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ABSTRACT

Recent advancements in neuroimaging techniques have sparked a growing interest in understanding the complex
interactions between anatomical regions of interest (ROIs), forming into brain networks that play a crucial role
in various clinical tasks, such as neural pattern discovery and disorder diagnosis. In recent years, graph neural
networks (GNNs) have emerged as powerful tools for analyzing network data. However, due to the complexity
of data acquisition and regulatory restrictions, brain network studies remain limited in scale and are often
confined to local institutions. These limitations greatly challenge GNN models to capture useful neural circuitry
patterns and deliver robust downstream performance. As a distributed machine learning paradigm, federated
learning (FL) provides a promising solution in addressing resource limitation and privacy concerns, by enabling
collaborative learning across local institutions (i.e., clients) without data sharing. While the data heterogeneity
issues have been extensively studied in recent FL literature, cross-institutional brain network analysis presents
unique data heterogeneity challenges, that is, the inconsistent ROI parcellation systems and varying predictive
neural circuitry patterns across local neuroimaging studies. To this end, we propose FedBrain, a GNN-based
personalized FL framework that takes into account the unique properties of brain network data. Specifically,
we present a federated atlas mapping mechanism to overcome the feature and structure heterogeneity of brain
networks arising from different ROI atlas systems, and a clustering approach guided by clinical prior knowledge to
address varying predictive neural circuitry patterns regarding different patient groups, neuroimaging modalities
and clinical outcomes. Comparing to existing FL strategies, our approach demonstrates superior and more
consistent performance, showcasing its strong potential and generalizability in cross-institutional connectome-
based brain imaging analysis.
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Extended Abstract

In recent years, neuroscience research has been focused on unraveling the complexities of the human brain and
its associations with intricate disorders such as bipolar disorder (BP) and Autism. Crucial tools in this pursuit
are neuroimaging techniques like functional magnetic resonance imaging (fMRI) and diffusion tensor imaging
(DTI), which play pivotal roles in measuring cerebral activities which could subsequently assist in the diagnosis
of various diseases.1 These techniques also facilitate the creation of brain networks, that are essentially weighted
connected graphs where nodes represent anatomical regions of interest (ROIs) and edges denote their functional
correlations or structural connections. Through the analysis of these networks, researchers gain valuable insights
into the biological structures and functions of intricate neural systems, aiding in the early detection of neurological
disorders and contributing to the advancement of fundamental neuroscience research.

Graph Neural Networks (GNNs) have garnered considerable attention for their effectiveness in analyzing
graph-structured data, showcasing impressive performance across diverse domains such as social networks, rec-
ommender systems, and gene/protein interactions.2,3 In the realm of neuroscience, GNNs find applications in
brain network analysis, tackling tasks like disease prediction and neural pattern discovery.4–13 However, deep
learning models, including GNNs, heavily rely on extensive labeled datasets to achieve robust performance. Un-
fortunately, neuroimaging studies tend to be relatively small in sample quantities due to the inherent complexity
of data acquisition, preprocessing, and annotation, resulting in notable model overfitting and limited general-
ization capabilities.14,15 Notably, datasets for BP and HIV analysis, for example, consist of only a few dozen
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subjects,16,17 posing a significant challenge for GNNs in effectively capturing crucial neural circuitry patterns
from these noisy networks. Although there are relatively larger multi-site neuroimaging studies, they still pale
in comparison to datasets in more typical machine learning domains.18

In recent times, federated learning (FL) has emerged as a highly promising solution for addressing the
challenges associated with limited training data and computational resources in local studies.19–21 FL functions
through the collaborative training of a centralized server model using data privately stored by multiple local
clients. During each communication round, the server transmits model parameters to each client to initialize
local training. Subsequently, clients learn and update their local parameters based on their privately stored data.
The server then receives and aggregates the updated local parameters in preparation for the next communication
round. This approach boasts two significant advantages. Firstly, it ensures privacy preservation, as clients
exclusively communicate model parameters, instead of data, with the server. Secondly, it facilitates knowledge
generalization through the server aggregation, effectively mitigating overfitting issues commonly associated with
learning from singular small datasets. These attributes have significantly contributed to the success of FL across
diverse fields, including healthcare applications22 and graph learning.23

A significant challenge in (FL) lies in data heterogeneity, where the data distributions remarkably vary
among local data owners. Various FL algorithms20,21 have been introduced to address this challenge. However,
these methods primarily concentrate on label distributions and often overlook the distinctive data heterogeneity
scenarios encountered in cross-institutional brain network analysis, which can manifest in two crucial aspects.
Firstly, given that network parcellation is typically a specialized process carried out by domain experts, it
becomes challenging to assume or impose a uniformity in the ROI atlas mapping systems adopted by different
institutions during the preprocessing of their raw neuroimaging signals. In particular, the atlas templates can
vary drastically in sizes, dimensions, and physical meanings of the defined ROIs. Consequently, this results in
misalignment in network structures and ROI features across clients. Secondly, different institutions would collect
brain network data for varying clinical purposes targeting at different diseases and patient groups. This leads
to institutions utilizing different neuroimaging techniques and focusing on distinct clinical outcomes, leading to
diverse underlying predictive neural circuitry patterns, such as data modalities, across studies.

To address the aforementioned challenges and effectively handle the distinctive data heterogeneities in cross-
institutional brain network analysis, we present FedBrain, a personalized FL framework tailored for GNN-based
brain network learning. Our framework is composed of three key elements: an FL backbone employing GNN-
parameterized learning models, a federated atlas mapping mechanism, and a guided client clustering mechanism.
In constructing our FL platform, we utilize the well-established FedAvg as the foundation, and our default
GNN structure is an optimized graph convolutional network (GCN) model proposed by BrainGB.4 To address
the issue of feature- and structure-level heterogeneity resulting from potentially different atlas mapping systems
employed by local institutions, we introduce an autoencoder-based atlas mapping mechanism as a data-driven pre-
processing solution which aims to achieve data and network alignment across studies. Particularly, this module
will project diverse ROI profiles onto a standardized, shared embedding space. To manage the heterogeneous
predictive neural circuitry patterns arising from various neuroimaging modalities and clinical outcomes, we devise
a knowledge-guided client clustering mechanism. This mechanism incorporates prior clinical knowledge into the
dynamic client clustering during FL training. Specifically, the clustering decision will be heavily dependent, to
a weighted extent, upon similarities in the sharable predictive neural circuitry information across local clients.

To illustrate the efficacy of FedBrain using real-world datasets sourced from diverse institutions, we per-
form comprehensive empirical evaluations, benchmarking our framework against state-of-the-art methods. The
outcomes showcase FedBrain surpassing the baseline models uniformly across all client institutions, yielding a
minimum relative gain of 21.36% in prediction accuracy. Additionally, we conduct ablation studies and specific
case studies on the proposed federated atlas mapping and guided clustering mechanisms to thoroughly compre-
hend their contributions and robustness within the framework. The results highlight that the federated atlas
mapping notably diminishes structure- and feature-level heterogeneity measures across all clients. In addition,
the pre-processing also significantly helps reduce the computational runtime in the subsequent FL training. On
the other hand, guided clustering exhibits a robust ability to dynamically identify similar groups of clients sharing
overlapping degrees of predictive neural patterns.
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APPENDIX A. THE FEDBRAIN FRAMEWORK

A.1 The FL Backbone

The FL backbone of FedBrain is structured upon the federated averaging (FedAvg) framework proposed by
McMahan et al.19 The detailed procedure is presented in Algorithm 1. In particular, in each communication
round, the server model distributes its model parameters to all clients as an initialization. The clients then
update their respective models based on local data and training objectives. The clients transmit the updated
parameters back to the server for a weighted aggregation. In the context of FedAvg, the weight for each client is
determined by the fraction of the sample size of its local data w.r.t. the universal sample size across all clients.

As a powerful graph machine learning approach, GNNs have gained wide popularity in various applications
due to its effectiveness in representing node- and graph-level information as well as connectivity structures at



Figure 1. The comprehensive workflow of FedBrain. The first step involves the initial transformation and pre-processing
of each set of local data through an atlas mapping autoencoder trained within a federated framework. Subsequently,
during the GNN training phase, local clients undergo dynamic clustering into sub-groups characterized by dedicated
server models and FL subroutines, determined by their similarities in neural patterns.

Algorithm 1 Federated Averaging (FedAvg)

Input: Number of communication rounds T , set of total available clients C ← {Ci}Ni=1, set of total available
client data D← {Di}Ni=1, learning rate η

Output: The final server model wT
G

1: Randomly initialize the server model w0
G

2: for t← 1 to T do
3: Sample a subset {Cm, Dm} of m participating clients from {C, D}
4: for each participant {Cj , Dj} ∈ {Cm, Dm} in parallel do
5: Download model parameter from server: wt

Cj
← wt−1

G

6: Update local parameter: wt∗
Cj
← wt

Cj
− η∇wt

Cj
L
(
wt

Cj
; Dj

)
7: Update the server model: wt

G ←
∑

{Cj ,Dj}∈{Cm,Dm}
|Dj |
|Dm|w

t∗
Cj

varying scales. Specifically, given a graph G, GNN learns node- (Eq. 1) and graph-level (Eq. 2) representations
under the following general formulation:

h(l+1)
p = update(l)

(
h(l)
p , aggregate(l)

(
{h(l)

q , ∀ q ∈ N (p)}
))

, (1)

hG = readout ({hv, ∀ v ∈ V}) , (2)

where h
(l)
p denotes node p’s representation at layer l, N (p) refers to the neighborhood of node p, and update

and aggregate can be learnable functions that differ among GNN variants. Graph representation hG can be
obtained by pooling from all node representations where the readout can be a permutation invariant function
such as summation or mean. With the representations, one can perform downstream tasks such as classification
using, for example, a Multi-Layer Perceptron (MLP).

FedBrain adopt an optimized GCN model, proposed by Cui et al.,4 as our default GNN architecture for
both the server and client models. Furthermore, it is worth recognizing that brain networks are distinct from
other real-world graphs due to, most prominently, that brain networks are often non-attributed, meaning that
they lack useful initial node (ROI) features. To this end, we initialize the node-level features with the connection
profiles of the brain network. That is, the feature matrix X is equivalent to the adjacency A (X ≡ A), where
A is parameterized by the node set V = {vn}Nn=1 and the weighted edge set E = V × V.

A.2 Federated Atlas Mapping

The ROI (i.e., node) system for a brain network is determined by the atlas template25,26 chosen during the
parcellation process. Once a template is selected for a particular study, all brain networks within the dataset



share the same ROI identities. However, in our cross-institutional learning setting, different institutions may
resort to different parcellation systems for varying clinical purposes. This leads to heterogeneity in both sizes and
structures of the parcellated networks, as well as divergent physical meanings of ROI features (i.e., connectivity
profiles). Although manual conversion between atlas systems is feasible, it is a labor-intensive process requiring
extensive domain expertise. Therefore, we propose a data-driven transformation, backboned by linear autoen-
coders, that aims to project the varying dimensions in brain network features and structures across institutions
onto a uniform dimension. Furthermore, we aim to align the physical interpretations of the projected features
across studies. To this end, we leverage the FL approach to train the autoencoers with the intention of obtaining
a global atlas projection. We illustrate the two components in more details in the following subsections.

Autoencoder framework. We employ a one-layer linear autoencoder (AE) to learn a dataset-specific si-
multaneous projection of ROI features and network structures. Given a target dimension M that is shared
across all datasets and an input feature X ∈ RN×N ensuring that N > M , the objective is to learn a lin-
ear transformation W ∈ RN×M , such that the mean-squared-error (MSE) reconstruction objective, denoted as
Lrec = (1/N)∥X−XWW⊤∥2, is minimized. In other words, the projected representationsX ′ = XW preserves
as much information from X. Mathematically, W can be considered as a weighted linear combination of the
column space of X. Consequently, W learns an assignment of col(X) into M groups. We exploit this concept
to condense the network structure. To reduce the computational complexity, we formulate an assignment matrix
Z ∈ RN×M such that Zi,j = 1[Wi,j ∈ arg top k (colj(W ))]. Namely, the matrix Z records the top-k greatest
entries per each column in W and zeros out the rest. Ultimately, given a graph adjacency matrix A (≡X), we
construct a compressed network A′ by evaluating A′ = Z⊤AZ.

Federated training. We use the FL framework, specifically FedAvg for ease of implementation, to jointly
train dataset-specific autoencoder models to help generalize the projection schemes into a global projection. This
approach allows for improved alignment of data semantics from diverse institutions through the application of the
global projection. However, the architectural sizes of autoencoders may differ across clients due to variations in
the original data dimensions. This discrepancy poses a challenge in communicating model parameters effectively
between local clients and the global server.

To tackle this challenge, we introduce a unified mapping method designed to resize the global model, assumed
to be the largest, to accommodate the varying dimensionality of each local dataset. Given a global projection
WG ∈ RNG×M based on the most detailed parcellation template with NG defined ROIs, and a coarser template
with NL defined ROIs (NL < NG) utilized for local data, our objective is to derive an assignment matrix PL ∈
RNL×NG , which ensures the local projection WL ∈ RNL×M is distributed through the mapping WL = PLWG.
To accomplish this, we leverage the physical 3D coordinates of the ROIs, denoted as DG ∈ RNG×3 for the global
template and DL ∈ RNL×3 for the local template. Initially, we calculate a distance matrix S ∈ RNL×NG , where
Si,j = d(rowi(DL), rowj(DG)) represents the pairwise Euclidean distance between ROIs from the two templates.
We then define PLi,j

:= 1[Si,j = argmin (colj(S))]. This implies that we only consider the minimum entry per
each column of S. Essentially, we enable PL to learn a mapping that groups ROIs in the global template into
virtual ROIs resembling the order and identities presented in the local template. During each communication
round, clients start by downloading the server’s parameter by first applying WL = PLWG. Subsequently, each
client sends their updated parameters back to the server, employing the inverse mapping W ∗

L = P⊤
L W ∗

L. Upon
completion of the federated training, each local client will proceed to download the global parameters for further
fine-tuning conducted independently over a few additional training epochs.

A.3 Guided Clustering

Another significant source of heterogeneity arises from the diversity in predictive neural circuitry patterns due to
differences in the clinical purposes that motivates the studies. In particular, the inconsistencies are manifested
in the various imaging modalities and patient outcomes characterized for each dataset. These variations can
lead to a less-than-optimal local adaptation and knowledge generalization of the global model due to the arising
phenomenon of client drifting. Hence, our goal is to find a balance between global generalization (i.e., full
federated training) and local personalization (i.e., separate self training). Fortunately, as shown in Table 1, we



observe that specific neural patterns are shared among distinct client institution subgroups. This observation
encourages us to incorporate client clustering27,28 into the FL process.

To be specific, when data distributions are similar among local clients, the average global model can optimize
all their objectives concurrently, resulting in client gradients approaching zero as they reach their local optima.
However, in instances of heterogeneity, where the global model fails to adapt to local optimizations, local models
stop improving, and their gradients become stationary.27 Consequently, there is a need for a criterion to recognize
this occurrence. Given a set of clients C = {Ci}Ni=1, their data distributions D = {Di}Ni=1, gradients Θ = {∆θi}Ni=1,
and a hyperparameter ϵ1, we define the criterion as follows:

0 ⩽

∥∥∥∥∥
N∑
i=1

|Di|
|D|

∆θi

∥∥∥∥∥ < ϵ1. (3)

Simultaneously, if the gradient norms of some clients deviate significantly from the stationary point, suggestive
of high heterogeneity, an additional criterion is necessary. For this, we introduce a second hyperparameter ϵ2,
and define the additional criterion as follows:

max (∥∆θi∥) > ϵ2 > 0. (4)

Clustering starts once both criteria are satisfied. Specifically, we employ a bottom-up hierarchical approach to
merge clients into sub-clusters and sub-clusters into larger clusters. The distances between clients are calculated
using pairwise cosine similarities of layer-wise gradient norms, while cluster distances are determined upon average
linkage. Each cluster then initiates a dedicated FL subroutine with cluster-specific server model and aggregation
procedure. Clusters may further subdivide according to the criteria evaluated at each communication round.

Constrained clustering. A fundamental concern with the aforementioned base clustering mechanism is its
disregard for shared clinical prior knowledge concerning the neural circuitry patterns of each client. Specifically,
the heterogeneity issue may persist within the formed clusters due to significantly divergent clinical patterns,
necessitating further division of clusters. This often results in the creation of singleton clusters, undermining
the collaborative learning essence. This phenomenon is illustrated in Figure 3 (refer to Appendix B.4). Based
on these observations, we propose an enhanced version of the clustering method that incorporates shared prior
knowledge to guide the clustering process. For instance, concerning data modalities, it is intuitive to group
clients with similar ROI connectivities and MRI data. Similarly, regarding clinical outcomes, federated learning
(FL) on a cluster level could benefit from learning similar objectives. To achieve this, we establish must-links
between pairs of clients that exhibit highly similar neural patterns and define cannot-links for those that do not.
We introduce a weighted reward term λmust and a penalty term λcannot, which are multiplied by the pairwise
client similarity measure when must-links and cannot-links are identified, respectively. The complete process is
detailed in Algorithm 2.

APPENDIX B. EXPERIMENTS

Datasets. We evaluate our framework using six real-world brain network datasets: BP,16 HIV,17 PPMI,29

PNC,30 ABIDE,31 and ABCD;32 of which, the BP and HIV datasets are strictly private, and the rest are
publicly accessible to authorized users. We present the key statistics for each dataset in Table 1. Among them,
BP, HIV, and PPMI contain multiple imaging modalities which we consider them to be trained on separate FL
clients. Additionally, evident inconsistencies exist in their chosen parcellation systems, leading to varied network
structures and dimensions. The sample sizes also exhibit significant variation among institutions, with the ABCD
dataset, a multisite collaborative study, containing substantially more trainable data than other studies. Based
on the available clinical outcomes, we define two potential tasks: disease prediction (i.e., patients vs. health
controls) and gender prediction, both in the form of binary classification.

To ensure the safety and privacy of the participants, all data used in this study strictly adhere to the Good
Clinical Practice guidelines and U.S. 21 CFR Part 50 (Protection of Human Subjects) and are approved by the
Institutional Review Board (IRB) with no personally identifiable information being used or disclosed.



Algorithm 2 Guided Clustering.

Input: Set of total available clients C ← {Ci}Mi=1 to consider, their respective layer-wise gradient norms Θ ←
{∆θi}Mi=1, their respective shared neural circuitry patterns Ψ ← {ψi}Mi=1, reward λmust and penalty λcannot
weight, desired number of clusters to produce r.

Output: Cluster assignments S← {s1, s2, · · · , sr}.
1: procedure Clustering(C, Θ, Ψ, λmust, λcannot, r)
2: Make every client its own cluster S← {{C1, ∆θ1, ψ1}, · · · , {CM , ∆θM , ψM}}
3: while |S| > r do ▷ Check if number of clusters is greater than r
4: for every pair of clusters (Si, Sj) in S do ▷ Such that i, j ∈ |S|, i ̸= j
5: Calculate the inter-cluster linkage distance d(Si, Sj)← Linkage(Si, Sj)
6: Find the pair with min linkage distance min(d(Si, Sj)) : i, j ∈ |S|, i ̸= j and merge

7: return S : |S| = r

8: procedure Linkage(S1, S2)
9: for every pair of clients ({Cp, ∆θp, ψp}, {Cq, ∆θq, ψq}) in (S1, S2) do ▷ p ∈ |S1|, q ∈ |S2|

10: Calculate the cosine distance cos(p, q)← 1− ((∆θp ·∆θq)/(∥∆θp∥∥∆θq∥))
11: Determine if the pair forms must- or cannot-link link(p, q)← Validate(ψp, ψq)
12: Shorten their cosine distance if must-link cos(p, q)← λmust · cos(p, q)
13: Increase their cosine distance if cannot-link cos(p, q)← λcannot · cos(p, q)
14: return Averaged distance avg(cos(p, q)) : ∀ p ∈ |S1|, ∀ q ∈ |S2|
15: procedure Validate(ψ1, ψ2) ▷ An example to determine must- or cannot-links
16: return Must-link if overlapping attributes in (ψ1, ψ2) exceeds 80%
17: return Cannot-link if overlapping attributes in (ψ1, ψ2) subceeds 20%

Table 1. Dataset summarization.

Dataset Modality Sample Size Atlas Network Size Outcome Class Number

BP fMRI, DTI 97 Brodmann 82 82 × 82 Disease 2
HIV fMRI, DTI 70 AAL 90 90 × 90 Disease 2
PPMI PICo, Hough, FSL 754 Desikan-Killiany 84 84 × 84 Disease 2
PNC fMRI 503 Power 264 264 × 264 Gender 2

ABIDE fMRI 1009 Craddock 200 200 × 200 Disease 2
ABCD fMRI 7901 HCP 360 360 × 360 Gender 2



Baselines. We begin by comparing our proposed framework with self-train, a non-FL baseline. This com-
parison aims to validate whether individual client performance can be enhanced through collaborative training.
Additionally, we benchmark FedBrain against three commonly used FL baselines: FedAvg,19 FedProx,20 and
SCAFFOLD.21 It is worth noting that the latter two baselines are specifically designed to handle generic data and
system heterogeneity, and their effectiveness in adapting to brain network learning is yet to be explored.

Default parameters. The optimized GCN33 model contains a default hidden size of 32, with ReLU activations,
and dropout layers with a probability of 80%. The graph-level representations are obtained through sum pooling.
The downstream classifier consists of a single-layer MLP, and we use the negative log-likelihood loss as the
optimization objective and classification accuracy as the evaluation metric.

Throughout our experiments, we employ a batch size of 32 and use the Adam34 optimizer with a learning
rate of 1 · 10−4 and an ℓ2 regularization weight of 5 · 10−4. In the case of all FL baselines, a complete training
procedure encompasses 80 communication rounds, with each local epoch set to 1. For the self-train baseline,
each local model is trained for 80 epochs. The µ value of FedProx is set to 0.01. Option II. of SCAFFOLD, which
reuses previously computed gradients, is used to update the local control variates. Regarding FedBrain, we
retain the top 3 entries in each column of the atlas mapping projection matrix for network transformation, and
use the most detailed HCP 360 template to define the global model for our federated training of autoencoders. In
other words, the autoencoder model for ABCD would simply require an identity mapping from the server model
for each federated communication. The clustering criteria ϵ1 and ϵ2 are set to 1.50 and 0.05, respectively, and
the weighted terms λmust and λcannot are set to 0.5 and 2.0, respectively. Lastly, the proposed guided clustering
algorithm is aimed to ensure the production of a minimum of 2 clusters.

Research questions. To comprehensively evaluate the effectiveness and contribution of our proposed frame-
work, we formulate four research questions as follows that will guide our empirical investigations:

• RQ1 : How does FedBrain compare to other widely adopted FL frameworks in cross-institutional brain
network analysis?

• RQ2 : How do the proposed federated atlas mapping and guided clustering mechanisms individually con-
tribute to the overall performance?

• RQ3 : How effective is federated atlas mapping in addressing structure- and feature-level heterogeneity
arising from inconsistent ROI parcellation systems?

• RQ4 : How does the incorporation of clinical prior knowledge guidance contribute to the formation of
clusters and impact the overall performance?

The following sections B.1 - B.4 answer these research questions separately.

B.1 Overall performance comparison (RQ1)

We present a comprehensive performance comparison in Table 2 and remark on two key observations:

1. All FL-based algorithms demonstrate a notable improvement in accuracy compared to self-train, with a
reported average relative gain of 15.34% across all client data. Particularly, clients with smaller sample sizes,
such as BP, HIV, and PNC, experience the most significant enhancement, with an average relative gain of
19.31%. This underscores the valuable advantage of collaborative learning in generalizing knowledge across
institutions to address limited training resources and alleviate model overfitting. Additionally, FedBrain
outperforms, even in comparison to the most robust baseline SCAFFOLD, by a relative margin of 14.29%,
while also substantially reducing performance variance across clients. This underscores the importance
of tailoring FL approaches to account for the unique heterogeneity properties of brain network data.
Furthermore, the improvements achieved by FedBrain are statistically significant, validated by passing
the paired t-test with a threshold p value of 0.05 in comparison to all selected methods.

2. It is noteworthy that, among the chosen FL baselines, except for FedBrain, there is a slightly increased
performance variance across clients compared to self-train. This variance primarily stems from the



Table 2. Performance comparison. We present classification accuracy for each client averaged from 10-fold cross-validation
along with standard deviations, and a combined accuracy averaged across all clients.
Clients BP-fMRI BP-DTI HIV-fMRI HIV-DTI PPMI-PICo
Accuracy average
self-train 0.5463(±0.019) 0.5012(±0.082) 0.5286(±0.035) 0.4571(±0.140) 0.6394(±0.034)
FedAvg 0.6037(±0.073) 0.5158(±0.013) 0.5457(±0.153) 0.5000(±0.078) 0.7925(±0.002)

FedProx 0.6084(±0.117) 0.5853(±0.085) 0.6200(±0.132) 0.6029(±0.097) 0.7925(±0.002)

SCAFFOLD 0.5800(±0.120) 0.6400(±0.049) 0.6343(±0.070) 0.6629(±0.057) 0.7778(±0.000)

FedBrain 0.7389(±0.066) 0.7500(±0.077) 0.7857(±0.071) 0.8143(±0.070) 0.8102(±0.010)

PPMI-Hough PPMI-FSL PNC ABIDE ABCD
average combine

0.6570(±0.054) 0.6852(±0.041) 0.5034(±0.052) 0.5025(±0.007) 0.5342(±0.002) 0.5555(±0.073)
0.7633(±0.031) 0.7925(±0.002) 0.5434(±0.008) 0.5044(±0.012) 0.5167(±0.017) 0.6078(±0.118)

0.7536(±0.037) 0.7925(±0.002) 0.6057(±0.018) 0.5594(±0.003) 0.5700(±0.020) 0.6490(±0.088)

0.7944(±0.014) 0.7889(±0.014) 0.6015(±0.009) 0.5765(±0.090) 0.5980(±0.045) 0.6654(±0.084)

0.8102(±0.010) 0.8095(±0.010) 0.7275(±0.044) 0.6549(±0.034) 0.7033(±0.033) 0.7605(±0.052)

Table 3. Performance of atlas mapping and its variants.

Accuracy average min gain

No Atlas Mapping 0.6845(±0.068) –
Atlas Mapping 0.7246(±0.063) 0.0039
Federated Atlas Mapping 0.7605(±0.052) 0.0214

Table 4. Performance of guided clustering and its variants.

Accuracy average min gain

No Clustering 0.6921(±0.071) –
Non-guided Clustering 0.7231(±0.065) 0.0000
Guided Clustering 0.7605(±0.052) 0.0000

unique heterogeneity characteristics arising from brain network data, that are left unaddressed by the
more generically applicable state-of-the-arts. On the other hand, SCAFFOLD emerges as the top performing
baseline, showcasing an impressive average gain of 5.89% over its competitors. This outcome underscores
the robustness of SCAFFOLD in addressing client heterogeneity through controlled gradient correction. Addi-
tionally, alongside FedProx, which is also adept at handling data and system heterogeneity, the performance
variance is reduced compared to FedAvg, which does not consider data heterogeneity issues at all.

B.2 Ablation studies (RQ2)

In this section, we study the contributions made by the two constituent components of FedBrain — guided
clustering and federated atlas mapping — through separate investigations. The results are detailed in Table 3
and Table 4, in which we include the minimum client-wise gain over the raw baseline (“min gain”). To underscore
the impact of each component, we maintain the best configuration of one while evaluating the other.

Regarding client clustering, we explore the impact on overall performance both without clustering and without
shared prior knowledge guidance. We observe that personalizing client optimization through similarity-based
clustering leads to a significant enhancement in downstream performance, with a relative margin of 4.48%.
Moreover, by integrating clinical prior knowledge and applying relevant constraints, we further enhance cluster-
specific learning and knowledge generalization, resulting in an additional relative gain of 5.17% and a reduction
in performance variance across participating clients.

Regarding atlas mapping, we assess its influence on overall performance both without the entire module and
without federated training. When atlas mapping is not applied, we attach a learnable linear projection head
to the client’s GNN model, which do not join the FL process. The results reflect that ensuring consistency
in feature and network dimensions, through un-federated atlas mapping, results in a relative gain of 6.12% in
performance accuracy. With federated trainig which facilitate the alignment of the physical meanings of projected
features would further enhance performance by a margin of 4.95%, demonstrating its effectiveness in countering
incongruous ROI parcellation systems.



Figure 2. Pairwise structure- (upper) and feature-level (lower) heterogeneity measures across all datasets compared on
brain networks processed without atlas mapping (left), with atlas mapping but without federated training (mid), and full
federated atlas mapping (right). The smaller the value, the less heterogeneity exists within the investigated pair.

B.3 Heterogeneity analysis of federated atlas mapping (RQ3)

In this section, we substantiate the impact of the proposed federated atlas mapping in alleviating structure- and
feature-level heterogeneity. Our findings, illustrated in Figure 2, compare heterogeneity measures among brain
networks and features processed under three scenarios: without the entire module, without federated training, and
with full federated atlas mapping. To quantify our evaluations, we utilize two distinct metrics28 to measure the
averaged pair-wise heterogeneity among datasets. For structure-level heterogeneity, we employ the Anonymous
Walk Embeddings (AWEs)35 technique to generate representations for each brain network graph. Subsequently,
we calculate the Jensen-Shannon distance between each pair of AWE representations from two different datasets.
For feature-level heterogeneity, we examine the empirical distribution of features between all pairs of connected
nodes (ROIs) within each network. We then compute the Jensen-Shannon distance between every pair of these
distributions extracted from different networks belonging to different datasets. Our observations indicate that
the integration of atlas mapping and federated training significantly reduces the level of heterogeneity across
datasets in both network structures and ROI features.

Moreover, by transforming the network structure and ROI features, we observe an improved downstream
performance as reflected in Table 5. In particular, transforming the network structures alone would result in an
average relative gain of 2.73% over the raw baseline, but with deteriorated performance on a few clients. When
further integrating feature-level alignment, we observe an average relative gain of 8.67% with all clients receiving
positive performance increase. Furthermore, our analysis indicates a significant reduction in time complexity
when training on transformed data, bringing down the actual runtime from approximately 612 seconds to 266
seconds over 80 communication rounds, which is almost three times faster. Adding the overhead of completing the
atlas mapping pre-processing, which finishes in roughly 74 seconds, this efficiency improvement is still significant.



Table 5. Performance of transformed structure and feature.

Transformation average min gain

None 0.6845(±0.068) –
Structure 0.7042(±0.070) -0.0126
Feature 0.7288(±0.060) 0.0357
Structure & Feature 0.7605(±0.052) 0.0417

Table 6. Performance of constrained clustering.

Link average min gain

None 0.7231(±0.065) –
Cannot 0.7337(±0.061) 0.0089
Must 0.7445(±0.057) 0.0148
Cannot & Must 0.7605(±0.052) 0.0235

Figure 3. Dendrogram visualization of cluster results from standard hierarchical clustering (left) and prior knowledge
guided clustering (right). We list the client names alongside its neural circuitry attributes, namely clinical outcomes (e.g.,
disease/gender) and data modalities (e.g., functional/structural connectivities).

B.4 Clustering analysis of guided clustering (RQ4)

In this section, we explore the influence of guided clustering on cluster formation. We compare the outcome with a
standard hierarchical approach, which we illustrate our visualizations in Figure 3. Specifically, the linked branches
depict the hierarchical relationships, with blue-colored lines representing singleton clusters, and other cluster
assignments are highlighted under different color cues. We observe that with clinical prior knowledge guidance,
our approach is significantly more effective in grouping studies (i.e., clients) with similar imaging modalities
and patient outcomes. Since the neural circuitry patterns are given higher priorities in the clustering process,
the guided approach would separate datasets into different clusters belonging to the same study. Fortunately, it
produces fewer number of clusters with each holding a reasonable amount of clients, avoiding the production of
singletone clusters, which is prominent when utilizing the standard approach.

Moreover, the results presented in Table 6 depict our investigation into the downstream performance impact
when utilizing prior knowledge guidance exclusively based on either must-link or cannot-link information. We
observe that imposing cannot-link constraints alone leads to a relative gain of 1.47% over standard clustering.
When solely guided by must-links, we achieve a further improvement of 1.53%, bringing the performance to
within a mere 2.10% difference from implementing the fully guided approach. The findings suggest that must-
link information plays a slightly more influential role in identifying similar neural circuitry patterns. On the
other hand, cannot-link information proves valuable in averting additional intra-cluster heterogeneity, thereby
reducing the likelihood of further cluster division and the formation of singleton clusters.



APPENDIX C. RELATED WORK

FL on Graphs. FL has gained significant popularity in various domains including images, text, and multi-
modality learning,36–39 for its capabilities in collaboratively training deep learning models while preserving data
privacy of its participants (i.e., clients). Recently, graph-level FL is also remarked by significant advancements.
Lalitha et al.,40 Rizk et al.,41 and Caldarola et al.42 are some trailblazing literatures that proposed to model
clients as nodes in graphs where the collaborative training is analogous to neighborhood aggregation in graph
data learning. FedGraphNN and Liu et al.43,44 are prominent benchmark surveys that have contributed to
examine the applications and theoretical insights into GNN-based FL across graphs in diverse data domains.
However, graph FL encounters unique challenges stemming from graph-specific heterogeneities, such as inconsis-
tent node- and edge-level semantics. In response to this, GCFL28 investigates graph-level heterogeneity across
domains and proposes a clustered graph FL framework, which serves as a significant influence on the devel-
opment of FedBrain. Another approach, FedLit,45 suggests to cluster clients based on the latent link types
of graphs to address link-level heterogeneity. Despite these efforts, the distinct manifestations of heterogene-
ity in brain network studies, including variances in parcellation systems and neural circuitry patterns, render
most existing graph FL frameworks inapplicable. While research on GNN-based FL for neuroimaging data has
shown promise,46,47 current techniques tend to focus on privacy preservation48 or domain adaptation,49 often
overlooking the importance of data-level alignment and client personalization in addressing data heterogeneity.

GNNs for Brain Network Analysis. Inspired by the recent successes of GNNs in learning graph-structured
data,33,50–52 numerous pioneering efforts have emerged in applying GNN models to brain network analysis.
BrainGNN8 utilizes ROI-aware graph convolutional and pooling layers to predict neurological biomarkers from
fMRI data. BrainNetTF7 introduces a transformer architecture with an orthonormal clustering capable of
considering ROI similarity within functional modules. Existing litertatures5,53–56 have showcased that when
sufficient data is available, GNNs can substantially improve performance in disorders prediction. However, in
most practical scenarios, training samples are often limited especially for clinical studies.57 This limitation
hinders the GNNs for effective modeling of brain network data, motivating research in overcoming data scarcity
and heterogeneity to improve performance in real clinical tasks.
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