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ABSTRACT
This paper investigates the problem of learning mesh-based physi-

cal simulations, which is a crucial task with applications in fluid

mechanics and aerodynamics. Recent works typically utilize graph

neural networks (GNNs) to produce next-time states on irregular

meshes by modeling interacting dynamics, and then adopt iterative

rollouts for the whole trajectories. However, these methods cannot

achieve satisfactory performance in long-term predictions due to

the failure of capturing long-term dependency and potential error

accumulations. To tackle this, we introduce a new future-to-present

learning perspective, and further develop a simple yet effective

approach named Foresight And InteRpolation (FAIR) for long-term

mesh-based simulations. The main idea of our FAIR is to first learn a

graph ODE model for coarse long-term predictions and then refine

short-term predictions via interpolation. Specifically, FAIR employs

a continuous graph ODE model that incorporates past states into

the evolution of interacting node representations, which is capable

of learning coarse long-term trajectories under a multi-task learn-

ing framework. Then, we leverage a channel aggregation strategy

to summarize the trajectories for refined short-term predictions,

which can be illustrated using an interpolation process. Through

pyramid-like alternative propagation between the foresight step

and refinement step, our proposed framework FAIR can generate

accurate long-term trajectories, achieving a significant error reduc-

tion compared with the best baseline on four benchmark datasets.

Extensive ablation studies and visualization further validate the

superiority of our proposed FAIR.
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1 INTRODUCTION
Physical simulations are of paramount importance for understand-

ing fundamental principles in various domains [77, 90], including

mechanics [45, 62, 75], electromagnetics [54], biology [74] and

acoustics [48]. The majority of studies [58] utilize mesh-based fi-

nite element systems to describe complicated physics by simulat-

ing the interactions of mesh points. To achieve the optimal use

of resource budgets for unstructured surfaces, they usually allo-

cate greater resolution to regions of interest where more accurate

analysis is expected, resulting in complicated irregular mesh struc-

tures [11, 20, 37, 40]. Traditional numerical solvers usually require

a heavy computational burden, and thus efficient data-driven simu-

lators have drawn ever-lasting interest recently.

With the rapid development of deep learning techniques, sev-

eral data-driven simulators have been recently proposed to learn

numerical simulations on structured grids [15, 30, 61, 71]. These

approaches usually leverage convolution neural networks (CNNs)

to extract spatial semantics for future predictions. However, they

have strict requirements of data structures. To adapt to irregular

meshes with high efficiency, graph machine learning-based ap-

proaches have received more attention gradually [4, 58, 65, 67, 82].
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The majority of them first construct a geometric graph where

mesh points are considered as nodes and utilize graph neural net-

works (GNNs) to model the interacting dynamics in physical sys-

tems. In particular, they first map observations of nodes into the

embedding space and then follow the paradigm of message pass-

ing [1, 31, 78, 83, 85, 89, 93], which aggregates edge information

from the neighbors of each node to update the node representation

in a progressive fashion. Finally, a decoder is adopted to output the

prediction of trajectories at the next time step.

In reality, long-term forecasting [34, 35, 52, 79, 94, 95] is a practi-

cal yet challenging scenario for physical simulations. Existing meth-

ods [4, 58, 67] usually rely on an autoregressive strategy, which uti-

lizes the current states for the next-time predictions and then feeds

them back as input in an iterative manner. However, these one-step

predictors often struggle to capture the long-term system dynamics,

which could be governed by underlying partial differential equa-

tions (PDEs) [72]. Additionally, they are prone to accumulating

errors over iterative rollouts, which degrades the performance of

their long-term predictions. Given these accumulated errors, it is

highly anticipated to include future states into the prediction pro-

cedure to provide a foresight of systems, which not only enhances

long-term predictions, but also infers extra knowledge connected

with underlying PDEs to refine the short-term predictions.

Towards this end, we provide a new perspective that learns from

the future for present predictions (see Figure 1), and propose a sim-

ple yet effective approach named Foresight And InteRpolation (FAIR)

for long-term mesh-based simulations. In particular, FAIR takes a

two-stage learning paradigmwhich first generates coarse long-term

predictions using a continuous graph ordinary differential equa-

tion (ODE) model, and then refines these into accurate short-term

predictions through interpolation. In the first stage, we extend neu-

ral ODEs [5, 53] into graph ODE twins to provide coarse foresight,

which consists of two coupled graph ODEs to model the evolution

of both mesh node and edge representations using the neighbor-

hood aggregation mechanism. To enhance the capacity to capture

non-linear complex patterns, we incorporate historical states to

augment the current embedding in ODEs. Our graph ODE model

has the flexibility to generate various predictions of different steps

ahead, which is optimized for a multi-task learning framework [50].

In summary, our model can not only accord with the continuous na-

ture of real-world systems, but also capture long-term dependencies

with limited error accumulation. In the second stage, we employ

a channel aggregation strategy to summarize the future predic-

tions and current observations for interpolation, which is followed

by further neighborhood aggregation in the observation space to

refine the short-term predictions. More importantly, through the

alternative foresight step and refinement step, our FAIR can provide

refined long-term trajectories.

We validate the effectiveness of FAIR via extensive experiments

on four benchmark datasets. From the experimental results, our

FAIR achieves significant improvements over various baseline mod-

els. In particular, our proposed FAIR achieves a significant error

reduction compared with the best baseline. We also provide ex-

tensive ablation studies, sensitivity analysis and visualization to

validate the effectiveness of our proposed FAIR. We also provide

extensive efficiency analysis and results on noisy data.

Figure 1: Previous approaches adopt the current states for
next-time predictions while our FAIR includes alternative
foresight and refinement.

2 PRELIMINARIES
2.1 Problem Formulation
In this work, we aim to learn a neural simulator that uses neural

operations to approximate the ground-truth physics dynamics on

irregularmeshes, which are usually driven by underlying PDEs such

as Navier–Stokes equations [58]. The dynamic system with both

spatial correlations can be characterized using a mesh graph𝐺 =

(V, E) with a set of mesh nodesV and an edge set E. Given current
states of mesh points, i.e., 𝑿𝑡0 ∈ R𝑁×𝐹

and (optionally) a series of

historical states, i.e., {𝑿𝑡0−1, · · · ,𝑿𝑡0−𝜏 } with the trajectory length

𝜏 , the objective is to predict the future trajectories for all nodes

𝑿𝑡 ∈ R𝑁×𝐹 (𝑡0 < 𝑡 ≤ 𝑡0 +𝑇 ), where 𝐹 is the attribute dimension

and 𝑁 is the number of mesh nodes. We use prediction errors with

respect to the ground truth to evaluate the performance.

2.2 Graph Neural Networks (GNNs)
GNNs are a class of neural networks that operate directly on graph-

structured data [25, 76, 84]. They have been extensively studied for

approximating pairwise interactions in mesh-based physical sys-

tems [58, 65, 67, 80]. GNNs usually follow the paradigm of message

passing [31, 73, 83], where neighborhood information is aggregated

to update the node representations in an iterative manner. Given

the node embedding of 𝑣 ∈ V at the layer 𝑙 , the updated rule can

be written as follows:

𝒗 (𝑙+1)
𝑖

= COM{𝒗 (𝑙 )
𝑖
,AGG({𝒗 (𝑙 )

𝑗
| 𝑗 ∈ N (𝑖)})}, (1)

whereN(𝑖) denotes the neighbours of node 𝑖 . COM(·) and AGG(·)
denotes the combination and aggregation operators, respectively.

A decoder is used to map Through this, GNNs can capture the

complex interaction among mesh points, which reveals how the

system changes from time step 𝑡0 to time step 𝑡0 + 1 [4, 42, 87]. To

generate long-term predictions, these approaches usually feed the

predictions back as the input in the rollout procedure.
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2.3 Neural Ordinary Differential Equations
(ODEs) for Dynamical System Modeling

A complex physical system can be described by a series of coupled

nonlinear ordinary differential equations [21, 67]:

𝑑𝒉𝑡
𝑖

𝑑𝑡
= Φ(𝒉𝑡

1
,𝒉𝑡

2
, · · · ,𝒉𝑡𝑁 ), (2)

where 𝒉𝑡
𝑖
is the state for object 𝑖 at time step 𝑡 and Φ(·) is a function

for capturing the interaction among objects, which can be a neural

network automatically learned from data [5, 26, 27, 88]. Given

the initial states 𝒉𝑡0

1
,𝒉𝑡0

2
· · ·𝒉0

𝑁
for all objects, the latent states of

trajectories at arbitrary time steps can be calculated with a black-

box ODE solver as follows:

𝒉𝑡𝑖 = 𝒉𝑡0

𝑖
+
∫ 𝑡

𝑠=𝑡0

Φ
(
𝒉𝑠

1
,𝒉𝑠

2
, · · · ,𝒉𝑠𝑁

)
𝑑𝑠. (3)

We model interacting dynamics in mesh-based physical systems

by learning neural ODEs in the latent space, with a GNN as the

ODE function Φ to model the continuous interaction among mesh

points. The latent initial states 𝒉𝑡0

1
,𝒉𝑡0

2
, · · · ,𝒉𝑡0

𝑁
are computed via

an encoder and the decoder recovers the whole trajectory 𝑿𝑡 (𝑡0 <

𝑡 ≤ 𝑇 ) based on the latent states at each time step.

3 THE PROPOSED FAIR
3.1 Framework Overview
In this paper, we study an underexplored yet important problem of

long-term mesh-based simulations and introduce a new approach

named FAIR from a future-to-present perspective. Existing meth-

ods [58, 67, 82] usually utilize the current states for next-time pre-

dictions, followed by iterative rollouts to predict whole trajectories

while our FAIR allows the model to maintain foresight throughout

the evolution by tracking long-term future predictions. Specifically,

our proposed FAIR incorporates a continuous graph ODE model

that is enhanced with past states to model the dynamics of both

mesh nodes and edges. In this way, we can generate coarse long-

term trajectories under a multi-task learning framework. To further

improve the accuracy of our short-term predictions, we employ a

channel aggregation strategy, which refines the trajectory through

an interpolation process. Finally, we adopt pyramid-like propaga-

tion for the whole trajectories. An overview of our proposed FAIR

can be found in Figure 2 and we will elaborate on the details as

follows.

3.2 Coarse Foresight with Graph ODE Twins
The key insight of our proposed FAIR is to learn from long-term tra-

jectories. As a preliminary step, it is crucial to generate high-quality

long-term trajectories based on historical predictions. Instead of

using inefficient iterative rollouts [4, 39, 58], we follow the idea of

neural ODEs [5] to model the continuous evolution of both mesh

nodes and edges within dynamic systems. To learn the evolution

between mesh points, we extend neural ODEs into graph ODE

twins, which employ a neighborhood aggregation mechanism to

update the representations of both nodes and edges and are flexible

to produce outputs at any given timestamp. In particular, FAIR

leverages an encoder-ODE-decoder architecture where both the

encoder and decoder components are built upon message passing

neural networks (MPNNs). The effectiveness of the graph ODE

twins is further enhanced by augmenting latent states with his-

torical data, thereby improving the capability to capture evolving

patterns under potential noise.

MPNN-based Encoder. To begin with, we first generate state

representations for mesh nodes and their associated edge using a

message passing mechanism [31]. Specifically, both node and edge

embeddings are initialized using feed-forward networks (FFNs) as:

𝒗 (0)
𝑖

= 𝑓 𝑛 (𝒙𝑖 ) , 𝒆 (0)𝑖 𝑗
= 𝑓 𝑒

(
𝒑𝑖 − 𝒑 𝑗

)
, (4)

where 𝒙𝑖 and 𝒑𝑖 are the feature and position vectors of node 𝑖 ,

respectively. 𝑓 𝑛 (·) and 𝑓 𝑒 (·) are implemented by two FNNs for

nodes and edges, respectively. Then, we stack a range of MPNN

layers to learn semantics from geometric graphs in an iterative

manner. The updating rule for each node 𝑖 can be summarized as:

𝒗 (𝑙+1)
𝑖

= 𝜓𝑛 (𝒗 (𝑙 )
𝑖
,

∑︁
𝑗∈N(𝑖 )

𝒆 (𝑙 )
𝑖 𝑗
), 𝒆 (𝑙+1)

𝑖 𝑗
= 𝜓𝑒 (𝒗 (𝑙 )

𝑖
, 𝒗 (𝑙 )

𝑗
, 𝒆 (𝑙 )

𝑖 𝑗
), (5)

where 𝒗 (𝑙 )
𝑖

and 𝒆 (𝑙 )
𝑖 𝑗

are the node and edge embeddings at the layer

𝑙 , respectively. N(𝑖) denotes the neighbors of node 𝑖 . 𝜓𝑒
and 𝜓𝑛

are two FFNs for feature transformations. After stacking 𝐿 layers,

we can generate discriminative node end edges representations for

the current timestamp 𝑡0, i.e., 𝒉
𝑡0

𝑖
= 𝒗 (𝐿)

𝑖
and 𝒓𝑡0

𝑖 𝑗
= 𝒆 (𝐿)

𝑖 𝑗
for the

subsequent generative model.

Graph ODE. Neural ODEs are commonly used to model dynami-

cal systems with continuous evolution, which can output flexible

predictions at any given timestamps. While previous approaches

often integrate neighborhood information into ODEs to model in-

teracting dynamics [19, 26, 27], they typically fall short in explicitly

capturing the evolving dynamics of edges. To address this gap, we

introduce a propagator named graph ODE twins, which adopts sep-

arate neural ODEs to model the evolution of both nodes and edges.

Furthermore, we notice that data-driven prediction models [26, 27]

often struggle to accurately deduce continuous evolution solely

based on the current state. To mitigate this, we incorporate his-

torical states as supplementary data in our graph ODE model. In

practice, we use them to augment the current embeddings in ODEs,

thereby enhancing the capacity to capture the evolving dynamics

as well. In formulation, we generate augmented embeddings at the

timestamp 𝑡 as follows:

¯𝒉𝑡𝑖 =

[
𝒉𝑡
𝑖

𝒉𝑡−1

𝑖

]
, 𝒓𝑡𝑖 𝑗 =

[
𝒓𝑡
𝑖 𝑗

𝒓𝑡−1

𝑖 𝑗

]
, (6)

where 𝒉𝑡−1

𝑖
and 𝒓𝑡−1

𝑖 𝑗
are from the last timestamps. Then, we model

the evolution using both augmented node embeddings and edge

embeddings based on the following ODEs:

𝑑𝒉𝑡
𝑖

𝑑𝑡
= Φ𝑛 ( ¯𝒉𝑡𝑖 ,

∑︁
𝑗∈N(𝑖 )

𝒓𝑖 𝑗 ),

𝑑𝒓𝑡
𝑖 𝑗

𝑑𝑡
= Φ𝑒 (𝒓𝑡𝑖 𝑗 , ¯𝒉𝑡𝑖 ,

¯𝒉𝑡𝑗 ),

(7)

whereΦ𝑛 andΦ𝑒 are implemented by two FFNs. Through a standard

ODE solver, we are able to output the hidden embeddings for the

future timestamps ranging from 𝑡1 to 𝑡𝐿 at one time with the step
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Figure 2: An overview of the proposed FAIR. Our innovation is to leverage a new future-to-present learning perspective to
effectively capture long-term dynamics. In particular, FAIR adopts an MPNN-based encoder to generate node representations,
which are fed into graph ODE twins to generate trajectory predictions at different timestamps. These predictions are aggregated
with channel attention to refine the short-term predictions. These foresight and refinement steps are conducted alternatively
for accurate long-term predictions.

size 𝑟 and the number of predictions 𝐿 (i.e., 𝑡𝑙 = 𝑡0 + 𝑟𝑙 − 𝑟 + 1). Dif-

ferent 𝑟 indicates a different horizon of predictions. Our graph ODE

model is a special case of delay differential equations (DDEs) [2], i.e.,
𝑑𝒉𝑡

𝑑𝑡
= 𝜙 (𝒉𝑡 ,𝒉𝑡−𝜏 , 𝑡), which has been shown to have an improved ca-

pacity for capturing non-linear dynamics [97]. We further provide a

theorem to show that our graphODE has a unique absolutely contin-

uous solution. To begin, denote 𝒚𝑡 = (𝒉𝑡
1
, . . . ,𝒉𝑡

𝑁
, 𝒓𝑡

12
, . . . , 𝒓𝑡

𝑁−1,𝑁
),

and then our system can be represented as:
𝑑𝒚𝑡

𝑑𝑡
= Φ(𝒚𝑡 ,𝒚𝑡−1), 𝑡 ∈ [𝑡0, 𝑡0 +𝑇 ]

𝒚(𝑡) = 𝒚(𝑡0 − 1), 𝑡 ∈ [𝑡0 − 1, 𝑡0),
(8)

where we add the definition of 𝒚 in the interval [𝑡0 − 1, 𝑡0] to make

sure our system is well-defined.

Lemma 1. Suppose we have an FFN Φ with all absolute values of
weights and biases bounded by satisfy𝑀, 𝐵 respectively. Besides ReLU
is adopted as the activation function. Then, our Eqn. 8 has a unique
absolutely continuous solution.

The proof has been shown in Appendix A. Note that the exis-

tence of unique solutions is still a desirable property as it makes

the learning problem well-defined and the trajectory predictions

consistent [33]. Non-unique solutions would bring challenges in

training and inference. The lemma is a starting point to justify the

ODE modeling approach.

MPNN-based Decoder. In the end, we adopt a decoder𝜓𝑑𝑒𝑐 (·) to
generate the predictions at any given timestamps as follows:

�̂�𝑡𝑖 = 𝜓
dec
({𝒉𝑡𝑖 }𝑖∈V , {𝒑𝑖 𝑗 } (𝑖, 𝑗 ) ∈E ), (9)

where 𝒑𝑖 𝑗 = 𝒑𝑖 − 𝒑 𝑗 is reused to provide position information. The

architecture of the decoder is the same as the MPNN in the encoder

to ensure effective neighborhood learning. To train our graph ODE

twins, we minimize the mean square error for different timestamps:

L
ode

=

𝐿∑︁
𝑙=1

𝑁∑︁
𝑖=1

∥𝒙𝑡𝑙
𝑖
− �̂�𝑡𝑙

𝑖
∥2, (10)

in which each timestamp 𝑡𝑙 corresponds to a different 𝑡𝑙 -step ahead

trajectory prediction task.

Comparison with One-step Predictors. Current one-step pre-

dictors generate states for the next-time states [4, 58, 67] and then

proceed in an autoregressive manner for entire trajectories. In con-

trast, our graph ODE twins have two strengths as follows. Firstly,

our approach is capable of capturing the continuous interactive

dynamics that naturally occur in the mesh-based physical system.

Secondly, our approach is optimized under the framework of multi-

task learning. In particular, we generate predictions with different

time steps, each of which corresponds to a task. These tasks share

the same encoder and decoder. This strategy enables the model

to learn long-term dependency with limited error accumulation,

thereby enhancing the learning process.

3.3 Refinement with Interpolation
While our proposed graph ODE twins model is effective, it has

the potential to underfit long-term trajectories in the multi-task

learning framework. To address this issue, we further introduce a

refinement module, which uses the coarse long-term trajectories to

improve the accuracy of short-term predictions, i.e., �̂�𝑡1

𝑖
. Consider-

ing that both future states beyond the target one, i.e., {�̂�𝑡𝑙
𝑖
}𝐿
𝑙=2

and

current states, i.e., �̂�𝑡0

𝑖
, are both available, this refinement process

can be viewed as a form of interpolation.

To be specific, we introduce a set of learnable parameters to

serve as channel attention, which are the weights for interpolation.

Moreover, the message passing procedure is performed in the ob-

servation space rather than the embedding space to learn the offset

with enhanced efficiency. In formulation, we define the learnable

weights as𝒘𝑙 ∈ R𝐹
, and the aggregated observation 𝒛𝑡1

𝑖
for node 𝑖

can be written as follows:

𝒛𝑡1

𝑖
= 𝒙𝑡0

𝑖
⊙𝒘0 +

𝐿∑︁
𝑙=1

�̂�𝑡𝑙
𝑖
⊙𝒘𝑙 , (11)
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Algorithm 1 Learning Algorithm of FAIR

Input: The mesh graph 𝐺 , a sequence of observations

𝐺𝑡0:𝑡0+𝑇 = {𝐺𝑡0 , · · · ,𝐺𝑡0+𝑇 }.
Output: Parameters in our FAIR.

1: Initialize model parameters;

2: // Foresight Step
3: while not convergence do
4: for each training sequence do
5: Feed each sample into the graph ODE;

6: Generate the predictions at the given timestamps using

Eqn. 9;

7: Minimize the mean square error for these timestamps in

Eqn. 10;

8: Update the parameters using gradient descent;

9: end for
10: end while
11: // Refinement Step
12: while not convergence do
13: for each training sequence do
14: Generate the predictions at the given timestamps using

Eqn. 9;

15: Generate the refined predictions from Eqn. 13;

16: Minimize the mean square error for the target in Eqn. 14

17: Update the parameters using gradient descent;

18: end for
19: end while

where target states �̂�𝑡1

𝑖
is also involved for a more comprehensive

offset mining and ⊙ denotes element-wise product of two vectors.

Compared to standard interpolation, our approach facilitates adap-

tive information summarization, thereby enhancing the capacity

to capture complex patterns. Finally, we stack several MPNNs for

neighborhood interaction, which outputs the final predictions of

the offset as follows:

�̂�𝑡1,off
𝑖

= 𝜓
ref
({𝒛𝑡1

𝑖
}𝑖∈V , {𝒑𝑖 𝑗 } (𝑖, 𝑗 ) ∈E ), (12)

where𝜓
ref

has a similar architecture to the MPNN-based decoder,

but with shallower layers. In the end, the refined predictions can

be obtained by combining coarse predictions and offsets:

�̂�𝑡1,ref
𝑖

= �̂�𝑡1

𝑖
+ �̂�𝑡1,off

𝑖
. (13)

The mean square error is minimized for the target observations:

Lre =

𝑁∑︁
𝑖=1

∥�̂�𝑡1,ref
𝑖

− 𝒙𝑡1

𝑖
∥2 . (14)

In contrast to coarse foresight over multiple timestamps, our re-

finement module targets a single timestamp, enabling us to further

minimize the training loss. Unlike previous one-step predictors [4],

our proposed FAIR uses future predictions generated by the graph

ODE twins for interpolation, which is empirically simpler than ex-

trapolation. Our proposed FAIR employs a two-stage optimization

strategy. In the first stage, we train the model to generate coarse

long-term trajectories using a multi-task learning framework. In

the second stage, we shift our focus to fine-tuning short-term pre-

dictions and eliminate additional supervision in Eqn. 10. A com-

prehensive summary of the learning algorithm can be found in

Algorithm 1. This approach can be illustrated as a knowledge dis-

tillation framework [6, 17, 55] where the teacher model (i.e., graph
ODE twins) gains broad and generalized knowledge from multiple

tasks, while the student model (i.e., refinement module) focuses on

the specific target, which is capable of benefiting from the foresight

provided by the teacher model as well. In addition, our foresight

steps would generate a range of coarse predictions with potential

noise, which would serve as the perturbation to the input for the

refinement step to release potential overfitting.

Pyramid-like Propagation. To generate long-term predictions,

we alternatively conduct foresight generation and interpolation,

resulting in a pyramid-like architecture as illustrated in Figure 1.

By employing the graph ODE model, our FAIR is able to capture

the long-term dynamics governed by the underlying rules. In ad-

dition, during our pyramid-like alternative propagation, our FAIR

gains insight into future states which helps in mitigating potential

error accumulation. A comprehensive summary of the inference

algorithm can be found in Algorithm 2.

Error Bound. To obtain the stochastic error bound of Eqn. 10

in Section 3.2, we assume the 𝒙𝑡
𝑖
follows the regression model

𝒙𝑡
𝑖
= 𝑓 (𝒉𝑡

𝑖
) + 𝜺𝑖 , where 𝒉𝑡𝑖 denotes an informative representation of

the system state and the noise term accounts for intrinsic stochas-

ticity or unobserved factors. 𝑓 : R𝑑 ↦→ R𝐹
is the true regression

function. Moreover, we make the following assumptions: (1) 𝒉𝒕𝒊 has
a density function 𝑓𝒉𝑡 that is bounded away from 0 and infinity;

(2) The regression error 𝜺𝑖 are Gaussian random samples with zero

mean and covariance matrix 𝜎𝜀 𝑰 , where 𝑰 is the identity matrix of

dimension 𝐹 . The first assumption is made to avoid pathological

cases and the second assumption is common [22, 66] in regression

settings and can be justified by the central limit theorem. Assume

the
ˆ𝑓 is the minimizer of the empirical loss

ˆ𝑓 = arg min𝑓 ∈F L𝑜𝑑𝑒 ,
where F is the class of neural network in the MLP. We are inter-

ested in the error bound E( ˆ𝑓 , 𝑓 ) :=
∑𝐿
𝑙=1

E
[
∥ ˆ𝑓 (𝒉𝑡𝑙 ) − 𝑓 (𝒉𝑡𝑙 )∥2

]
,

where 𝒉𝑡𝑙 is a independent copy of 𝒉𝑡𝑙
𝑖
the the expectation is taken

over both random elements
ˆ𝑓 and 𝒉𝑡𝑙 . On the basis of [22, 66],the

following lemma presents the generalization error of our learning

framework for coarse foresight.

Lemma 2. Assume that there exists a fixed function 𝐹𝑒 such that
sup𝑓 ∈F ∥ 𝑓 ∥𝐿∞ ≤ 𝐹𝑒 and denote 𝑀F = max{1, ∥𝐹𝑒 ∥𝐿∞ }. For all
𝛿 > 0 and denote the 𝛿-covering number of F in 𝐿-infinity norm by
N𝛿 := N(F ,L∞, 𝛿), the generalization error of our proposed model
is bounded by:

E( ˆ𝑓 , 𝑓 ) ≤4 min

𝑓 ∗∈F

𝐿∑︁
𝑙=1

E∥ 𝑓 ∗ (𝒉𝑡𝑙 ) − 𝑓 (𝒉𝑡𝑙 )∥2 + (8𝐹
3

2 𝜎𝜖 + 36𝐹𝑀F)𝛿𝐿

+ 2

𝑁

{(
37

9

𝐹𝑀2

F + 16𝜎2

𝜀

)
logN𝛿 + 4(3𝐹𝑀2

F) + 4𝜎2

𝜀

}
𝐿.

(15)

The proof is omitted due to the space limitation. The first term

on the right-hand side of Equ. 15 represents the approximation bias.

This term reflects the expressive capabilities of the neural network.

The last two terms correspond to the stochastic error. Notably, a

smaller value of 𝛿 leads to an increased covering number, denoted

by logN𝛿 . This scenario illustrates a fundamental bias-variance
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Table 1: The RMSE results of the compared methods over different time steps of 1, 50, and all time steps. The best results are
displayed in bold. Partial results are consistent with [4]. OOM indicates out-of-memory.

Dataset

CylinderFlow Airfoil DeformingPlate InflatingFont

ImprovementRMSE (×10
−3
) ↓ RMSE (×10

−1
) ↓ RMSE (×10

−4
) ↓ RMSE (×10

−4
) ↓

1 50 all 1 50 all 1 50 all 1 50 all

GraphUNets [16] 8.09 187 1650 2.93 117 611 2.03 5.19 54.6 OOM OOM OOM 53.0%

GNS [65] 2.61 50.7 176 5.29 175 639 2.23 3.21 17.2 2.14 36.9 50.7 45.4%

MeshGraphNet [58] 2.26 43.9 107 4.35 166 695 1.98 2.88 15.1 1.95 17.8 36.5 34.9%

MS-GNN-Grid [38] 2.20 27.4 84.9 2.68 122 556 2.20 2.78 14.8 1.87 32.4 37.8 28.4%

GMR-GMUS [21] 2.25 24.4 87.1 2.29 108 414 2.96 3.41 23.2 2.42 13.6 29.9 26.1%

GPMS [24] 2.10 23.9 74.9 2.46 110 426 2.74 3.68 14.8 2.49 11.9 27.3 21.3%

BSMS-GNN [4] 2.04 24.2 83.7 2.88 110 421 2.87 3.18 16.9 1.77 10.8 22.0 19.8%

FAIR (Ours) 1.75 22.6 62.4 1.88 95 405 1.92 2.82 13.7 0.79 10.6 17.8 -
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Figure 3: Visualization of different methods on Airfoil at
different time steps among 1, 100, and 200.

trade-off as follows. On the one hand, larger networks typically

exhibit superior learning abilities with a reduced approximation

error. On the other hand, the covering number also increases along

with the size of the network, which indicates a higher variance.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. To evaluate our proposed FAIR, we employ four

mesh-based benchmark physics simulation datasets [4, 58] as fol-

lows: (1) CylinderFlow, which simulates the flow of an incompress-

ible fluid around a cylinder; (2) Airfoil, which focuses on the sim-

ulating compressible flow around an airfoil; (3) DeformingPlate,
which involves the simulation of elastic plate deformation using

an actuator; and (4) InflatingFont, which depicts the inflation of

enclosed elastic surfaces. For each dataset, the train/val/test splits

follow the recent work [4].

4.1.2 Baselines. To validate the effectiveness of our FAIR, we com-

pare it with a range of neural simulation baselines including Gra-

phUNets [16], GNS [65], MeshGraphNet [58], MS-GNN-GRID [38],

GMR-GMUS [21], GPMS [24], and BSMS-GNN [4].

4.1.3 ImplementationDetails. The rootmean square deviation (RMSE)

is taken as the metric to evaluate the performance. We follow the

same experimental settings in [4], which are the latest and easily

reproducible are not reproducible, which is different from ours [4].

We vary the prediction lengths to show the performance in both

short-term and long-term forecasting tasks. We set the step size 𝑟

and the future prediction number 𝐿 as 2 and 3 as default, respec-

tively, and parameter sensitivity can be seen in Sec. 4.5. We execute

all experiments on a single A100 GPU, including the speed test.

For the results of MeshGraphNet, MS-GNN-GRID and BSMS-GNN,

we quote their results reported by [4]. Multiple steps ahead are

predicted by rollout for the baselines.

4.2 Quantitative Comparison
The compared performance of seven competing approaches on four

datasets is recorded in Table 1. From the results, we can have three

observations as follows. Firstly, GraphUNets achieve the worse per-

formance compared with the other methods targeting at dynamical

system modeling. This indicates the difficulties of the mesh-based

physics simulations and we need to design special approaches for

this problem. Secondly, it can be observed that our proposed FAIR

performs the best across all four datasets in terms of both short-

term and long-term forecasting. In particular, compared to the best

baseline BSMS-GNN, our FAIR achieves an average error reduction

of 34.4% in 1-step simulations and 16.8% in all-step simulations.

The significant performance improvement of our proposed FAIR

compared with baselines can be attributed to two factors: (1) The in-

troduction of our graph ODE twins in our foresight step. The graph

ODE can significantly reduce the error accumulation in the multi-

task learning framework, which also provides future information

for short-term predictions; (2) The introduction of our refinement

step. This step can leverage coarse future predictions to refine

short-term predictions with channel aggregation, thus mitigating

the underfitting resulting from multi-task learning. Thirdly, the per-

formance of our proposed FAIR on MS-GNN-Grid is a little worse
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Table 2: Ablation studies of different variants on four datasets.

Dataset

CylinderFlow Airfoil DeformingPlate InflatingFont

ImprovementRMSE (×10
−3
) ↓ RMSE (×10

−1
) ↓ RMSE (×10

−4
) ↓ RMSE (×10

−4
) ↓

1 50 all 1 50 all 1 50 all 1 50 all

FAIR w/o ODE 1.82 24.3 75.5 1.94 102 595 1.95 2.93 16.3 0.92 11.4 22.1 11.0%

FAIR w/o R 2.03 27.2 67.5 2.31 110 543 2.16 3.14 16.1 1.12 12.1 21.6 16.0%

FAIR w/o MTL 1.91 25.0 94.1 2.07 108 602 1.99 3.16 16.9 1.21 13.6 25.0 18.7%

FAIR w/ E 1.98 25.2 78.1 2.02 103 440 2.16 3.15 15.0 0.93 11.5 21.0 11.1%

FAIR w/ Cubic 2.37 35.1 108 2.79 105 585 2.34 4.01 23.8 1.13 15.8 27.3 30.4%

FAIR (Full Model) 1.75 22.6 62.4 1.88 95 405 1.92 2.82 13.7 0.79 10.6 17.8 -

than MS-GNN-Grid. The potential reason is the high complexity

of DeformingPlate makes it harder to generate accurate foresight,

which could deteriorate the model performance.

4.3 Visualization
In this part, we conduct visualization to compare our FAIR with

representative baselines and the ground truth. The compared re-

sults at different time steps on Airfoil and CylinderFlow are shown

in Figure 3 and Figure 4, respectively. From the results, we can

make the following observations: (1) We can find that serious error

accumulation occurs for one-step predictors (i.e., MeshGraphNet

and BSMS-GNN). For example, in the last frame of Figure 3, Mesh-

GraphNet and BSMS-GNN have a huge gap compared with the

ground truth. (2) Our FAIR can make precise long-term predictions

consistently. The potential reason is that our ODE-based model can

capture the continuous dynamics in physical systems and mitigate

the error accumulation during propagation. In particular, all the

baselines fail to reflect correct flow fields at the last time step while

our FAIR can still approximate the ground truth. (3) Our proposed

FAIR can also make accurate short-term predictions, which demon-

strates that future foresight can benefit short-term predictions as

well. Moreover, Figure 5 shows the difference on 3D dataset De-
formationPlate. We can observe that our proposed methods can

suffer limited errors for long-term predictions, which validates the

superiority of our proposed FAIR.

4.4 Ablation Study
To evaluate the effectiveness of different subcomponents in our

proposed FAIR, we introduce several model variants as follows: (1)

FAIR w/o ODE, which removes the graph ODE twins module and

utilizes one-step predictors for coarse foresight. (2) FAIR w/o R,

which removes the refinement from the future module and outputs

the results using graph ODE. (3) FAIR w/o MTL, which removes

the multi-task learning framework and involves the next-time pre-

dictions in refinement. (4) FAIR w/ E, which utilizes the end-to-end

training manner to train the whole model. (5) FAIR w/ Cubic, which

utilizes the cubic interpolation instead of our refinement module.

The compared results are presented in Table 2. From these results,

we have the following observations. Firstly, by comparing FAIR w/o

ODE with the full model, we can validate that the graph ODE twins

module can capture continuous dynamics to provide high-quality

future information for accurate predictions. Secondly, our full model
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Figure 4: Visualization of different methods on CylinderFlow
at multiple time steps. We render the velocity in the fluid
field at different time steps among 100, 300 and 500.

High Error

Low Error

Figure 5: Visualization of FAIR on 3D dataset DeformingPlate
at different time steps among 1, 100, 200 and 300.

achieves better performance than FAIR w/o R, which validates that

the refinement step is indispensable by preventing potential un-

derfitting in the multi-task learning framework. Thirdly, FAIR w/o

MTL performs much worse than the full model, which validates

that future information is capable of making a critical contribution

to effective long-term mesh-based simulations. Fourthly, FAIR w/

E performs much worse than our full model. The potential reason

is that the end-to-end training would involve all these modules

simultaneously, which makes the training more difficult. Fifthly,
the performance of FAIR w/ Cubic is worse than that of our full

model, which can validate that cubic interpolation cannot learn
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Figure 6: The performance with respect to different step
sizes (horizon) 𝑟 and prediction numbers 𝐿 on Deforming-
Plate and Airfoil.

(a) (b) (c) (d)
Figure 7: Left. The RMSE results of our proposed FAIR and
two baselines with respect to different time steps on Air-
foil (one sample). Right. The comparison of the running
time of FAIR (with different future prediction numbers),
BSMS (BSMS-GNN), and MGN (MeshGraphNet).

the relationships between different nodes during refinement while

cubic interpolation considers each node independently.

4.5 Further Analysis
4.5.1 Sensitivity Analysis. We investigate the impact of different

parameters on the performance of FAIR, i.e., the step size 𝑟 , and

the number of future predictions 𝐿. First, we vary 𝑟 in {1, 2, 3, 4, 5}
with the other parameters fixed and the results are shown in Fig-

ure 6 (Left). We can observe that the errors first decrease and then

increase as 𝑟 rises. The potential reason is that when 𝑟 is small, a

larger 𝑟 can provide a larger horizon, while too large 𝑟 would be

far away from our target, which makes the interpolation unreliable.

Second, we vary the prediction number 𝐿 in {1, 2, 3, 4, 5}, and the

results can be found in Figure 6 (Right). We can observe an error

reduction when 𝐿 rises before saturation, indicating that including

more future information boosts model performance.

4.5.2 Predictions at Different Time Steps. We compare the predic-

tion errors of our proposed FAIR and two baselines, i.e., Mesh-

GraphNet and BSMS at different time steps in terms of RMSE on

Airfoil. The results are shown in Figure 7 (Left). We can find that

our proposed FAIR exhibits stronger modeling capabilities with

relatively lower errors at large time steps while both two baselines

suffer from serious error accumulations. This validates that our

proposed FAIR utilizes foresight to reduce the error accumulation

for long-term predictions.

Table 3: The compared results (×10
−3) with respect to differ-

ent step times on the weather dataset.

Method MAE@3 MSE@3 MAE@5 MSE@5

LSTM [23] 46.9 76.7 58.1 88.3

GRU [7] 48.2 80.2 60.0 90.6

HOPE [44] 52.8 81.8 62.8 93.7

FAIR (Ours) 45.2 71.0 59.8 85.5

4.5.3 Efficiency Analysis. In this part, we analyze the efficiency of

MeshGraphNet, BSMS-GNN, and the proposed FAIR by varying the

number of future predictions 𝐿. The computational time of one-step

predictions on a single NVIDIA A100 GPU is reported in Figure 7

(Right). From the results, we have two different observations. Firstly,

our proposed FAIR achieves the performance increasement of 19.6%

compared with the best baseline with similar efficiency, which

validates the application value of our method. Secondly, we can

find that the time cost of the proposed FAIR slightly increases as

𝐿 rises. Considering there is a trade-off between efficiency and

effectiveness, we set 𝐿 as 3 in our implementation as default.

4.5.4 Performance on Noisy Data. Lastly, we compare the perfor-

mance of four different methods on a real-world noisy weather

dataset
1
, which records authentic radar reflectivity maps at dif-

ferent selected locations. The compared results at different time

steps are shown in Table 3. From the results, we can validate the

superiority of our proposed FAIR in comparison to these baselines.

The potential reason is that our FAIR follows a multi-task learning

procedure, which is more robust to the noisy data.

5 RELATEDWORK
5.1 Learning-based Physics Simulations
Physics simulations can be advantageous in science when model

parameters or boundary conditions are insufficient. Due to their

great efficacy, learning-based physics simulations are gaining pop-

ularity in a variety of domains such as computational fluid dynam-

ics [18, 24, 49, 60, 68, 69, 86]. Initially, convolutional neural network-

based methods are often built to learn from regular grids [57]. Re-

cently, MeshGraphNet [58] makes an attempt to incorporate GNNs

into learning mesh-based physics simulations on irregular meshes,

followed by several extensions [4, 65, 67]. However, these algo-

rithms often generate next-step predictions using current states,

which fails to make accurate long-term predictions. [21] adopts

an encoder-decoder structure to compress data for long sequence

modeling with Transformer. Recent work [25] uses differentiable

orthogonal spline collocation for interpolation to increase the fore-

casting efficiency while our work utilizes adaptive interpolation

for refinement of short-term predictions based on our graph ODE

predictions.

5.2 Long-term Forecasting
Based on historical observations, long-term forecasting [9, 32, 34,

36, 46, 47, 52, 79, 94, 96] aims to make predictions for a long hori-

zon with various applications with weather forecasting [3, 92]

1
https://tianchi.aliyun.com/competition/entrance/231596
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and economic analysis [8]. A range of Transformer-based architec-

tures [41, 70, 95, 96] have been introduced for long-term forecasting,

which can get rid of gradient vanishing and exploding in recurrent

neural networks (RNNs) [64]. These approaches usually focus on

modeling single-agent systems. Recent work [39] aims to capture

all frequency components in PDE solutions to enhance long-term

forecasting and utilize diffusion models for refinement. In contrast,

our work utilizes graph ODE twins for long-term foresight in a

multi-task learning framework and learning interpolation methods

for refinement.

5.3 Continuous GNNs
Neural ODEs [5] have been shown effective in forwarding networks

in a continuous way. In recent years, several works have combined

GNNs with neural ODEs [59, 81], which have been applied in ex-

ploring both static and dynamic graphs. In static graphs, contin-

uous GNNs can be adopted to mitigate the overfitting of discrete

GNNs [81, 91]. In contrast, several works have adopted continu-

ous GNNs to extract continuous spatio-temporal relationships for

traffic forecasting [13, 28] and social network analysis [43]. In this

work, enhanced by incorporating the past states, our proposed FAIR

utilizes graph ODE twins to model the evolving dynamics of both

nodes and edges for coarse foresight.

6 CONCLUSION
In this paper, we study the problem of long-termmesh-based physics

simulations and propose a new approach FAIR to address it. Our

FAIR utilizes a future-to-present perspective, which consists of two

steps, i.e., foresight and refinement, for accurate simulations. In

the first step, we use a graph ODE model that integrates previ-

ous states to learn coarse long-term trajectories using a multi-task

learning framework. In the second step, we employ a channel aggre-

gation strategy to aggregate the trajectories for refined short-term

predictions. Our proposed FAIR can provide accurate long-term tra-

jectories by the alternative propagation of foresight and refinement.

We believe that our study provides a brand-new perspective in

learning long-term mesh-based simulations. In the future work, we

plan to expand the proposed FAIR to accommodate more complex

simulations in physical and biological applications such as molecu-

lar dynamics simulations and protein structural analysis. We will

further try to increase the stability of the end-to-end optimization.
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A PROOF OF LEMMA 1
To begin with, we introduce a theorem from [10].

Theorem 3. Let 𝑛 ∈ N ∪ {0}, 𝜏 ∈ (0, +∞), 𝑥0 ∈ R𝑑 and let 𝑓
satisfy the following assumptions:

(A1) For all 𝑡 ∈ [0, (𝑛 + 1)𝜏], 𝑓 (𝑡, ·, ·) ∈ 𝐶
(
R𝑑 × R𝑑 ;R𝑑

)
,

(A2) For all (𝑥, 𝑧) ∈ R𝑑 × R𝑑 , 𝑓 (·, 𝑥, 𝑧) is Borel measurable,
(A3) There exists 𝐾 : [0, (𝑛 + 1)𝜏] → [0, +∞) such that 𝐾 ∈

𝐿1 ( [0, (𝑛 + 1)𝜏]) and for all (𝑡, 𝑥, 𝑧) ∈ [0, (𝑛 + 1)𝜏] × R𝑑 × R𝑑 , we
have:

∥ 𝑓 (𝑡, 𝑥, 𝑧)∥ ≤ 𝐾 (𝑡) (1 + ∥𝑥 ∥)(1 + ∥𝑧∥), (16)

(A4) For every compact set 𝑈 ⊂ R𝑑 , there exists 𝐿𝑈 : [0, (𝑛 +
1)𝜏] ↦→ [0, +∞) such that 𝐿𝑈 ∈ 𝐿1 ( [0, (𝑛 + 1)𝜏]) and for all 𝑡 ∈
[0, (𝑛 + 1)𝜏], 𝑥1, 𝑥2 ∈ 𝑈 , 𝑧 ∈ R𝑑 , we have:
∥ 𝑓 (𝑡, 𝑥1, 𝑧) − 𝑓 (𝑡, 𝑥2, 𝑧)∥ ≤ 𝐿𝑈 (𝑡) (1 + ∥𝑧∥) ∥𝑥1 − 𝑥2∥ . (17)

Then there exists 𝑎 unique absolutely continuous solution 𝑥 =

𝑥 (𝑥0, 𝑓 ) to the following system:{
𝑥 ′ (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡), 𝑥 (𝑡 − 𝜏)), 𝑡 ∈ [0, (𝑛 + 1)𝜏]
𝑥 (𝑡) = 𝑥0, 𝑡 ∈ [−𝜏, 0) , (18)

such that for 𝑗 = 0, 1, . . . , 𝑛 we have:

sup

0≤𝑡≤𝜏

𝜙 𝑗 (𝑡) ≤ 𝐾𝑗 , (19)

where 𝜙−1 (𝑡) = 𝑥0, 𝜙 𝑗 (𝑡) = 𝑥 (𝑡 + 𝑗𝜏), for 𝑗 = 0, 1, . . . , 𝑛, 𝐾−1 :=

∥𝑥0∥ and

𝐾𝑗 =
(
1 + 𝐾𝑗−1

) (
1 + ∥𝐾 ∥𝐿1 ( [ 𝑗𝜏,( 𝑗+1)𝜏 ] )

)
× exp

( (
1 + 𝐾𝑗−1

)
∥𝐾 ∥𝐿1 ( [ 𝑗𝜏,( 𝑗+1)𝜏 ] )

)
.

(20)

Proof. Firstly, the function Φ is learnable FFNs, and the first

layer can be represented as:

𝒎𝑡
1
= 𝜎 (𝑾0𝒚

𝑡 +𝑾1𝒚
𝑡−1 + 𝒃1), (21)

where 𝑾0 and 𝑾1 are two weight matrices, and 𝒃1 denotes the

biases. The 𝑖 layers can be written as:

𝒎𝑡
𝑖 = 𝜎 (𝑾𝑖𝒎

𝑡
𝑖−1
+ 𝒃𝑖 ), (22)

where𝑾𝑖 and 𝒃𝑖 are corresponding weights and biases. These func-
tions are continuous and Borel measurable. Therefore, Φ also satis-

fies assumptions (A1), (A2).

Secondly, given any inputs 𝒚𝑡 ,𝒚𝑡−1
, we can see:

∥Φ(𝒚𝑡 ,𝒚𝑡−1)∥ ≤ 𝑀𝑙 ∥𝒚𝑡 ∥ +𝑀𝑙 ∥𝒚𝑡−1∥ + 𝑀
𝑙 − 1

𝑀 − 1

𝐵

≤ 𝐿(1 + ∥𝒚𝑡 ∥)(1 + ∥𝒚𝑡−1∥),

where 𝐿 = max{𝑀𝑙 , 𝑀
𝑙−1

𝑀−1
𝐵}. Thus assumption (A3) is satisfied.

Third, note the ReLU activation function satisfies:

|𝜎 (𝑥) − 𝜎 (𝑦) | ≤ |𝑥 − 𝑦 |. (23)

Given any 𝒙1, 𝒙2, 𝒛, we can easily have:

∥Φ(𝒙1, 𝒛) − Φ(𝒙2, 𝒛)∥ ≤ 𝑀𝑙 ∥𝒙1 − 𝒙2∥, (24)

which means the assumption (A4) is satisfied.

Then, based on Theorem 3, we can claim that our graph ODE

system Eqn. 8 has a unique absolutely continuous solution. □

B ALGORITHM
The inference algorithm of our FAIR is summarized in Algorithm 2.

Algorithm 2 Inference Algorithm of FAIR

Input: The mesh graph 𝐺 , a sequence of observations

𝐺𝑡0:𝑡0+𝑇 = {𝐺𝑡0 }.
Output: Parameters in our FAIR.

1: 𝑡 = 𝑡0
2: �̂�𝑡0,𝑟𝑒 𝑓 = 𝑿𝑡0

3: while 𝑡 < 𝑡0 +𝑇 do
4: // Foresight Step
5: Feed �̂�𝑡,𝑟𝑒 𝑓

into the graph ODE;

6: Generate the predictions �̂�𝑡+1, �̂�𝑡+1+𝑟 , · · · , �̂�𝑡+1+𝑟𝐿−𝑟
using

Eqn. 9;

7: // Refinement Step
8: Generate the refined predictions �̂�𝑡+1,𝑟𝑒 𝑓

from Eqn. 13;

9: 𝑡 ← 𝑡 + 1

10: end while

Table 4: Details of four datasets. The system describes the
underlying PDE: hypere-lastic flow, or a compressible or
incompressible Navier-Stokes flow. Simulation data is gen-
erated using a solver. In DeformingPlate and InflatingFont,
there is no time step since it is a quasi-static simulation.

Dataset Nodes (avg) Edge (avg) Type Steps

CylinderFlow 1885 5424 Eulerian 600

Airfoil 5233 15449 Eulerian 500

DeformingPlate 1271 4611 Lagrangian 400

InflatingFont 13177 39481 Lagrangian 100
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C DATASET DETAILS
Four physics simulation benchmark datasets are utilized to evaluate

our proposed FAIR and the compared baselines with details listed

in Table 4.

CylinderFlow simulates the incompressible Navier-Stokes flow of

water around a cylinder on a fixed 2D Eulerian mesh generated by

COMSOL [51]. This mesh has an irregular structure with varying

edge lengths in different regions. The simulation consists of 600 time

steps, with an interval of 0.01s between each step. Node attributes in

the system include mesh position, node type, velocity, and pressure.

Node types can be divided into three different categories in fluid

domains, i.e., fluid nodes, wall nodes, and inflow/outflow boundary

nodes. We predict the velocity values in both directions.

Airfoil simulates the aerodynamics around the cross-section of

an airfoil wing for compressible Navier-Stokes flow by SU2 [12]. As

the edge lengths of the mesh range between 2× 10
−4

m to 3.5m, the

mesh structure is highly irregular. Each trajectory containing 5, 200

nodes has 500 time steps with an interval of 0.008s. Node attributes

include mesh position, node type, velocity, pressure, and density.

We aim to predict the velocity, density, and pressure in the future.

DeformingPlate is a hyper-elastic plate in the structural mechan-

ical system, deformed by a kinematic actuator, simulated with a

quasi-static simulator COMSOL. Each trajectory has 400 time steps

with 1, 200 nodes average. A one-hot vector for each type of node

distinguishes actuators from plates in the Lagrangian tetrahedral

mesh. In addition, node type, position, and velocity are fed to predict

the whole trajectories.

InflatingFont is from BSMS-GNN [4], including 1, 400 2 × 2-

Chinese character matrices. InflatingFont has more complicated

structures, with at least twice node numbers, and 70 times edge

numbers. We aim to predict the future position of every mesh node.

D BASELINE DETAILS
We compare our FAIR with a range of state-of-the-art methods,

i.e., GraphUNets [16], GNS [65], MeshGraphNet [58], MS-GNN-

GRID [38], GMR-GMUS [21], GPMS [24], and BSMS-GNN [4]. Their

details are elaborated as follows:

• GraphUNets [16] proposes new pooling and unpooling oper-

ations, which can be implemented in an UNet-style architec-

ture [63]. We have replaced the original GCN layers into our

message passing layers following [4].

• GNS [65] is the pioneering work on physical simulations, which

leverage graphs to depict systems and model dynamics using

message passing neural networks. This work demonstrates that

graph neural networks have the ability to capture long-range

interactions. We employ 15 message passing layers as in [4].

• MeshGraphNet [58] is an effective framework for mesh-based

physical simulations, which combine graph neural networks

and re-mesh techniques to learn the dynamics for next-time

predictions. Based on the basic node modeling of graph networks,

MeshGraphNet introduces additional edge encoders. The edge

representation is updated during each MeshGraphNet layer.

• MS-GNN-GRID [38] is a well-known method of modeling the

hierarchy with spatial structures, which introduces a novel multi-

scale graph neural network model, designed to enhance and

accelerate predictions in continuum mechanics simulations. Fol-

lowing [4, 38], MS-GNN-GRID is implemented using the finest

edge encoder, an additional aggregation module for node and

edge representations, and a node returning module.

• GMR-GMUS [21] is an extension to MeshGraphNet for mesh-

based simulations. It first compresses mesh data into hidden em-

beddings and then utilizes a Transformer architecture to extract

the spatio-temporal relationships with efficiency.

• GPMS [24] focuses on the region of interest in the mesh graph

and then utilizes a two-stage framework with prior knowledge

injected. The model is evaluated in two physical systems.

• BSMS-GNN [4] is a framework that introduces a bi-stride pooling

strategy for large-scale physical simulations, addressing existing

challenges associated with scaling complexity, over-smoothing,

and incorrect edge introductions. BSMS-GNN follows the de-

sign paradigm of UNet [63]. We adhere to the original network

configurations and utilize several UNet layers for experiments.

E IMPLEMENTATION DETAILS
In this paper, we present an extensive series of experiments lever-

aging the frameworks of PyTorch [56], PyG [14], and TorchDif-

fEq [29]. To ensure fairness, we implement our approach with a

publicly available codebase by BSMS-GNN [4]. The random seed is

fixed. We execute all experiments on a single A100 GPU, including

the speed test. To maximize training efficiency, we set the batch

size across all experiments at the maximum level supported by

the GPU memory. Our optimization strategy includes the use of

Adam optimizer, with a learning rate set at 1𝑒 − 4, with an exponen-

tial learning rate decay strategy. Following BSMS-GNN, we apply

Gaussian noise to each original trajectory at the start of each epoch,

aiming to enhance the adaptability of the model to process noisy

inputs. Furthermore, to maintain fairness, we set the layer num-

bers for both encoder and decoder to 7, while MeshGraphNet and

BSMS-GNN both have 15 layers. Each layer includes the encoder,

processor, and decoder, all activated by ReLU and embedded within

two hidden-layer MLPs. Residual connections are added in all MLPs,

while a LayerNorm layer normalizes the outputs from MLPs apart

from the nodal decoder.

Figure 8: RMSE of our FAIR and MeshGraphNet with respect
to different prediction lengths on CylinderFlow.

F PREDICTIONS AT DIFFERENT TIME STEPS
Figure 8 records the prediction errors of our proposed FAIR and

MeshGraphNet at different time steps in terms of RMSE on Cylin-
derFlow. From the results, we can observe that our proposed FAIR

demonstrates stronger modeling capabilities with relatively lower

errors at large-time steps. In contrast, MeshGraphNet suffers from

serious error accumulations, with the prediction error about twice

as large as ours at the final time step.
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