𝑒 for 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 Strategy

Figure 6: Training curves of FedDA with different parameters settings.

Table 3: Average total amount of transmitted gradients on
two datasets with varying numbers of clients.

Framwork DBLP Amazon

M=4 M=8 M=16 M=8 M=16

𝐹𝑒𝑑𝐴𝑣𝑔 10,400 20,800 41,600 133,40 26,680
FedDA 1 8,884 14,687 29,699 9,180 18,637
FedDA 2 6,587 14,105 30,134 8,011 17,290

small 𝛼 will lead to an unstable training process and worse per-
formance. Maybe it’s because the server tend to deactivate clients
more aggressively with larger 𝛼 , which means it will repeatedly
activate clients with all of their parameters and thus lead to better
exploration of the global information. At last, intuitively, the smaller
𝛽𝑒 , the more transmitted parameters we can save. However, in this
work, we only consider efficient models with the best performance.
Thus we regard 𝛽𝑒 = 0.667 as the best setting, since it is the most
effective model according to Fig.6(c).

7 CONCLUSION
In this work, we study the demanded yet challenging setting of
FL across distributed Non-IID heterographs. We revisit the vanilla
FedAvg protocol over heterographs and surprisingly discover that
the partial activation of clients and parameters can potentially ben-
efit the final model’s performance and communication efficiency
when the link types in sub-heterographs are Non-IID. To reduce
activated clients and parameters while addressing the instability
in performance under random activation, we design a dynamic
activation protocol FedDA, which is able to adaptively evaluate
clients and their respective parameters for their strategical selec-
tion along the global model’s FL training process. Comprehensive
empirical analyses corroborate the effectiveness of our proposed
techniques in reducing the communication cost while stabilizing
the FL process. Further studies on privacy and fairness issues on
top of FedDA, as well as its potential connection with generic FL
beyond graph data can both be interesting future directions.
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