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Abstract

Electrocardiogram (ECG) analysis plays a vital role in the early detection, monitoring, and management of various
cardiovascular conditions. While existing models have achieved notable success in ECG interpretation, they fail to
leverage the interrelated nature of various cardiac abnormalities. Conversely, developing a specific model capable of
extracting all relevant features for multiple ECG tasks remains a significant challenge. Large-scale foundation mod-
els, though powerful, are not typically pretrained on ECG data, making full re-training or fine-tuning computationally
expensive. To address these challenges, we propose EnECG (Mixture of Experts-based Ensemble Learning for ECG
Multi-tasks), an ensemble-based framework that integrates multiple specialized foundation models, each excelling in
different aspects of ECG interpretation. Instead of relying on a single model or single task, EnECG leverages the
strengths of multiple specialized models to tackle a variety of ECG-based tasks. To mitigate the high computational
cost of full re-training or fine-tuning, we introduce a lightweight adaptation strategy: attaching dedicated output layers
to each foundation model and applying Low-Rank Adaptation (LoRA) only to these newly added parameters. We then
adopt a Mixture of Experts (MoE) mechanism to learn ensemble weights, effectively combining the complementary ex-
pertise of individual models. Our experimental results demonstrate that by minimizing the scope of fine-tuning, EnECG
can help reduce computational and memory costs while maintaining the strong representational power of foundation
models. This framework not only enhances feature extraction and predictive performance but also ensures practical
efficiency for real-world clinical applications. The code is available at https://github.com/yuhaoxu99/EnECG.git

Introduction

Electrocardiography (ECG) is a quick, painless test that measures the electrical activity of the heart, which is widely
used for diagnosing and monitoring various heart conditions.1 Due to its non-invasive nature and the relative ease
with which ECG signals can be recorded, ECG analysis remains at the forefront of early detection and management of
cardiovascular diseases.2 Over the past decades, numerous methods3, 4 have been proposed to extract clinically relevant
features from ECG signals. Additionally, the development of large-scale annotated databases5, 6 has facilitated robust
benchmarking and spurred advances in ECG analysis.

Despite these achievements, much of the existing work has addressed specific medical task.7, 8 This specific medical
task focus can overlook the intricate interplay among multiple cardiac abnormalities, leading to redundant processing
steps and potentially missing valuable cross-task information. Given that many cardiac conditions, like arrhythmias,
ischemia, and myocardial infarction can coexist. If we could not only assess a patient’s cardiac condition but also
estimate their blood potassium levels from the same ECG data, we would eliminate the need for blood draws to
measure potassium. This strategy could lower healthcare costs while also improving patient comfort. So, there is a
strong rationale for more comprehensive approaches that analyze ECG signals in a multi-task manner.

Multi-task learning (MTL) offers a promising framework by concurrently performing several clinically relevant tasks9

simultaneously. This approach capitalizes on shared representations: the feature extraction that benefits one task can
also enhance the performance of others. In practice, MTL can lead to better generalization, fewer computational
redundancies, and more streamlined clinical workflows. By integrating diverse predictive and diagnostic capabilities
into a single system, multi-task ECG models have the potential to offer a broader and more accurate picture of cardiac
health, ultimately supporting improved risk stratification, timely clinical interventions, and better patient outcomes.
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Figure 1: Integrated Gradient Saliency Maps for the RR interval estimation task. As shown, MOMENT primarily
focuses on the PR interval, TEMPO draws attention to both the PR interval and ST segment, and ECG-FM emphasizes
the PR interval and QRS complex.

In addition to the need for analyzing multiple clinical tasks within a single framework, an effective multi-task ECG
system requires the extraction of diverse, often complementary features from the signal. Different models may capture
different features of specific wave segments, and different wave segments may be more suitable for different clinical
tasks. For instance, RR intervals (the time between consecutive heartbeats, reflecting heart rate and variability), QT
intervals (the time from ventricular depolarization onset to repolarization completion, representing ventricular action
potential duration), and ST segment slope (the inclination of the segment between ventricular depolarization end and
repolarization start, indicating potential myocardial ischemia or injury) and morphological features may be helpful for
patient age estimation,10 whereas the duration, amplitude, and area of P waves, as well as the QRS complex interval
could be advantageous for sex prediction.11 This specialized nature means that no single model architecture can
consistently and optimally extract all the important features necessary for performing multiple tasks simultaneously.9

To validate the above findings and gain interpretable insights into the model’s decision-making process, we employ
the Integrated Gradient Saliency Map.12 This technique attributes the model’s prediction to specific input features as
shown in Figure 1, quantitatively highlighting which parts of the input most significantly contributed to the result.
This visualization allows us to assess whether the model relies on semantically relevant features, thereby validating
the plausibility and robustness of our findings.

To overcome this limitation, ensemble learning13 has emerged as a promising strategy. Rather than relying on a
single model, ensemble methods integrate the outputs or feature representations of multiple specialized models, each
contributing its unique strengths. By leveraging these complementary capabilities, ensemble-based multi-task ECG
models can achieve enhanced robustness and higher overall performance compared to individual models. However,
traditional ensemble methods often employ a fixed-weighted average of multiple models’ outputs or a majority voting
mechanism, applying the same weighting strategy across all samples. This static approach may not fully exploit
the diverse strengths of different models in varying scenarios. To address this, we introduce a Mixture-of-Experts
(MoE)14, 15 gating network, which dynamically assigns weights to each expert model based on the input features. This
allows the ensemble to adaptively emphasize the most relevant expert for each specific case, resulting in a more flexible
and context-aware fusion of ECG models.

Building on the aforementioned advantages of ensemble learning, this work aims to leverage multiple existing foun-
dation models to enhance feature extraction capabilities in multi-task ECG analysis. Foundation models, large-scale
pretrained networks, have proven to be highly effective in various domains, but they are rarely pretrained on ECG data
and tasks. Consequently, fully retraining or fine-tuning such models can become prohibitively resource intensive, and
because hospitals have limited training resources, fully retraining or fine-tuning these models can be challenging. To
overcome these limitations, this paper introduces an innovative solution: we add a Feedfoward layer to each founda-
tion model and adopt Low-Rank Adaptation (LoRA)16 to fine-tune it. By focusing on a smaller set of parameters and
employing LoRA’s parameter-efficient training strategy, we can significantly reduce the computational overhead and
GPU memory, while still achieving state-of-the-art performance across multiple ECG tasks.



We summarize our contributions: (i) We propose EnECG, an ensemble-based efficient model designed to handle
multiple ECG tasks in a unified framework. (ii) We conduct a comprehensive evaluation by selecting five diverse ECG
tasks under a multi-task setting, demonstrating favorable performance across all of them. (iii) We open-sourced our
code to facilitate reproducibility and foster further research in the community.

Related Work

ECG based Clinical Applications. Early efforts in automated ECG analysis predominantly focused on single-task
objectives, such as arrhythmia classification, QRS detection, or waveform segmentation supported by notable datasets,
MIT-BIH Arrhythmia Database6 and classical algorithms the QRS detection method proposed by Pan and Tompkins.9

However, cardiovascular pathologies often manifest with interlinked abnormalities, necessitating analytical models
that can handle multiple tasks concurrently.

Recent work has explored deep learning strategies for multi-task ECG analysis, leveraging shared representations to
perform tasks like rhythm classification, beat segmentation, and clinical parameter estimation within a single frame-
work. For instance, Yao et al.17 employed a multi-head convolutional neural network to jointly classify arrhythmic
beats and estimate heart rate variability metrics. Their model demonstrated that features extracted for one task can
enhance performance on another task. Similarly, Chang et al.16 proposed a multi-task learning architecture based
on attention mechanisms to detect multiple types of cardiac abnormalities simultaneously, highlighting that MTL
can outperform single-task models when tasks are related. In another study, Zhao et al.18 designed an MTL system
for arrhythmia detection and ST-segment deviation analysis, emphasizing the value of parameter sharing to improve
generalization and reduce the risk of overfitting in clinical settings.

Despite these advances, a significant challenge persists: no single model architecture uniformly excels at extracting
all relevant ECG features required for diverse tasks. As a result, ensemble learning has garnered attention for multi-
task ECG analysis. By combining multiple specialized models each trained to capture distinct signal properties an
ensemble approach can achieve a more comprehensive characterization of cardiac activity.5 Nevertheless, a major
bottleneck is that many large-scale “foundation models” are trained on general-domain data rather than ECG signals,
making them computationally expensive to fully retrain or fine-tune for multi-task ECG applications. Approaches
that selectively fine-tune only parts of these large models represent a promising direction for resource-efficient and
high-performing multi-task ECG analysis.

Ensemble Learning. Ensemble learning has long been recognized as a potent strategy to boost predictive performance
by combining multiple learners, each with its unique strengths and weaknesses.19 Common ensemble techniques in-
clude bagging, boosting, and stacking. For instance, Dietterich13 showcased how bagging and boosting can reduce
variance and bias in decision trees, while Polikar17 provided a comprehensive overview of ensemble-based decision-
making systems, highlighting their robustness to noise and model uncertainty. These foundational works established
the theoretical underpinnings and practical benefits of ensemble methods, setting the stage for a wide range of appli-
cations.

Within the healthcare and biomedical signal processing domain, ensemble learning has gained significant traction.
Multiple studies have demonstrated that ensembles can improve diagnostic accuracy by fusing diverse feature rep-
resentations and classification strategies.20, 21 In ECG analysis specifically, ensemble approaches have been used to
detect arrhythmias22 and other cardiac abnormalities, where each component model targets different ECG characteris-
tics, such as morphological features, frequency-domain information, or temporal patterns. By leveraging specialized
expertise from each learner, ensembles can yield higher sensitivity and specificity compared to single-model solutions.

More recently, researchers have begun integrating deep neural networks into ensemble pipelines, exploiting the repre-
sentational power of deep models while mitigating their tendency to overfit.23 Such ensembles often involve different
network architectures, or the same architecture trained under varying hyperparameters or data augmentation schemes.
The resulting diversity among base models is a key determinant of ensemble success, ensuring that the final aggregated
decision capitalizes on complementary insights.

However, large-scale ensemble solutions based on extensive deep networks can be computationally intensive, espe-
cially when models are pretrained on general-domain data rather than specialized ECG tasks. As a result, parameter-



efficient fine-tuning strategies, like Low-Rank Adaptation have become increasingly attractive. By selectively updating
only a fraction of model parameters, these methods preserve the advantages of ensemble diversity without incurring
prohibitive resource costs. In multi-task ECG scenarios, such approaches enable more robust, efficient, and scalable
solutions that simultaneously address various cardiac diagnostic objectives.

Method

Problem Definition. One ECG waveform X can be denoted as X ∈ RC×T , where C is the number of leads, T is the
signal length. In our study, we aim to employ a predictive model fθ(X) to perform various clinical downstream tasks,
thus ŷ = fθ(X). Specifically, the prediction can be denoted as ŷ ∈ R for continuous value regression (e.g. RR interval
estimation and age prediction), ŷ ∈ {0, 1} for binary classification (e.g. sex classification, potassium abnormality
prediction), or ŷ ∈ {0, 1, ...,K} for multi-class classification (e.g. arrhythmia detection).

To address the multi-task requirements of ECG analysis while enhancing inference efficiency, we propose a novel
framework as shown in Figure 2. Our approach fuses outputs from multiple base models (ŷ1, ŷ2, . . . , ŷN ) through
learnable weighting and employs LoRA for incremental fine-tuning of selected network layers. To determine these
weights, we integrate a Mixture of Experts framework, which learns to provide logits-aligned weights after training.
Consequently, our model significantly reduces both training and inference overhead while maintaining high predictive
accuracy. By unifying regression, classification, and other ECG-related tasks within a single architecture, it strikes an
effective balance between performance and computational efficiency.
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Figure 2: The framework of EnECG. The EnECG framework comprises three main steps. ① Because each pretrained
foundation model (M1,M2, . . . ,MN ) requires a specific input length, we downsample the ECG and feed it into the
frozen model. We then add a FFN and fine-tune it to obtain (ŷ1, ŷ2, . . . , ŷN ). ② To reduce training costs, we select
a subset of ECG leads and input them into the Mixture of Experts (MoE), which outputs gating probabilities W .
③ Finally, we ensemble the results via the weighted sum ŷ =

∑N
i=1 Wiŷi.

Getting Prediction Logits from Frozen Base Models. All base model parameters ϕ in our framework are frozen. We
then add a feedforward neural network as an output layer at the end of each model and train it. Specifically, for each



model, we obtain the logit ŷi ∈ R as: ŷi = FFN
(
Mi(downsample(X))

)
. Next, we concatenate all logits to form

ŷ ∈ RN×L, ŷ = concat(ŷ1, ŷ2, . . . , ŷN ).

Calculating Ensemble Weights. After we have the concatenated logits, we use a MoE to learn the weight W ∈ RN×K ,
W = MoE(LeadsSample(X)). Finally, we compute the ensemble logit via ŷ =

∑N
i=1 Wiŷi.

LoRA Tuning. To mitigate the high resource demands of fine-tuning large-scale pretrained models, we employ Low-
Rank Adaptation (LoRA),16 which reduces computational cost by updating only a low-rank subset of parameters
instead of the full model. In FFN layer and MoE layer, given the initial weight matrix W0 ∈ Rd×k and input x ∈ Rk,
the forward pass is: h = W0x. Rather than fine-tuning W0, LoRA applies a low-rank update:

∆W = BA, A ∈ Rr×k, B ∈ Rd×r, r ≪ min(d, k), (1)

Thus, the updated forward pass is:
hLoRA = (W0 +BA)x. (2)

By constraining the update to a low-rank space, LoRA maintains the expressiveness of large-scale models while
substantially reducing the total number of parameters that must be optimized. This makes fine-tuning both memory-
and computation-efficient, enabling us to adapt pretrained models to new tasks with minimal overhead.

Experiments

In this section, we evaluate the effectiveness of our proposed model from two key perspectives: performance and effi-
ciency. Specifically, we compare its predictive accuracy across multiple tasks and analyze its computational efficiency
in terms of training and inference costs. By examining these aspects, we aim to demonstrate the advantages of our
model in achieving a balanced trade-off between accuracy and computational feasibility.

Dataset. We utilize the MIMIC-IV-ECG24 dataset, currently the largest publicly released ECG repository, which
contains 800,035 diagnostic electrocardiograms acquired from 161,352 unique patients. Each recording is 10 seconds
in duration, sampled at 500 Hz across 12 leads, resulting in an input representation of dimension X ∈ RC×T with
C = 12 and T = 10× 500 = 5000.

Downstream tasks. We evaluate the performance of the benchmark on the following tasks:

1. RR Interval Estimation. The RR interval, which represents the time between two R-wave peaks in an ECG, is
directly calculated from the ECG signal.

2. Age Estimation. Patient age estimation involves analyzing ECG signal characteristics to estimate age, challeng-
ing the model to effectively interpret complex signal patterns correlated with physiological aging.

3. Sex Classification. Sex classification is a binary classification task with a balanced ratio of 50% to 50%.

4. Potassium Abnormality Prediction. We use ECG strips to predict the Potassium (blood) lab test result which is
taken between ECG recording time and one hour after the ECG time. This task is challegning, with imbalanced
ratio of 97% (normal) to 3% (abnormal).

5. Arrhythmia Detection. We select the 14 most frequently occurring diagnoses, with the remaining ones grouped
under “Others”, resulting in a total of 15 labels.

Among the downstream tasks, RR interval estimation and age estimation are formulated as regression problems, where
the prediction target ŷ ∈ R. We use mean absolute error (MAE) as the evaluation metric.

Sex prediction and potassium abnormality prediction are binary classification tasks, with the prediction target ŷ ∈
{0, 1}. For these tasks, we adopt the F1 score as the evaluation metric.

Arrhythmia detection is treated as a multiclass classification task, where the prediction target ŷ ∈ {1, 2, . . . ,K}, with
K = 15 representing different arrhythmia phenotypes. We use the accuracy to evaluate model performance on it.



Baselines. We select the following models as baselines and additionally construct an ensemble of them.

• TimesNet:25 A deep neural architecture originally introduced for time series multi-tasks such as forecasting,
classification, and anomaly detection. It leverages a hierarchical temporal block structure with Fourier-based
and convolutional operations to effectively model multi-scale temporal patterns. Its design allows extensions to
various downstream tasks, reflecting its versatility across different time series analysis domains.

• DLinear:26 A lightweight linear model that decomposes the input signal into trend and seasonal components,
then applies separate linear layers to each component. This approach maintains interpretability, significantly re-
duces computational complexity, and achieves forecasting accuracy comparable to more complex deep learning
methods in many scenarios.

• MOMENT:27 A family of open-source foundation models for time series analysis. It leverages masked pre-
training across large-scale, diverse time series datasets and excels in forecasting, classification, anomaly de-
tection, and imputation tasks. By sharing learned representations across different tasks, MOMENT reduces
redundant computation and maintains strong generalization, even under limited supervision.

• TEMPO:28 A specialized generative pre-trained Transformer designed for time series. TEMPO integrates
seasonal-trend decomposition with prompt-based training strategies to handle diverse and potentially multi-
modal time series inputs. It achieves strong zero-shot and few-shot forecasting performance and provides a
flexible multi-task learning framework.

• ECG-FM:29 An open foundation model tailored for ECG data. It applies self-supervised contrastive learning
and masked modeling on large-scale ECG corpora, capturing salient features that generalize to downstream
classification, regression, and diagnostic tasks. By integrating ECG-domain knowledge into large-scale pre-
training, ECG-FM reduces the need for extensive labeled data.

Research Questions. Our experiments are designed to answer following questions.

• RQ1: Why do we choose the above models and ensemble them? Numerous time-series foundation models
have been proposed in recent years. In this work, we select a representative set of baseline models based
on their popularity, diversity in architecture, and applicability to ECG analysis. We further ensemble these
baselines to evaluate whether model combination can enhance robustness and performance. All baseline models
are evaluated in a zero-shot setting. Each experiment is repeated three times, with 10,000 patients randomly
selected in each run.

• RQ2: How does the performance of EnECG compare with the baselines? We propose EnECG to address
ECG-based multi-task learning challenges. To assess its effectiveness, we compare its performance with that of
the selected fine-tuned baseline models across five downstream tasks. Each experiment is repeated three times,
with 10,000 patients randomly sampled in each trial and split into training, validation, and test sets following a
70%:20%:10% ratio.

• RQ3: How does the efficiency of EnECG compare with the baselines? Given the limited computational
resources typically available in clinical settings, model efficiency is a critical factor. We evaluate the efficiency
of EnECG by measuring GPU memory consumption and throughput (samples per second), and compare these
metrics with those of the baseline models.

• RQ4: How does the performance of MoE-based ensemble learning compare with other ensemble meth-
ods? In EnECG, we employ a MoE framework to learn expert weights, and then generating a weighted sum of
the logits from various foundation models. To evaluate its effectiveness, we conduct comparative experiments
against existing ensemble strategies,30 including confidence-aware weighting, greedy search, and a sample-
aware weight generator for ensemble weight estimation.



Results

Baseline Performance on ECG Downstream Tasks (RQ1). Each baseline model utilizes a different architecture, al-
lowing it to specialize in capturing different ECG features. As detailed in Table 1, none of the baselines performed
best on all five ECG downstream tasks. Due to its ECG specific pretraining, ECG-FM generally outperforms other
models, underscoring the value of domain, specific knowledge in accurately interpreting ECG signals. However, in
the sex classification task, TimesNet achieves superior accuracy, we suppose due to its CNN-based structure that
effectively captures localized ECG wave morphology differences between genders in medical diagnostics. Addition-
ally, both DLinear and TEMPO exhibit strong performance in certain specialized tasks, indicating their capacity to
model underlying trends and temporal dependencies crucial for specific clinical assessments. Although MOMENT
does not achieve top results in the zero-shot scenario, its large-parameter architecture and extensive pretraining on di-
verse time-series datasets and tasks potentially equip it with generalized feature extraction abilities valuable for more
comprehensive ECG interpretation when fine-tuned or incorporated into ensembles. Understanding the individual
advantages of these baseline models from a clinical standpoint helps justify combining their strengths and clinically
actionable predictions.
Table 1: Zero-shot performance of baseline models on ECG data. Highlighted are the top first and second results. RR
Interval Estimation, Age Estimation, Sex Classification, Potassium Abnormality Prediction, Arrhythmia Detection are
denoted as RR, Age, Sex, Ka, AD respectively.

TimesNet DLinear MOMENT TEMPO ECG-FM

Regression
(MAE)↓

RR 817.0± 2.5 816.4± 2.9 816.6± 2.1 816.3 ± 1.9 816.3 ± 1.9
Age 62.28± 0.36 62.63± 0.50 62.61± 0.37 62.33± 0.38 62.27 ± 0.38

Binary Class
(F1)↑

Sex 0.60 ± 0.00 0.51± 0.08 0.34± 0.00 0.42± 0.00 0.33± 0.00

Ka 0.06± 0.00 0.05± 0.00 0.02± 0.00 0.18± 0.00 0.35 ± 0.00

15 Class
(ACC)↑ AD 0.06± 0.01 0.03± 0.02 0.03± 0.02 0.02± 0.00 0.07 ± 0.00

Evaluating the Performance of EnECG vs. Baselines (RQ2). In this experiment, all baseline models were fine-tuned
individually on each of the five ECG downstream tasks, with detailed results presented in Table 2. EnECG consistently
achieves superior predictive performance across these tasks, underscoring the effectiveness of integrating specialized
foundation models to improve diagnostic accuracy in clinical practice. In the RR interval estimation task, EnECG
demonstrates an approximate 38% improvement over TEMPO, the second-best performing baseline. Such substantial
enhancement in RR interval prediction can significantly aid clinicians in better assessing patient cardiac conditions,
potentially leading to earlier detection and intervention for arrhythmias or other cardiovascular anomalies.

Although EnECG does not achieve the absolute highest accuracy in the sex classification task, it remains highly com-
petitive, delivering stable predictions that closely match the MOMENT. Importantly, MOMENT requires substantially
more computational resources (as detailed in RQ3). It can help hospitals reduce the cost of training high-performance
models.

Evaluating the Computational Efficiency of EnECG vs. Baselines (RQ3). The efficiency comparison of different mod-
els for the RR interval estimation task is illustrated in Figure 3. Since all five downstream tasks utilize the same dataset
and differ only in their target labels, their computational costs during training are expected to be similar. We evaluate
efficiency by measuring active GPU memory usage (in MB) and throughput (in iterations per second).

As shown in Figure 3(a), EnECG achieves the highest performance while maintaining GPU memory usage below
10 GB. Such modest computational requirements are achievable with consumer-grade GPUs, significantly reducing
hardware expenses and infrastructure costs in hospital settings, thus making advanced AI-assisted ECG interpretation
accessible even for facilities with limited resources. Although TimesNet and DLinear demonstrate lower GPU memory
consumption, their substantially inferior predictive accuracy limits their practical utility, especially in critical health-



Table 2: Performance of fine-tuned baseline models on five ECG downstream tasks. Bold values represent the best
test performance.

TimesNet DLinear MOMENT TEMPO ECG-FM EnECG

Regression
(MAE)↓

RR 304.3± 4.3 786.0± 5.4 146.9± 1.3 141.5± 2.1 147.3± 1.3 87.69 ± 6.4
Age 24.89± 0.07 28.46± 0.74 13.41± 0.45 13.52± 0.31 13.49± 0.17 12.97 ± 0.61

Binary Class
(F1)↑

Sex 0.51± 0.05 0.57± 0.01 0.69 ± 0.02 0.54± 0.01 0.52± 0.05 0.69 ± 0.01
Ka 0.01± 0.01 0.01± 0.01 0.49± 0.00 0.50± 0.00 0.49± 0.00 0.53 ± 0.01

15 Class
(ACC)↑ AD 0.03± 0.00 0.48± 0.02 0.66± 0.03 0.54± 0.14 0.49± 0.03 0.76 ± 0.01

care scenarios where accuracy directly impacts patient safety and outcomes. On the other hand, MOMENT, TEMPO,
and ECG-FM utilize a comparable level of GPU resources, highlighting EnECG’s superior resource efficiency and
effectiveness in clinical environments.

From Figure 3(b), EnECG achieves a throughout exceeding 10 samples per second, meaning a single patient’s ECG
data can be analyzed and interpreted within approximately 0.1 seconds. Such quick processing time is particularly
significant in medical contexts, where timely diagnostic decisions can help improve emergency responsiveness. Rapid
and accurate ECG analysis supports prompt medical interventions, minimizes potential delays in diagnosis, and con-
tributes directly to improved patient outcomes. Consequently, EnECG’s combination of high computational efficiency
and strong predictive performance makes it especially suited to real-world medical applications.

(a) GPU Memory Usage (b) Throughout
Figure 3: Training efficiency in the RR interval estimation task. We evaluate both GPU memory usage and throughput
alongside model performance. In (a), models closer to the bottom-left corner exhibit better performance with lower
memory consumption. In (b), models closer to the bottom-right corner demonstrate better performance and higher
training efficiency.
Evaluating the Ensemble Weighting of EnECG vs. Existing Methods (RQ4). Since the zero-shot ensemble method re-
lies on computing the cosine similarity between prediction logits and ground truth labels, it is inherently less suitable
for regression tasks, which require continuous numerical outputs critical for clinical measurements such as RR in-
tervals or age estimation. As shown in Table 3, EnECG consistently outperforms alternative ensemble strategies,
including the training-free and tuning-based methods, across four downstream tasks.

Moreover, EnECG demonstrates notably lower standard deviations in predictive performance, reflecting greater model
stability, particularly in regression tasks. This stability is medically significant, as variability or inconsistencies in
predictive outputs can lead to clinical misinterpretations or delayed decision-making, potentially compromising patient



safety. Reliable predictions are crucial in clinical environments to guide timely interventions and optimize patient
outcomes. By effectively integrating multiple specialized foundation models through a MoE framework, EnECG
maximizes the strengths and mitigates individual model limitations, resulting in more consistent, dependable clinical
predictions.
Table 3: Performance comparison of ensemble weighting methods. We compare three approaches: confidence-aware
weighting (“Zero-shot”), greedy search (“Training-free”), and a sample-aware weight generator (“Tuning”), as defined
in the original paper.30 Bold values denote the best test performance.“-” means can not applied in regression task.

Zero-shot Training-free Tuning EnECG

Regression
(MAE)↓

RR - 369.7± 317.8 140.6± 48.7 87.69 ± 6.4
Age - 26.43± 21.06 13.07± 1.03 12.97 ± 0.61

Binary Class
(F1)↑

Sex 0.60± 0.05 0.34± 0.00 0.57± 0.01 0.69 ± 0.01
Ka 0.49± 0.00 0.49± 0.00 0.49± 0.00 0.53 ± 0.01

15 Class
(ACC)↑ AD 0.21± 0.03 0.12± 0.00 0.78 ± 0.02 0.76 ± 0.01

Conclusion

In this study, we proposed EnECG, a Mixture-of-Experts (MoE)-based ensemble framework designed for multi-task
electrocardiogram (ECG) analysis. By integrating multiple specialized models, EnECG consistently achieves superior
accuracy and stability across clinically important ECG tasks, including regression (RR interval and age estimation)
and classification (sex, potassium abnormality and arrhythmia). Our work also demonstrates efficient computational
resource usage. This efficiency facilitates rapid and reliable clinical decision-making, potentially enhancing patient
outcomes through timely diagnostics. To address the limitation of EnECG (e.g. outperforming all baselines except
Tuning ensemble in arrhythmia detection), future work will focus on adaptive ensemble strategies and dynamic ex-
pert selection mechanisms to further enhance predictive accuracy across individual ECG tasks, as well as develop a
comprehensive ECG foundation model system designed to further support clinical decisions.
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