
EHRAgent: Code Empowers Large Language Models for Few-shot
Complex Tabular Reasoning on Electronic Health Records

Wenqi Shi1* Ran Xu2* Yuchen Zhuang1 Yue Yu1 Jieyu Zhang3

Hang Wu1 Yuanda Zhu1 Joyce Ho2 Carl Yang2 May D. Wang1

1 Georgia Institute of Technology 2 Emory University 3 University of Washington
{wqshi,yczhuang,yueyu,hangwu,yzhu94,maywang}@gatech.edu,

{ran.xu,joyce.c.ho,j.carlyang}@emory.edu, jieyuz2@cs.washington.edu

Abstract

Clinicians often rely on data engineers to re-
trieve complex patient information from elec-
tronic health record (EHR) systems, a process
that is both inefficient and time-consuming. We
propose EHRAgent1, a large language model
(LLM) agent empowered with accumulative do-
main knowledge and robust coding capability.
EHRAgent enables autonomous code generation
and execution to facilitate clinicians in directly
interacting with EHRs using natural language.
Specifically, we formulate a multi-tabular rea-
soning task based on EHRs as a tool-use plan-
ning process, efficiently decomposing a com-
plex task into a sequence of manageable actions
with external toolsets. We first inject relevant
medical information to enable EHRAgent to ef-
fectively reason about the given query, identify-
ing and extracting the required records from the
appropriate tables. By integrating interactive
coding and execution feedback, EHRAgent then
effectively learns from error messages and iter-
atively improves its originally generated code.
Experiments on three real-world EHR datasets
show that EHRAgent outperforms the strongest
baseline by up to 29.6% in success rate, verify-
ing its strong capacity to tackle complex clini-
cal tasks with minimal demonstrations.

1 Introduction

An electronic health record (EHR) is a digital ver-
sion of a patient’s medical history maintained by
healthcare providers over time (Gunter and Terry,
2005). In clinical research and practice, clinicians
actively interact with EHR systems to access and re-
trieve patient data, ranging from detailed individual-
level records to comprehensive population-level
insights (Cowie et al., 2017). The reliance on
pre-defined rule-based conversion systems in most
EHRs often necessitates additional training or as-

* Equal contribution.
1Our implementation of EHRAgent is available at https:

//github.com/wshi83/EhrAgent.

Clinicians

EHR SystemsEngineers

LLM Agent
w/ Tools

Medical
Information

Long-Term
Memory

Debugging Code
Interface

Qu
es
ti
on

An
sw
er

Code

Answer

EHRAgent

Figure 1: Simple and efficient interactions between clin-
icians and EHR systems with the assistance of LLM
agents. Clinicians specify tasks in natural language, and
the LLM agent autonomously generates and executes
code to interact with EHRs (right) for answers. It elimi-
nates the need for specialized expertise or extra effort
from data engineers, which is typically required when
dealing with EHRs in existing clinical settings (left).

sistance from data engineers for clinicians to ob-
tain information beyond these rules (Mandel et al.,
2016; Bender and Sartipi, 2013), leading to inef-
ficiencies and delays that may impact the quality
and timeliness of patient care.

Alternatively, an autonomous agent could facili-
tate clinicians to communicate with EHRs in nat-
ural languages, translating clinical questions into
machine-interpretable queries, planning a sequence
of actions, and ultimately delivering the final re-
sponses. Compared to existing EHR management
that relies heavily on human effort, the adoption
of autonomous agents holds great potential to effi-
ciently simplify workflows and reduce workloads
for clinicians (Figure 1). Although several super-
vised learning approaches (Lee et al., 2022; Wang
et al., 2020) have been explored to automate the
translation of clinical questions into correspond-
ing machine queries, such systems require exten-
sive training samples with fine-grained annotations,
which are both expensive and challenging to obtain.

Large language models (LLMs) (OpenAI, 2023;
Anil et al., 2023) bring us one step closer to au-
tonomous agents with extensive knowledge and
substantial instruction-following abilities from di-

https://github.com/wshi83/EhrAgent
https://github.com/wshi83/EhrAgent

WikiSQL SPIDER MIMIC-III eICU TREQS

10 1

100

101

102

103

Ro
ws

/Ta
bl

e
(k

)

0.017

2

81
152

498

(a) # Rows(k) per Table

WikiSQL SPIDER TREQS eICU MIMIC-III
1.00

1.25

1.50

1.75

2.00

2.25

2.50

Ta

bl
es

/Q
ue

st
io

n

1.01 1.1

1.48

1.74

2.52

(b) # Tables per Question

Figure 2: Compared to general domain tasks (blue)
such as WikiSQL (Zhong et al., 2017) and SPIDER (Yu
et al., 2018), multi-tabular reasoning tasks within EHRs
(orange) typically involve a significantly larger number
of records per table and necessitate querying multiple
tables to answer each question, thereby requiring more
advanced reasoning and problem-solving capabilities.

verse corpora during pretraining. LLM-based au-
tonomous agents have demonstrated remarkable
capabilities in problem-solving, such as reason-
ing (Wei et al., 2022), planning (Yao et al., 2023b),
and memorizing (Wang et al., 2023b). One par-
ticularly notable capability of LLM agents is tool-
usage (Schick et al., 2023; Qin et al., 2023), where
they can utilize external tools (e.g., calculators,
APIs, etc.), interact with environments, and gener-
ate action plans with intermediate reasoning steps
that can be executed sequentially towards a valid
solution (Wu et al., 2023; Zhang et al., 2023).

Despite their success in general domains, LLMs
have encountered unique and significant challenges
in the medical domain (Jiang et al., 2023; Yang
et al., 2022; Moor et al., 2023), especially when
dealing with individual EHR queries that require
advanced reasoning across a vast number of records
within multiple tables (Li et al., 2024; Lee et al.,
2022) (Figure 2). First, given the constraints in both
the volume and specificity of training data within
the medical field (Thapa and Adhikari, 2023),
LLMs still struggle to identify and extract relevant
information from the appropriate tables and records
within EHRs, due to insufficient knowledge and un-
derstanding of their complex structure and content.
Second, EHRs are typically large-scale relational
databases containing vast amounts of tables with
comprehensive administrative and clinical informa-
tion (e.g., 26 tables of 46K patients in MIMIC-III).
Moreover, real-world clinical tasks derived from
individual patients or specific groups are highly
diverse and complex, requiring multi-step or com-
plicated operations.

To address these limitations, we propose
EHRAgent, an autonomous LLM agent with exter-
nal tools and code interface for improved multi-

tabular reasoning across EHRs. We translate the
EHR question-answering problem into a tool-use
planning process – generating, executing, debug-
ging, and optimizing a sequence of code-based
actions. Firstly, to overcome the lack of domain
knowledge in LLMs, we instruct EHRAgent to in-
tegrate query-specific medical information for ef-
fectively reasoning from the given query and locat-
ing the query-related tables or records. Moreover,
we incorporate long-term memory to continuously
maintain a set of successful cases and dynamically
select the most relevant few-shot examples, in or-
der to effectively learn from and improve upon
past experiences. Secondly, we establish an inter-
active coding mechanism, which involves a multi-
turn dialogue between the code planner and execu-
tor, iteratively refining the generated code-based
plan for complex multi-hop reasoning. Specifically,
EHRAgent optimizes the execution plan by incorpo-
rating environment feedback and delving into error
messages to enhance debugging proficiency.

We conduct extensive experiments on three large-
scale real-world EHR datasets to validate the em-
pirical effectiveness of EHRAgent, with a particu-
lar focus on challenging tasks that reflect diverse
information needs and align with real-world appli-
cation scenarios. In contrast to traditional super-
vised settings (Lee et al., 2022; Wang et al., 2020)
that require over 10K training samples with man-
ually crafted annotations, EHRAgent demonstrates
its efficiency by necessitating only four demon-
strations. Our findings suggest that EHRAgent im-
proves multi-tabular reasoning on EHRs through
autonomous code generation and execution, lever-
aging accumulative domain knowledge and inter-
active environmental feedback.

Our main contributions are as follows:
• We propose EHRAgent, an LLM agent aug-

mented with external tools and domain knowledge,
to solve few-shot multi-tabular reasoning derived
from EHRs with only four demonstrations;
• Planning with a code interface, EHRAgent for-

mulates a complex clinical problem-solving pro-
cess as an executable code plan of action sequences,
along with a code executor;
• We introduce interactive coding between the

LLM agent and code executor, iteratively refining
plan generation and optimizing code execution by
examining environmental feedback in depth;
• Experiments on three EHR datasets show that

EHRAgent improves the strongest baseline on multi-
hop reasoning by up to 29.6% in success rate.

Question: What is the maximum total hospital cost that involves a diagnosis named comp-oth
vasc dev/graft since 1 year ago?Clinician

Existing Clinical Workflow

Clinician EHREngineer

select max(t1.c1) from (
select sum(cost.cost) as
c1 from cost where
cost.hadm_id in …

EHRAgent (Ours)

EHRAgent

Assume you have knowledge of following
medical records: [EHR_metadata]. Write a
Python code to solve the given question.
You can use the following functions:
[api_name, api_description]. Here are some
examples: [k-shot demonstrations]. The
related knowledge to the question is
given: [medical information]. Question:
[question]. Solution:

EHR
Metadata

(1) Charted events are stored in a series of
‘events’ tables…

(2) Tables prefixed with ‘d_’ are dictionary…
(3) Four databases are used to define and

track patient stays…

Tool Set
(API)

def LoadDB(DBName):
Load the database DBName …

def FilterDB(CONDITIONS):
Filter the data with CONDITIONS …

def GetValue(ARGUMENT):
Get the values of the selected columns …

- As comp-oth vasc dev/graft is a
diagnose, the corresponding ICD9_CODE
can be found in the d_icd_diagnoses
database.
- The ICD9_CODE can be used to find the
corresponding HADM_ID in the
diagnoses_icd database.
- The HADM_ID can be used to find the
corresponding COST in the cost database.

Med.
Info.

...
icd_code = GetValue("ICD9_CODE")
diagnoses_icd_db = LoadDB("diagnoses_icd")
filtered_icd_db = FilterDB("ICD9_CODE={icd_code}")
hadm_id_list = GetValue("HADM_ID")
max_cost = 0
for hadm_id in hadm_id_list:

cost_db = LoadDB("cost")
filtered_cost_db = FilterDB("HADM_ID={hadm_id}")

...

EHRAgent

date = Calendar("-1 year")
diagnosis_db = LoadDB("d_icd_diagnoses")
filtered_diagnosis_db = FilterDB("SHORT_TITLE=comp
-oth vasc dev/graft")
icd_code = GetValue("ICD9_CODE")
max_cost = 0
for hadm_id in hadm_id_list:

cost_db = LoadDB("cost")
filtered_cost_db = FilterDB(”ICD9_CODE={icd_code}")
...

EHRAgent

Runtime Error: There is not column named
"ICD9_CODE" in the "cost" database.

Executor

Clinician EHRAgent EHR

Natural
Language

Code
Plan

Output: Final Answer

Long-Term
MemoryUpdated K-

shot Demo.

Potential Reasons: The
most possible reason for
the error is that ...

• Question
• Original Code
• Error Message Debugger

Figure 3: Overview of our proposed LLM agent, EHRAgent, for complex few-shot tabular reasoning tasks on EHRs.
Given an input clinical question based on EHRs, EHRAgent decomposes the task and generates a plan (i.e., code)
based on (a) metadata (i.e., descriptions of tables and columns in EHRs), (b) tool function definitions, (c) few-shot
examples, and (d) domain knowledge (i.e., integrated medical information). Upon execution, EHRAgent iteratively
debugs the generated code following the execution errors and ultimately generates the final solution.

2 Preliminaries

Problem Formulation. In this work, we focus
on addressing health-related queries by leveraging
information from structured EHRs. The reference
EHR, denoted as R = {R0, R1, · · · }, comprises
multiple tables, while C = {C0, C1, · · · } corre-
sponds to the column descriptions within R. For
each given query in natural language, denoted as q,
our goal is to extract the final answer by utilizing
the information within both R and C.
LLM Agent Setup. We further formulate the plan-
ning process for LLMs as autonomous agents in
EHR question answering. For initialization, the
LLM agent is equipped with a set of pre-built tools
M = {M0,M1, · · · } to interact with and address
queries derived from EHRs R. Given an input
query q ∈ Q from the task space Q, the objec-
tive of the LLM agent is to design a T -step execu-
tion plan P = (a1, a2, · · · , aT), with each action
at selected from the tool set at ∈ M. Specifi-
cally, we generate the action sequences (i.e., plan)
by prompting the LLM agent following a policy
pq ∼ π(a1, · · · , aTq |q;R,M) : Q × R × M →
∆(M)Tq , where ∆(·) is a probability simplex func-

tion. The final output is obtained by executing the
entire plan y ∼ ρ(y|q, a1, · · · , aTq), where ρ is a
plan executor interacting with EHRs.

Planning with Code Interface. To mitigate am-
biguities and misinterpretations in plan genera-
tion, an increasing number of LLM agents (Gao
et al., 2023; Liang et al., 2023; Sun et al., 2023;
Chen et al., 2023; Zhuang et al., 2024) employ
code prompts as planner interface instead of natu-
ral language prompts. The code interface enables
LLM agents to formulate an executable code plan
as action sequences, intuitively transforming natu-
ral language question-answering into iterative cod-
ing (Yang et al., 2023). Consequently, the planning
policy π(·) turns into a code generation process,
with a code execution as the executor ρ(·). We
then track the outcome of each interaction back to
the LLM agent, which can be either a successful
execution result or an error message, to iteratively
refine the generated code-based plan. This inter-
active process, a multi-turn dialogue between the
planner and executor, takes advantage of the ad-
vanced reasoning capabilities of LLMs to optimize
plan refinement and execution.

Algorithm 1: Overview of EHRAgent.
Input: q: input question;R: reference EHRs; Ci:

column description of EHR Ri; D:
descriptions of EHRsR; T : the maximum
number of steps; T : definitions of tool
function; L: long-term memory.

Initialize t← 0, C(0)(q)← ∅, O(0)(q)← ∅
// Medical Information Integration
I = [D; C0; C1; · · ·]
B(q) = LLM([I; q])
// Examples Retrieval from Long-Term Memory
E(q) = argTopKmax(sim(q, qi|qi ∈ L))
// Plan Generation
C(0)(q) = LLM([I; T ; E(q); q;B(q)])

while t < T & TERMINATE /∈ O(t)(q) do
// Code Execution
O(t)(q) = EXECUTE(C(t)(q))
// Debugging and Plan Modification
C(t+1)(q) = LLM(DEBUG(O(t)(q)))
t← t+ 1

Output: Final answer (solved) or error message
(unsolved) from O(t)(q).

3 EHRAgent: LLMs as Medical Agents

In this section, we present EHRAgent (Figure 3),
an LLM agent that enables multi-turn interactive
coding to address multi-hop reasoning tasks on
EHRs. EHRAgent comprises four key components:
(1) Medical Information Integration: We incor-
porate query-specific medical information for ef-
fective reasoning based on the given query, en-
abling EHRAgent to identify and retrieve the nec-
essary tables and records for answering the ques-
tion. (2) Demonstration Optimization through
Long-Term Memory: Using long-term memory,
EHRAgent replaces original few-shot demonstra-
tions with the most relevant successful cases re-
trieved from past experiences. (3) Interactive
Coding with Execution Feedback: EHRAgent har-
nesses LLMs as autonomous agents in a multi-turn
conversation with a code executor. (4) Rubber
Duck Debugging via Error Tracing: Rather than
simply sending back information from the code
executor, EHRAgent thoroughly analyzes error mes-
sages to identify the underlying causes of errors
through iterations until a final solution. We sum-
marize the workflow of EHRAgent in Algorithm 1.

3.1 Medical Information Integration

Clinicians frequently pose complex inquiries that
necessitate advanced reasoning across multiple ta-
bles and access to a vast number of records within a
single query. To accurately identify the required ta-
bles, we first incorporate query-specific medical in-
formation (i.e., domain knowledge) into EHRAgent

to develop a comprehensive understanding of the
query within a limited context length. Given an
EHR-based clinical question q and the reference
EHRs R = {R0, R1, · · · }, the objective of infor-
mation integration is to generate the domain knowl-
edge most relevant to q, thereby facilitating the
identification and location of potential useful refer-
ences within R. For example, given a query related
to ‘Aspirin’, we expect LLMs to locate the drug
‘Aspirin’ at the PRESCRIPTION table, under the
prescription_name column in the EHR.

To achieve this, we initially maintain a thorough
metadata I of all the reference EHRs, including
overall data descriptions D and the detailed col-
umn descriptions Ci for each individual EHR Ri,
expressed as I = [D; C0; C1; · · ·]. To further ex-
tract additional background knowledge essential
for addressing the complex query q, we then distill
key information from the detailed introduction I.
Specifically, we directly prompt LLMs to generate
the relevant information B(q) based on demonstra-
tions, denoted as B(q) = LLM([I; q]).

3.2 Demonstration Optimization through
Long-Term Memory

Due to the vast volume of information within
EHRs and the complexity of the clinical questions,
there exists a conflict between limited input con-
text length and the number of few-shot examples.
Specifically, K-shot examples may not adequately
cover the entire question types as well as the EHR
information. To address this, we maintain a long-
term memory L for storing past successful code
snippets and reorganizing few-shot examples by
retrieving the most relevant samples from L. Con-
sequently, the LLM agent can learn from and ap-
ply patterns observed in past successes to current
queries. The selection of K-shot demonstrations
E(q) is defined as follows:

E(q) = arg TopKmax(sim(q, qi|qi ∈ L)), (1)

where arg TopKmax(·) identifies the indices of
the top K elements with the highest values from
L, and sim(·, ·) calculates the similarity between
two questions, employing negative Levenshtein
distance as the similarity metric. Following this
retrieval process, the newly acquired K-shot ex-
amples E(q) replace the originally predefined ex-
amples E = {E1, · · · , EK}. This updated set of
examples serves to reformulate the prompt, guid-
ing EHRAgent in optimal demonstration selection
by leveraging accumulative domain knowledge.

3.3 Interactive Coding with Execution
We then introduce interactive coding between the
LLM agent (i.e., code generator) and code executor
to facilitate iterative plan refinement. EHRAgent in-
tegrates LLMs with a code executor in a multi-turn
conversation. The code executor runs the generated
code and returns the results to the LLM. Within the
conversation, EHRAgent navigates the subsequent
phase of the dialogue, where the LLM agent is ex-
pected to either (1) continue to iteratively refine its
original code in response to any errors encountered
or (2) finally deliver a conclusive answer based on
the successful execution outcomes.
LLM Agent. To generate accurate code snippets
C(q) as solution plans for the query q, we prompt
the LLM agent with a combination of the EHR in-
troduction I, tool function definitions T , a set of
K-shot examples E(q) updated by long-term mem-
ory, the input query q, and the integrated medical
information relevant to the query B(q):

C(q) = LLM([I; T ; E(q); q;B(q)]). (2)

We develop the LLM agent to (1) generate code
within a designated coding block as required, (2)
modify the code according to the outcomes of its
execution, and (3) insert a specific code âĂIJTER-
MINATEâĂİ at the end of its response to indicate
the conclusion of the conversation.
Code Executor. The code executor automati-
cally extracts the code from the LLM agent’s out-
put and executes it within the local environment:
O(q) = EXECUTE(C(q)). After execution, it
sends back the execution results to the LLM agent
for potential plan refinement and further process-
ing. Given the alignment of empirical observations
and Python’s inherent modularity with tool func-
tions2, we select Python 3.9 as the primary coding
language for interactions between the LLM agent
and the code executor.

3.4 Rubber Duck Debugging via Error
Tracing

Our empirical observations indicate that LLM
agents tend to make slight modifications to the code
snippets based on the error message without further
debugging. In contrast, human programmers often
delve deeper, identifying bugs or underlying causes
by analyzing the code implementation against the
error descriptions (Chen et al., 2024). Inspired

2We include additional analysis in Appendix D to further
justify the selection of primary programming language.

by this, we integrate a ‘rubber duck debugging’
pipeline with error tracing to refine plans with the
LLM agent. Specifically, we provide detailed trace
feedback, including error type, message, and loca-
tion, all parsed from the error information by the
code executor. Subsequently, this error context is
presented to a ‘rubber duck’ LLM, prompting it to
generate the most probable causes of the error. The
generated explanations are then fed back into the
conversation flow, aiding in the debugging process.
For the t-th interaction between the LLM agent and
the code executor, the process is as follows:

O(t)(q) = EXECUTE(C(t)(q)),

C(t+1)(q) = LLM(DEBUG(O(t)(q))).
(3)

The interaction ends either when a ‘TERMINATE’
signal appears in the generated messages or when
t reaches a pre-defined threshold of steps T .

4 Experiments

4.1 Experiment Setup
Tasks and Datasets. We evaluate EHRAgent on
three publicly available structured EHR datasets,
MIMIC-III (Johnson et al., 2016), eICU (Pollard
et al., 2018), and TREQS (Wang et al., 2020) for
multi-hop question and answering on EHRs. These
questions originate from real-world clinical needs
and cover a wide range of tabular queries com-
monly posed within EHRs. Our final dataset in-
cludes an average of 10.7 tables and 718.7 exam-
ples per dataset, with an average of 1.91 tables
required to answer each question. We include addi-
tional dataset details in Appendix A.
Tool Sets. To enable LLMs in complex operations
such as calculations and information retrieval, we
integrate external tools in EHRAgent during the in-
teraction with EHRs. Our toolkit can be easily
expanded with natural language tool function defi-
nitions in a plug-and-play manner. Toolset details
are available in Appendix B.
Baselines. We compare EHRAgent with nine LLM-
based planning, tool use, and coding methods, in-
cluding five baselines with natural language inter-
faces and four with coding interfaces. For a fair
comparison, all baselines, including EHRAgent, uti-
lize the same (a) EHR metadata, (b) tool defini-
tions, and (c) initial few-shot demonstrations in the
prompts by default. We summarize their implemen-
tations in Appendix C.
Evaluation Protocol. Following Yao et al.
(2023b); Sun et al. (2023); Shinn et al. (2023), our

Dataset (→) MIMIC-III eICU TREQS

Complexity Level (→) I II III IV All I II III All I II III All

Methods (↓) /Metrics (→) SR. SR. CR. SR. SR. CR. SR. SR. CR.

w/o Code Interface

CoT (Wei et al., 2022) 29.33 12.88 3.08 2.11 9.58 38.23 26.73 33.00 8.33 27.34 65.65 11.22 9.15 0.00 9.84 54.02
Self-Consistency (Wang et al., 2023d) 33.33 16.56 4.62 1.05 10.17 40.34 27.11 34.67 6.25 31.72 70.69 12.60 11.16 0.00 11.45 57.83
Chameleon (Lu et al., 2023) 38.67 14.11 4.62 4.21 12.77 42.76 31.09 34.68 16.67 35.06 83.41 13.58 12.72 4.55 12.25 60.34
ReAct (Yao et al., 2023b) 34.67 12.27 3.85 2.11 10.38 25.92 27.82 34.24 15.38 33.33 73.68 33.86 26.12 9.09 29.22 78.31
Reflexion (Shinn et al., 2023) 41.05 19.31 12.57 11.96 19.48 57.07 38.08 33.33 15.38 36.72 80.00 35.04 29.91 9.09 31.53 80.02

w/ Code Interface

LLM2SQL (Nan et al., 2023) 23.68 10.64 6.98 4.83 13.10 44.83 20.48 25.13 12.50 23.28 51.72 39.61 36.43 12.73 37.89 79.22
DIN-SQL (Pourreza and Rafiei, 2023) 49.51 44.22 36.25 21.85 38.45 81.72 23.49 26.13 12.50 25.00 55.00 41.34 36.38 12.73 38.05 82.73
Self-Debugging (Chen et al., 2024) 50.00 46.93 30.12 27.61 39.05 71.24 32.53 21.86 25.00 30.52 66.90 43.54 36.65 18.18 40.10 84.44
AutoGen (Wu et al., 2023) 36.00 28.13 15.33 11.11 22.49 61.47 42.77 40.70 18.75 40.69 86.21 46.65 19.42 0.00 33.13 85.38
EHRAgent (Ours) 71.58 66.34 49.70 49.14 58.97 85.86 54.82 53.52 25.00 53.10 91.72 78.94 61.16 27.27 69.70 88.02

Table 1: Main results of success rate (i.e., SR.) and completion rate (i.e., CR.) on MIMIC-III, eICU, and TREQS
datasets. The complexity of questions increases from Level I (the simplest) to Level IV (the most difficult).

primary evaluation metric is success rate, quanti-
fying the percentage of queries the model handles
successfully. Following Xu et al. (2023); Kirk et al.
(2024), we further assess completion rate, which
represents the percentage of queries that the model
can generate executable plans (even not yield cor-
rect results). We categorize input queries into com-
plexity levels (I-IV) based on the number of tables
involved in solution generation. We include more
details in Appendix A.2.
Implementation Details. We employ GPT-4 (Ope-
nAI, 2023) (version gpt-4-0613) as the base LLM
model for all experiments. We set the temperature
to 0 when making API calls to GPT-4 to elimi-
nate randomness and set the pre-defined threshold
of steps (T) to 10. Due to the maximum length
limitations of input context in baselines (e.g., Re-
Act and Chameleon), we use the same initial four-
shot demonstrations (K = 4) for all baselines and
EHRAgent to ensure a fair comparison. Appendix E
provides additional implementation details with
prompt templates.

4.2 Main Results

Table 1 summarizes the experimental results of
EHRAgent and baselines on multi-tabular reason-
ing within EHRs. From the results, we have the
following observations:
(1) EHRAgent significantly outperforms all the base-
lines on all three datasets with a performance gain
of 19.92%, 12.41%, and 29.60%, respectively. This
indicates the efficacy of our key designs, namely
interactive coding with environment feedback and
domain knowledge injection, as they gradually re-
fine the generated code and provide sufficient back-

ground information during the planning process.
Experimental results with additional base LLMs
are available in Appendix F.1.
(2) CoT, Self-Consistency, and Chameleon all ne-
glect environmental feedback and cannot adap-
tively refine their planning processes. Such defi-
ciencies hinder their performance in EHR question-
answering scenarios, as the success rates for these
methods on three datasets are all below 40%.
(3) ReAct and Reflexion both consider environment
feedback but are restricted to tool-generated error
messages. Thus, they potentially overlook the over-
all planning process. Moreover, they both lack a
code interface, which prevents them from efficient
action planning, and results in lengthy context exe-
cution and lower completion rates.
(4) LLM2SQL and DIN-SQL leverage LLM to di-
rectly generate SQL queries for EHR question-
answering tasks. However, the gain is rather lim-
ited, as the LLM still struggles to generate high-
quality SQL codes for execution. Besides, the ab-
sence of the debugging module further impedes its
overall performance on this challenging task.
(5) Self-Debugging and AutoGen present a notable
performance gain over other baselines, as they
leverage code interfaces and consider the errors
from the coding environment, leading to a large
improvement in the completion rate. However, as
they fail to model medical knowledge or identify
underlying causes from error patterns, their success
rates are still sub-optimal.

4.3 Ablation Studies

Our ablation studies on MIMIC-III (Table 2)
demonstrate the effectiveness of all four compo-

Complexity Level (→) I II III IV All

Methods (↓) /Metrics (→) SR. SR. CR.

EHRAgent 71.58 66.34 49.70 49.14 58.97 85.86
w/o medical information 68.42 33.33 29.63 20.00 33.66 69.22
w/o long-term memory 65.96 54.46 37.13 42.74 51.73 83.42
w/o interactive coding 45.33 23.90 20.97 13.33 24.55 62.14
w/o rubber duck debugging 55.00 38.46 41.67 35.71 42.86 77.19

Table 2: Ablation studies on success rate (i.e., SR.)
and completion rate (i.e., CR.) under different question
complexity (I-IV) on MIMIC-III dataset.

nents in EHRAgent. Interactive coding3 is the most
significant contributor across all complexity levels,
which highlights the importance of code genera-
tion in planning and environmental interaction for
refinement. In addition, more challenging tasks
benefits more from knowledge integration, indi-
cating that comprehensive understanding of EHRs
facilitates the complex multi-tabular reasoning in
effective schema linking and reference (e.g., tables,
columns, and condition values) identification. De-
tailed analysis with additional settings and results
is available in Appendix F.2.

4.4 Quantitative Analysis

Effect of Question Complexity. We take a closer
look at the model performance by considering
multi-dimensional measurements of question com-
plexity, exhibited in Figure 4. Although the perfor-
mances of both EHRAgent and the baselines gener-
ally decrease with an increase in task complexity
(either quantified as more elements in queries or
more columns in solutions), EHRAgent consistently
outperforms all the baselines at various levels of
difficulty. Appendix G.1 includes additional analy-
sis on the effect of various question complexities.
Sample Efficiency. Figure 5 illustrates the model
performance w.r.t. number of demonstrations for
EHRAgent and the two strongest baselines, Au-
toGen and Self-Debugging. Compared to super-
vised learning like text-to-SQL (Wang et al., 2020;
Raghavan et al., 2021; Lee et al., 2022) that re-
quires extensive training on over 10K samples with
detailed annotations (e.g., manually generated cor-
responding code for each query), LLM agents en-
able complex tabular reasoning using a few demon-
strations only. One interesting finding is that as
the number of examples increases, both the success
and completion rate of AutoGen tend to decrease,

3For EHRAgent w/o interactive coding, we deteriorate from
generating code-based to natural language-based plans and en-
able debugging based on error messages from tool execution.

1 2 3 4 5 6 7
Element in Question

0

20

40

60

80

100

Su
cc

es
s R

at
e

ReAct
Chameleon
AutoGen
Self-Debugging
EHRAgent

(a) success rate

1 2 3 4 5 6 7
Element in Question

20

40

60

80

100

Co
m

pl
et

io
n

Ra
te

(b) completion rate

1 2 3 4 5 6 7 8 9 10 11 12 13
Columns in Solution

0

20

40

60

80

100

Su
cc

es
s R

at
e

(c) success rate

1 2 3 4 5 6 7 8 9 10 11 12 13
Columns in Solution

0

20

40

60

80

100

Co
m

pl
et

io
n

Ra
te

(d) completion rate

Figure 4: Success rate and completion rate under dif-
ferent question complexity, measured by the number of
elements (i.e., slots) in each question (upper) and the
number of columns involved in each solution (bottom).

0 1 2 3 4 5 6 7 8
Examples

10

20

30

40

50

60

Su
cc

es
s R

at
e

EHRAgent
Self-Debugging
AutoGen

(a) success rate

0 1 2 3 4 5 6 7 8
Examples

50

60

70

80

90

Co
m

pl
et

io
n

Ra
te

EHRAgent
Self-Debugging
AutoGen

(b) completion rate

Figure 5: Success rate and completion rate under differ-
ent numbers of demonstrations.

mainly due to the context limitation of LLMs. No-
tably, the performance of EHRAgent remains stable
with more demonstrations, which may benefit from
its integration of a ‘rubber duck’ debugging mod-
ule and the adaptive mechanism for selecting the
most relevant demonstrations.

4.5 Error Analysis

Figure 6 presents a summary of error types identi-
fied in the solution generation process of EHRAgent
based on the MIMIC-III, as determined through
manual examinations and analysis. The majority
of errors occur because the LLM agent consistently
fails to identify the underlying cause of these errors
within T -step trails, resulting in plans that are ei-
ther incomplete or inexcusable. Additional analysis
of each error type is available in Appendix G.2.

13.59% Date/Time
14.56% Context Length
20.39% Incorrect Logic
16.02% Incorrect SQL Command
8.74% Fail to Follow Instructions
26.70% Fail to Debug

Figure 6: Percentage of mistake examples in different
categories on MIMIC-III dataset.

Question: what was the last length of icu stay of
patient 28037?

Error: The filtering query SUBJECT_ID=28037 AND max(INTIME) is
incorrect. There is no 28037 AND max(INTIME) value in the column…

from datetime import datetime
icustays_db = LoadDB('icustays')
filtered_icustays_db = FilterDB(icustays_db, 'SUBJECT_ID=28037 AND
max(INTIME)')
intime = GetValue(filtered_icustays_db, 'INTIME')
outtime = GetValue(filtered_icustays_db, 'OUTTIME')
answer = Calculate('({} - {}) / 86400'.format(in_time, out_time))

Error: Invalid input query for Calculator. Please check the input query
or use other functions to do the computation…

from datetime import datetimeicustays_db = LoadDB('icustays')
filtered_icustays_db = FilterDB(icustays_db, 'SUBJECT_ID=28037||max(INTIME)')
intime = GetValue(filtered_icustays_db, 'INTIME')
outtime = GetValue(filtered_icustays_db, 'OUTTIME')
intime = datetime.strptime(intime, '%Y-%m-%d %H:%M:%S')
outtime = datetime.strptime(outtime, '%Y-%m-%d %H:%M:%S')
length_of_stay = outtime - intime
if length_of_stay.seconds // 3600 > 12:
 answer = length_of_stay.days + 1
else:
 answer = length_of_stay.days

Potential Reasons: The most possible reason for the error is that the
FilterDB function does not support multiple conditions in the CONDITIONS
argument. The function is trying to find a single value "28037 AND
max(INTIME)" in the SUBJECT_ID column, instead of filtering the database
where HADM_ID equals 28037 and max(INTIME).

Potential Reasons: The most possible reason for the error is that the
'Calculate' function is trying to perform arithmetic operations on date
values. The function is expecting numerical values for its calculation,
but it's receiving date values from 'last_visit_date' and 'birth_date'.

from datetime import datetime
icustays_db = LoadDB('icustays')
filtered_icustays_db = FilterDB(icustays_db, 'SUBJECT_ID=28037||max(INTIME)')
intime = GetValue(filtered_icustays_db, 'INTIME')
outtime = GetValue(filtered_icustays_db, 'OUTTIME')
answer = Calculate('({} - {}) / 86400'.format(in_time, out_time))

Figure 7: Case study of EHRAgent harnessing LLMs in a
multi-turn conversation with a code executor, debugging
with execution errors through iterations.

4.6 Case Study

Figure 7 presents a case study of EHRAgent in in-
teractive coding with environment feedback. The
initial solution from LLM is unsatisfactory with
multiple errors. Fortunately, EHRAgent is capable
of identifying the underlying causes of errors by an-
alyzing error messages and resolves multiple errors
one by one through iterations. We have additional
case studies in Appendix H.

5 Related Work

Augmenting LLMs with External Tools. LLMs
have rapidly evolved from text generators into
core computational engines of autonomous agents,
with advanced planning and tool-use capabili-
ties (Schick et al., 2023; Shen et al., 2023; Wang
et al., 2024b; Yuan et al., 2024a,b; Zhuang et al.,

2023). LLM agents equip LLMs with planning
capabilities (Yao et al., 2023a; Gong et al., 2023)
to decompose a large and hard task into multiple
smaller and simpler steps for efficiently navigating
complex real-world scenarios. By integrating with
external tools, LLM agents access external APIs
for additional knowledge beyond training data (Lu
et al., 2023; Patil et al., 2023; Qin et al., 2024; Li
et al., 2023b,a). The disconnection between plan
generation and execution, however, prevents LLM
agents from effectively and efficiently mitigating
error propagation and learning from environmen-
tal feedback (Qiao et al., 2023; Shinn et al., 2023;
Yang et al., 2023). To this end, we leverage inter-
active coding to learn from dynamic interactions
between the planner and executor, iteratively refin-
ing generated code by incorporating insights from
error messages. Furthermore, EHRAgent extends
beyond the limitation of short-term memory ob-
tained from in-context learning, leveraging long-
term memory (Sun et al., 2023; Zhang et al., 2023)
by rapid retrieval of highly relevant and successful
experiences accumulated over time.
LLM Agents for Scientific Discovery. Augment-
ing LLMs with domain-specific tools, LLM agents
have demonstrated capabilities of autonomous de-
sign, planning, and execution in accelerating sci-
entific discovery (Wang et al., 2023a,c, 2024a;
Xi et al., 2023; Zhao et al., 2023; Cheung et al.,
2024; Gao et al., 2024), including organic synthe-
sis (Bran et al., 2023), material design (Boiko et al.,
2023), and gene prioritization (Jin et al., 2024). In
the medical field, MedAgents (Tang et al., 2023),
a multi-agent collaboration framework, leverages
role-playing LLM-based agents in a task-oriented
multi-round discussion for multi-choice questions
in medical entrance examinations. Similarly, Ab-
basian et al. (2023) develop a conversational agent
to enhance LLMs using external tools for gen-
eral medical question-answering tasks. Different
from existing LLM agents in the medical domains
that focus on improving tasks like multiple-choice
question-answering, EHRAgent integrates LLMs
with an interactive code interface, exploring com-
plex few-shot tabular reasoning tasks derived from
real-world EHRs through autonomous code gener-
ation and execution.

6 Conclusion
In this study, we develop EHRAgent, an LLM agent
with external tools for few-shot multi-tabular rea-
soning on real-world EHRs. Empowered by the

emergent few-shot learning capabilities of LLMs,
EHRAgent leverages autonomous code generation
and execution for direct communication between
clinicians and EHR systems. We also improve
EHRAgent by interactive coding with execution
feedback, along with accumulative medical knowl-
edge, thereby effectively facilitating plan optimiza-
tion for multi-step problem-solving. Our exper-
iments demonstrate the advantages of EHRAgent
over baseline LLM agents in autonomous coding
and improved medical reasoning.

Limitation and Future Work

EHRAgent holds considerable potential for positive
social impact in a wide range of clinical tasks and
applications, including but not limited to patient
cohort definition, clinical trial recruitment, case
review selection, and treatment decision-making
support. Despite the significant improvement in
model performance, we have identified several po-
tential limitations of EHRAgent as follows:

Additional Execution Calls. We acknowledge
that when compared to open-loop systems
such as CoT, Self-Consistency, Chameleon, and
LLM2SQL, which generate a complete problem-
solving plan at the beginning without any adapta-
tion during execution; EHRAgent, as well as other
baselines that rely on environmental feedback like
ReAct, Reflexion, Self-Debugging, and AutoGen,
require additional LLM calls due to the multi-round
conversation. However, such open-loop systems
all overlook environmental feedback and cannot
adaptively refine their planning processes. These
shortcomings largely hinder their performance for
the challenging EHR question-answering task, as
the success rates for these methods on all three
EHR datasets are all below 40%. We can clearly
observe the trade-off between performance and
execution times. Although environmental feed-
back enhances performance, future work will focus
on cost-effective improvements to balance perfor-
mance and cost (Zhang et al., 2023).

Translational Clinical Research Considerations.
Given the demands for privacy, safety, and ethi-
cal considerations in real-world clinical research
and practice settings, our goal is to further ad-
vance EHRAgent by mitigating biases and address-
ing ethical implications, thereby contributing to
the development of responsible artificial intelli-
gence for healthcare and medicine. Furthermore,

the adaptation and generalization of EHRAgent
in low-resource languages is constrained by the
availability of relevant resources and training data.
Due to limited access to LLMs’ API services and
constraints related to budget and computation re-
sources, our current experiments are restricted to
utilizing the Microsoft Azure OpenAI API ser-
vice with the gpt-3.5-turbo (0613) and gpt-4
(0613) models. As part of our important future
directions, we plan to enhance EHRAgent by in-
corporating fine-tuned white-box LLMs, such as
LLaMA-2 (Touvron et al., 2023).

Completion Rate under Clinical Scenarios. Be-
sides success rate (SR) as our main evaluation met-
ric, we follow Xu et al. (2023); Kirk et al. (2024)
and employ completion rate (CR) to denote the
percentage of queries for which the model can gen-
erate executable plans, irrespective of whether the
results are accurate. However, it is important to
note that a higher CR may not necessarily imply
a superior outcome, especially in clinical settings.
In such cases, it is generally preferable to acknowl-
edge failure rather than generate an incorrect an-
swer, as this could lead to an inaccurate diagnosis.
We will explore stricter evaluation metrics to assess
the cases of misinformation that could pose a risk
within clinical settings in our future work.

Privacy and Ethical Statement

In compliance with the PhysioNet Credentialed
Health Data Use Agreement 1.5.04, we strictly
prohibit the transfer of confidential patient data
(MIMIC-III and eICU) to third parties, including
through online services like APIs. To ensure re-
sponsible usage of Azure OpenAI Service based
on the guideline5, we have opted out of the hu-
man review process by requesting the Azure Ope-
nAI Additional Use Case Form6, which prevents
third-parties (e.g., Microsoft) from accessing and
processing sensitive patient information for any
purpose. We continuously and carefully monitor
our compliance with these guidelines and the rele-
vant privacy laws to uphold the ethical use of data
in our research and operations.

4https://physionet.org/about/licenses/
physionet-credentialed-health-data-license-150/

5https://physionet.org/news/post/
gpt-responsible-use

6https://aka.ms/oai/additionalusecase

https://physionet.org/about/licenses/physionet-credentialed-health-data-license-150/
https://physionet.org/about/licenses/physionet-credentialed-health-data-license-150/
https://physionet.org/news/post/gpt-responsible-use
https://physionet.org/news/post/gpt-responsible-use
https://aka.ms/oai/additionalusecase

Acknowledgments

We thank the anonymous reviewers and area chairs
for their valuable feedback. This research was par-
tially supported by Accelerate Foundation Models
Academic Research Initiative from Microsoft Re-
search. This research was also partially supported
by the National Science Foundation under Award
Number 2319449 and Award Number 2312502,
the National Institute Of Diabetes And Digestive
And Kidney Diseases of the National Institutes of
Health under Award Number K25DK135913, the
Emory Global Diabetes Center of the Woodruff
Sciences Center, Emory University.

References
Mahyar Abbasian, Iman Azimi, Amir M. Rahmani, and

Ramesh Jain. 2023. Conversational health agents: A
personalized llm-powered agent framework.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report.

Seongsu Bae, Daeun Kyung, Jaehee Ryu, Eunbyeol
Cho, Gyubok Lee, Sunjun Kweon, Jungwoo Oh, Lei
Ji, Eric I-Chao Chang, Tackeun Kim, and Edward
Choi. 2023. EHRXQA: A multi-modal question an-
swering dataset for electronic health records with
chest x-ray images. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.

Duane Bender and Kamran Sartipi. 2013. Hl7 fhir:
An agile and restful approach to healthcare infor-
mation exchange. In Proceedings of the 26th IEEE
international symposium on computer-based medical
systems, pages 326–331. IEEE.

Daniil A Boiko, Robert MacKnight, Ben Kline, and
Gabe Gomes. 2023. Autonomous chemical research
with large language models. Nature, 624(7992):570–
578.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldas-
sari, Andrew White, and Philippe Schwaller. 2023.
Augmenting large language models with chemistry
tools. In NeurIPS 2023 AI for Science Workshop.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2024. Teaching large language models
to self-debug. In The Twelfth International Confer-
ence on Learning Representations.

Jerry Cheung, Yuchen Zhuang, Yinghao Li, Pranav
Shetty, Wantian Zhao, Sanjeev Grampurohit, Rampi
Ramprasad, and Chao Zhang. 2024. POLYIE: A
dataset of information extraction from polymer mate-
rial scientific literature. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 2370–2385, Mexico City, Mexico. Association
for Computational Linguistics.

Martin R Cowie, Juuso I Blomster, Lesley H Curtis,
Sylvie Duclaux, Ian Ford, Fleur Fritz, Samantha
Goldman, Salim Janmohamed, Jörg Kreuzer, Mark
Leenay, et al. 2017. Electronic health records to
facilitate clinical research. Clinical Research in Car-
diology, 106:1–9.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Shanghua Gao, Ada Fang, Yepeng Huang, Valentina
Giunchiglia, Ayush Noori, Jonathan Richard
Schwarz, Yasha Ektefaie, Jovana Kondic, and
Marinka Zitnik. 2024. Empowering biomedical dis-
covery with ai agents.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane
Durante, Yusuke Noda, Zilong Zheng, Song-Chun
Zhu, Demetri Terzopoulos, Li Fei-Fei, et al. 2023.
Mindagent: Emergent gaming interaction. ArXiv
preprint, abs/2309.09971.

Tracy D Gunter and Nicolas P Terry. 2005. The emer-
gence of national electronic health record architec-
tures in the united states and australia: models, costs,
and questions. Journal of medical Internet research,
7(1):e383.

Lavender Yao Jiang, Xujin Chris Liu, Nima Pour Neja-
tian, Mustafa Nasir-Moin, Duo Wang, Anas Abidin,
Kevin Eaton, Howard Antony Riina, Ilya Laufer,
Paawan Punjabi, et al. 2023. Health system-scale
language models are all-purpose prediction engines.
Nature, pages 1–6.

Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu.
2024. GeneGPT: augmenting large language models
with domain tools for improved access to biomedical
information. Bioinformatics, 40(2):btae075.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H
Lehman, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi,
and Roger G Mark. 2016. Mimic-iii, a freely accessi-
ble critical care database. Scientific data, 3(1):1–9.

James R Kirk, Robert E Wray, Peter Lindes, and John E
Laird. 2024. Improving knowledge extraction from
llms for task learning through agent analysis. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 18390–18398.

http://arxiv.org/abs/2310.02374
http://arxiv.org/abs/2310.02374
http://arxiv.org/abs/2305.10403
https://openreview.net/forum?id=Pk2x7FPuZ4
https://openreview.net/forum?id=Pk2x7FPuZ4
https://openreview.net/forum?id=Pk2x7FPuZ4
https://ieeexplore.ieee.org/document/6627810
https://ieeexplore.ieee.org/document/6627810
https://ieeexplore.ieee.org/document/6627810
https://www.nature.com/articles/s41586-023-06792-0
https://www.nature.com/articles/s41586-023-06792-0
https://openreview.net/forum?id=wdGIL6lx3l
https://openreview.net/forum?id=wdGIL6lx3l
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://doi.org/10.18653/v1/2024.naacl-long.131
https://doi.org/10.18653/v1/2024.naacl-long.131
https://doi.org/10.18653/v1/2024.naacl-long.131
https://link.springer.com/article/10.1007/s00392-016-1025-6
https://link.springer.com/article/10.1007/s00392-016-1025-6
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
http://arxiv.org/abs/2404.02831
http://arxiv.org/abs/2404.02831
https://arxiv.org/abs/2309.09971
https://www.jmir.org/2005/1/e3/
https://www.jmir.org/2005/1/e3/
https://www.jmir.org/2005/1/e3/
https://www.jmir.org/2005/1/e3/
https://www.nature.com/articles/s41586-023-06160-y
https://www.nature.com/articles/s41586-023-06160-y
https://doi.org/10.1093/bioinformatics/btae075
https://doi.org/10.1093/bioinformatics/btae075
https://doi.org/10.1093/bioinformatics/btae075
https://www.nature.com/articles/sdata201635
https://www.nature.com/articles/sdata201635
https://arxiv.org/abs/2306.06770
https://arxiv.org/abs/2306.06770

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu
Kwon, Woncheol Shin, Seongjun Yang, Minjoon Seo,
Jong-Yeup Kim, and Edward Choi. 2022. EHRSQL:
A practical text-to-SQL benchmark for electronic
health records. In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem.
2023a. CAMEL: Communicative agents for ”mind”
exploration of large language model society. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, and
Yongbin Li. 2023b. API-bank: A comprehensive
benchmark for tool-augmented LLMs. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 3102–3116,
Singapore. Association for Computational Linguis-
tics.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. 2023. Code as policies: Language model
programs for embodied control. In 2023 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 9493–9500. IEEE.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play
compositional reasoning with large language models.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Joshua C Mandel, David A Kreda, Kenneth D Mandl,
Isaac S Kohane, and Rachel B Ramoni. 2016.
Smart on fhir: a standards-based, interoperable apps
platform for electronic health records. Journal
of the American Medical Informatics Association,
23(5):899–908.

Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein
Abad, Harlan M Krumholz, Jure Leskovec, Eric J
Topol, and Pranav Rajpurkar. 2023. Foundation mod-
els for generalist medical artificial intelligence. Na-
ture, 616(7956):259–265.

Linyong Nan, Ellen Zhang, Weijin Zou, Yilun Zhao,
Wenfei Zhou, and Arman Cohan. 2023. On evalu-
ating the integration of reasoning and action in llm
agents with database question answering.

OpenAI. 2023. Gpt-4 technical report. arXiv.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large language
model connected with massive apis.

Tom J. Pollard, Alistair E. W. Johnson, Jesse D. Raffa,
Leo A. Celi, Roger G. Mark, and Omar Badawi. 2018.
The eICU collaborative research database, a freely
available multi-center database for critical care re-
search. Scientific Data, 5(1):180178.

Mohammadreza Pourreza and Davood Rafiei. 2023.
DIN-SQL: Decomposed in-context learning of text-
to-SQL with self-correction. In Thirty-seventh Con-
ference on Neural Information Processing Systems.

Shuofei Qiao, Honghao Gui, Chengfei Lv, Qianghuai
Jia, Huajun Chen, and Ningyu Zhang. 2023. Making
language models better tool learners with execution
feedback. ArXiv preprint, abs/2305.13068.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, et al. 2023. Tool learning
with foundation models.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In The Twelfth International Con-
ference on Learning Representations.

Preethi Raghavan, Jennifer J Liang, Diwakar Mahajan,
Rachita Chandra, and Peter Szolovits. 2021. emrk-
bqa: A clinical knowledge-base question answering
dataset. In Proceedings of the 20th Workshop on
Biomedical Language Processing, pages 64–73.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Thirty-seventh Conference on Neural
Information Processing Systems.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
GPT: Solving AI tasks with chatGPT and its friends
in hugging face. In Thirty-seventh Conference on
Neural Information Processing Systems.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai,
and Chao Zhang. 2023. Adaplanner: Adaptive plan-
ning from feedback with language models. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

https://openreview.net/forum?id=B2W8Vy0rarw
https://openreview.net/forum?id=B2W8Vy0rarw
https://openreview.net/forum?id=B2W8Vy0rarw
https://openreview.net/forum?id=3IyL2XWDkG
https://openreview.net/forum?id=3IyL2XWDkG
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://ieeexplore.ieee.org/abstract/document/10160591
https://ieeexplore.ieee.org/abstract/document/10160591
https://openreview.net/forum?id=HtqnVSCj3q
https://openreview.net/forum?id=HtqnVSCj3q
https://academic.oup.com/jamia/article/23/5/899/2379865
https://academic.oup.com/jamia/article/23/5/899/2379865
https://www.nature.com/articles/s41586-023-05881-4
https://www.nature.com/articles/s41586-023-05881-4
http://arxiv.org/abs/2311.09721
http://arxiv.org/abs/2311.09721
http://arxiv.org/abs/2311.09721
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
https://www.nature.com/articles/sdata2018178
https://www.nature.com/articles/sdata2018178
https://www.nature.com/articles/sdata2018178
https://openreview.net/forum?id=p53QDxSIc5
https://openreview.net/forum?id=p53QDxSIc5
https://arxiv.org/abs/2305.13068
https://arxiv.org/abs/2305.13068
https://arxiv.org/abs/2305.13068
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://aclanthology.org/2021.bionlp-1.7/
https://aclanthology.org/2021.bionlp-1.7/
https://aclanthology.org/2021.bionlp-1.7/
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=rnKgbKmelt
https://openreview.net/forum?id=rnKgbKmelt

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Yilun
Zhao, Xingyao Zhang, Arman Cohan, and Mark Ger-
stein. 2023. Medagents: Large language models as
collaborators for zero-shot medical reasoning.

Surendrabikram Thapa and Surabhi Adhikari. 2023.
Chatgpt, bard, and large language models for biomed-
ical research: opportunities and pitfalls. Annals of
Biomedical Engineering, 51(12):2647–2651.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Ji-Rong Wen. 2023a. A survey on large language
model based autonomous agents.

Ping Wang, Tian Shi, and Chandan K Reddy. 2020.
Text-to-sql generation for question answering on elec-
tronic medical records. In Proceedings of The Web
Conference 2020, pages 350–361.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu,
Xifeng Yan, Jianfeng Gao, and Furu Wei. 2023b.
Augmenting language models with long-term mem-
ory. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu
Zhang, Satyen Subramaniam, Arjun R. Loomba,
Shichang Zhang, Yizhou Sun, and Wei Wang.
2023c. Scibench: Evaluating college-level scientific
problem-solving abilities of large language models.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024a. Exe-
cutable code actions elicit better LLM agents. In
Forty-first International Conference on Machine
Learning.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen,
Lifan Yuan, Hao Peng, and Heng Ji. 2024b. MINT:
Evaluating LLMs in multi-turn interaction with tools
and language feedback. In The Twelfth International
Conference on Learning Representations.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023d. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadal-
lah, Ryen W White, Doug Burger, and Chi Wang.
2023. Autogen: Enabling next-gen llm applications
via multi-agent conversation.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. 2023. The rise and
potential of large language model based agents: A
survey.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023. On the tool
manipulation capability of open-source large lan-
guage models.

John Yang, Akshara Prabhakar, Karthik R Narasimhan,
and Shunyu Yao. 2023. Intercode: Standardizing
and benchmarking interactive coding with execution
feedback. In Thirty-seventh Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track.

Xi Yang, Aokun Chen, Nima PourNejatian, Hoo Chang
Shin, Kaleb E Smith, Christopher Parisien, Colin
Compas, Cheryl Martin, Anthony B Costa, Mona G
Flores, et al. 2022. A large language model for
electronic health records. NPJ Digital Medicine,
5(1):194.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. 2023a. Tree of thoughts: Deliberate
problem solving with large language models. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023b. React: Synergizing reasoning and acting
in language models. In The Eleventh International
Conference on Learning Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R Fung,
Hao Peng, and Heng Ji. 2024a. CRAFT: Customiz-
ing LLMs by creating and retrieving from specialized
toolsets. In The Twelfth International Conference on
Learning Representations.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Ren Kan, Dongsheng Li, and De-
qing Yang. 2024b. Easytool: Enhancing llm-based
agents with concise tool instruction.

http://arxiv.org/abs/2311.10537
http://arxiv.org/abs/2311.10537
https://link.springer.com/article/10.1007/s10439-023-03284-0
https://link.springer.com/article/10.1007/s10439-023-03284-0
http://arxiv.org/abs/2308.11432
http://arxiv.org/abs/2308.11432
https://dl.acm.org/doi/abs/10.1145/3366423.3380120
https://dl.acm.org/doi/abs/10.1145/3366423.3380120
https://openreview.net/forum?id=BryMFPQ4L6
https://openreview.net/forum?id=BryMFPQ4L6
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2307.10635
https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=jp3gWrMuIZ
https://openreview.net/forum?id=jp3gWrMuIZ
https://openreview.net/forum?id=jp3gWrMuIZ
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
https://openreview.net/forum?id=fvKaLF1ns8
https://openreview.net/forum?id=fvKaLF1ns8
https://openreview.net/forum?id=fvKaLF1ns8
https://www.nature.com/articles/s41746-022-00742-2
https://www.nature.com/articles/s41746-022-00742-2
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://openreview.net/forum?id=G0vdDSt9XM
https://openreview.net/forum?id=G0vdDSt9XM
https://openreview.net/forum?id=G0vdDSt9XM
http://arxiv.org/abs/2401.06201
http://arxiv.org/abs/2401.06201

Jieyu Zhang, Ranjay Krishna, Ahmed H. Awadallah,
and Chi Wang. 2023. Ecoassistant: Using llm assis-
tant more affordably and accurately.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu
Lin, Yong-Jin Liu, and Gao Huang. 2023. Expel:
Llm agents are experiential learners.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra,
Victor Bursztyn, Ryan A. Rossi, Somdeb Sarkhel,
and Chao Zhang. 2024. Toolchain*: Efficient action
space navigation in large language models with a*
search. In The Twelfth International Conference on
Learning Representations.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2023. Toolqa: A dataset for llm
question answering with external tools. Advances in
Neural Information Processing Systems, 36:50117–
50143.

A Dataset and Task Details

A.1 Task Details
We evaluate EHRAgent on three publicly available
EHR datasets from two text-to-SQL medical ques-
tion answering (QA) benchmarks (Lee et al., 2022),
EHRSQL7 and TREQS8, built upon structured
EHRs from MIMIC-III and eICU. EHRSQL and
TREQS serve as text-to-SQL benchmarks for as-
sessing the performance of medical QA models,
specifically focusing on generating SQL queries
for addressing a wide range of real-world questions
gathered from over 200 hospital staff. Questions
within EHRSQL and TREQS, ranging from simple
data retrieval to complex operations such as calcula-
tions, reflect the diverse and complex clinical tasks
encountered by front-line healthcare professionals.
Dataset statistics are available in Table 3.

Dataset # Examples # Table # Row/Table # Table/Q

MIMIC-III 580 17 81k 2.52
eICU 580 10 152k 1.74

TREQS 996 5 498k 1.48
Average 718.7 10.7 243.7k 1.91

Table 3: Dataset statistics.

A.2 Question Complexity Level
We categorize input queries into various complex-
ity levels (levels I-IV for MIMIC-III and levels

7https://github.com/glee4810/EHRSQL
8https://github.com/wangpinggl/TREQS

I-III for eICU and TREQS) based on the number of
tables involved in solution generation. For exam-
ple, given the question ‘How many patients were
given temporary tracheostomy?’, the complexity
level is categorized as II, indicating that we need
to extract information from two tables (admission
and procedure) to generate the solution. Further-
more, we also conduct a performance analysis (see
Figure 4) based on additional evaluation metrics
related to question complexity, including (1) the
number of elements (i.e., slots) in each question
and (2) the number of columns involved in each
solution. Specifically, elements refer to the slots
within each template that can be populated with
pre-defined values or database records.

A.3 MIMIC-III

MIMIC-III (Johnson et al., 2016)9 covers 38,597
patients and 49,785 hospital admissions informa-
tion in critical care units at the Beth Israel Dea-
coness Medical Center ranging from 2001 to 2012.
It includes deidentified administrative information
such as demographics and highly granular clini-
cal information, including vital signs, laboratory
results, procedures, medications, caregiver notes,
imaging reports, and mortality.

A.4 eICU

Similar to MIMIC-III, eICU (Pollard et al., 2018)10

includes over 200,000 admissions from multiple
critical care units across the United States in 2014
and 2015. It contains deidentified administrative in-
formation following the US Health Insurance Porta-
bility and Accountability Act (HIPAA) standard
and structured clinical data, including vital signs,
laboratory measurements, medications, treatment
plans, admission diagnoses, and medical histories.

A.5 TREQS

TREQS (Wang et al., 2020) is a healthcare ques-
tion and answering benchmark that is built upon
the MIMIC-III (Johnson et al., 2016) dataset. In
TREQS, questions are generated automatically us-
ing pre-defined templates with the text-to-SQL task.
Compared to the MIMIC-III dataset within the
EHRSQL (Lee et al., 2022) benchmark, TREQS
has a narrower focus in terms of the types of ques-
tions and the complexity of SQL queries. Specifi-
cally, it is restricted to only five tables but includes

9https://physionet.org/content/mimiciii/1.4/
10https://physionet.org/content/eicu-crd/2.0/

http://arxiv.org/abs/2310.03046
http://arxiv.org/abs/2310.03046
http://arxiv.org/abs/2308.10144
http://arxiv.org/abs/2308.10144
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103
https://openreview.net/forum?id=B6pQxqUcT8
https://openreview.net/forum?id=B6pQxqUcT8
https://openreview.net/forum?id=B6pQxqUcT8
https://proceedings.neurips.cc/paper_files/paper/2023/hash/9cb2a7495900f8b602cb10159246a016-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/9cb2a7495900f8b602cb10159246a016-Abstract-Datasets_and_Benchmarks.html
https://github.com/glee4810/EHRSQL
https://github.com/wangpinggl/TREQS
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/eicu-crd/2.0/

a significantly larger number of records (Table 3)
within each table.

B Tool Set Details

To obtain relevant information from EHRs and en-
hance the problem-solving capabilities of LLM-
based agents, we augment LLMs with the follow-
ing tools:
⋄ Database Loader loads a specific table from the
database.
⋄ Data Filter applies specific filtering condition to
the selected table. These conditions are defined
by a column name and a relational operator. The
relational operator may take the form of a compari-
son (e.g., "<" or ">") with a specific value, either
with the column’s values or the count of values
grouped by another column. Alternatively, it could
be operations such as identifying the minimum or
maximum values within the column.
⋄ Get Value retrieves either all the values within
a specific column or performs basic operations on
all the values, including calculations for the mean,
maximum, minimum, sum, and count.
⋄ Calculator calculates the results from input
strings. We leverage the WolframAlpha API por-
tal11, which can handle both straightforward calcu-
lations such as addition, subtraction, and multipli-
cation and more complex operations like averaging
and identifying maximum values.
⋄ Date Calculator calculates the target date based
on the input date and the provided time interval
information.
⋄ SQL Interpreter interprets and executes SQL
code written by LLMs.

C Baseline Details

All the methods, including baselines and EHRAgent,
share the same (1) tool definitions, (2) table meta
information, and (3) few-shot demonstrations in
the prompts by default. The only difference is the
prompting style or technical differences between
different methods, which guarantees a fair compar-
ison among all baselines and EHRAgent. Table 4
summarizes the inclusion of different components
in both baselines and ours.
• Baselines w/o Code Interface. LLMs without
a code interface rely purely on natural language-
based planning capabilities.
⋄ CoT (Wei et al., 2022): CoT enhances the com-
plex reasoning capabilities of original LLMs by

11https://products.wolframalpha.com/api

generating a series of intermediate reasoning steps.
⋄ Self-Consistency (Wang et al., 2023d): Self-
consistency improves CoT by sampling diverse rea-
soning paths to replace the native greedy decoding
and select the most consistent answer.
⋄ Chameleon (Lu et al., 2023): Chameleon em-
ploys LLMs as controllers and integrates a set of
plug-and-play modules, enabling enhanced reason-
ing and problem-solving across diverse tasks.
⋄ ReAct (Yao et al., 2023b): ReAct integrates rea-
soning with tool use by guiding LLMs to generate
intermediate verbal reasoning traces and tool com-
mands.
⋄ Reflexion (Shinn et al., 2023): Reflexion lever-
ages verbal reinforcement to teach LLM-based
agents to learn from linguistic feedback from past
mistakes.
• Baselines w/ Code Interface. LLMs with a code
interface enhance the inherent capabilities of LLMs
by enabling their interaction with programming lan-
guages and the execution of code. In accordance
with their default configuration, we present a sum-
mary of the utilization of programming languages
in various baselines in Table 5. Additionally, we
provide a detailed explanation of the programming
language selection in EHRAgent in Appendix D.
⋄ LLM2SQL (Nan et al., 2023): LLM2SQL aug-
ments LLMs with a code interface to generate SQL
queries for retrieving information from EHRs for
question answering.
⋄ DIN-SQL (Pourreza and Rafiei, 2023): Com-
pared to LLM2SQL, DIN-SQL further breaks
down a complex problem into several sub-problems
and feeding the solutions of those sub-problems
into LLMs, effectively improving problem-solving
performance.
⋄ Self-Debugging (Chen et al., 2024): Self-
Debugging teaches LLMs to debug by investigating
execution results and explaining the generated code
in natural language.
⋄ AutoGen (Wu et al., 2023): AutoGen unifies
LLM-based agent workflows as multi-agent con-
versations and uses the code interface to encode
interactions between agents and environments. We
follow the official tutorial12 for the implementa-
tion of AutoGen. Specifically, we utilize the built-
in AssistantAgent and UserProxyAgent within
AutoGen to serve as the LLM agent and the code
executor, respectively. The AssistantAgent is

12https://microsoft.github.io/autogen/docs/
Use-Cases/agent_chat/

https://products.wolframalpha.com/api
https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat/
https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat/

Baselines Tool Use Code
Interface

Environment
Feedback Debugging Error

Exploration
Medical

Information
Long-term
Memory

w/o Code Interface

CoT (Wei et al., 2022) ✓ ✗ ✗ ✗ ✗ ✗ ✗

Self-Consistency (Wang et al., 2023d) ✓ ✗ ✗ ✗ ✗ ✗ ✗

Chameleon (Lu et al., 2023) ✓ ✗ ✗ ✗ ✗ ✗ ✗

ReAct (Yao et al., 2023b) ✓ ✗ ✓ ✗ ✗ ✗ ✗

Reflexion (Shinn et al., 2023) ✓ ✗ ✓ ✓ ✗ ✗ ✗

w/ Code Interface

LLM2SQL (Nan et al., 2023) ✗ ✓ ✗ ✗ ✗ ✗ ✗

DIN-SQL (Pourreza and Rafiei, 2023) ✗ ✓ ✗ ✗ ✗ ✗ ✗

Self-Debugging (Chen et al., 2024) ✗ ✓ ✓ ✓ ✗ ✗ ✗

AutoGen (Wu et al., 2023) ✓ ✓ ✓ ✓ ✗ ✗ ✗

EHRAgent (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4: Comparison of baselines and EHRAgent on the inclusion of different components.

configured in accordance with AutoGen’s tailored
system prompts, which are designed to direct the
LLM to (1) propose code within a coding block
as required, (2) refine the proposed code based
on execution outcomes, and (3) append a specific
code, "TERMINATE", to conclude the response for
terminating the dialogue. The UserProxyAgent
functions as a surrogate for the user, extracting
and executing code from the LLM’s responses in
a local environment. Subsequently, it relays the
execution results back to the LLM. In instances
where code is not detected, a standard message is
dispatched instead. This arrangement facilitates an
automated dialogue process, obviating the need for
manual tasks such as code copying, pasting, and
execution by the user, who only needs to initiate
the conversation with an original query.

Baselines # Language

LLM2SQL (Nan et al., 2023) SQL
DIN-SQL (Pourreza and Rafiei, 2023) SQL
Self-Debugging (Chen et al., 2024) SQL
AutoGen (Wu et al., 2023) Python
EHRAgent (Ours) Python

Table 5: Comparison of baselines and EHRAgent on the
selection of primary programming languages.

D Selection of Primary Programming
Language

In our main experiments, we concentrate on three
SQL-based EHR QA datasets to assess EHRAgent
in comparison with other baselines. Nevertheless,
we have opted for Python as the primary program-
ming language for EHRAgent, rather than SQL13.

13We include an empirical analysis in Appendix G.3 to
further justify the selection of Python as the primary program-

The primary reasons for choosing Python instead
of SQL to address medical inquiries based on EHRs
are outlined below:

Python Enables the External Tool-Use. Using
alternative programming languages, such as SQL,
can result in LLM-based agents becoming unavail-
able to external tools or functions. The primary
contribution of EHRAgent is to develop a code-
empowered agent capable of generating and execut-
ing code-based plans to solve complex real-world
clinic tasks. In general, the SQL language itself
is incapable of calling API functions. For exam-
ple, EHRXQA (Bae et al., 2023) can be considered
as an LLM agent that generates a solution plan
in NeuralSQL (not SQL). This agent is equipped
with two tools: a pre-trained Visual Question An-
swering (VQA) model called FUNC_VQA, and a
SQL interpreter. Similar to EHRAgent, it also relies
on a non-SQL language and includes an SQL in-
terpreter as a tool. Compared with NeuralSQL in
EHRXQA (Bae et al., 2023), Python in EHRAgent
can be directly executed, while NeuralSQL requires
additional parsing.

Python Enables the Integration of SQL Tool
Function. Python provides excellent inter-
operability with various databases and data
formats. It supports a wide range of database
connectors, including popular relational databases
such as PostgreSQL, MySQL, and SQLite, as
well as non-relational databases like MongoDB.
This interoperability ensures that EHRAgent can
seamlessly interact with different EHR systems
and databases. Although our proposed method
primarily relies on generating and executing

ming language for EHRAgent.

Python code, we do not prohibit EHRAgent from
utilizing SQL to solve problems. In our prompts
and instructions, we also provide the ’SQLIn-
terpreter’ tool function for the agent to perform
relational database operations using SQL. Through
our experiments, we have observed that EHRAgent
is capable of combining results from Python code
and SQL commands effectively. For instance,
when presented with the question, âĂIJShow me
patient 28020’s length of stay of the last hospital
stay.âĂİ, EHRAgent will first generate SQL com-
mand admit_disch_tuple = SQLInterpreter
(ŚELECT ADMITTIME, DISCHTIME FROM
admissions WHERE SUBJECT_ID=28020 ORDER
BY ADMITTIME DESC LIMIT 1)́ and execute it to
obtain the tuples containing the patient’s admission
and discharge times. It will then employ Python
code along with the built-in date-time function to
calculate the duration of the last stay tuple.

Python Enables a More Generalizable Frame-
work. EHRAgent is a generalizable LLM agent
empowered with a code interface to autonomously
generate and execute code as solutions to given
problems. While Section 4 focuses on the challeng-
ing multi-tabular reasoning task within EHRs for
evaluation, the Python-based approach has the po-
tential to be generalized to other tasks (e.g., risk pre-
diction tasks based on EHRs) or even multi-modal
clinical data and be integrated with additional tool-
sets in the future. In contrast, other languages like
SQL are limited to database-related operations.

Python is More Flexible in Extension. Python
is a general-purpose programming language that of-
fers greater flexibility compared to SQL. It enables
the implementation of complex logic and algo-
rithms, which may be necessary for solving certain
types of medical questions that require more than
simple database queries. Python is also a highly
flexible programming language that offers exten-
sive capabilities through its libraries and frame-
works, making it suitable for handling a wide range
of programming tasks, including database opera-
tions. In contrast, SQL is only applicable within
relational databases and does not provide the same
level of flexibility and extension. This attribute
is particularly important to LLM-based agents, as
they can leverage both existing Python libraries and
custom-defined functions as tools to solve complex
problems that are inaccessible for and beyond the
scope of SQL.

Python Includes More Extensive Resources for
Pre-Training. Python has a large and active com-
munity of developers and researchers. This com-
munity contributes to the development of powerful
libraries, frameworks, and tools that can be lever-
aged in EHRAgent. The extensive documentation,
tutorials, and forums available for Python also pro-
vide valuable resources for troubleshooting and
optimization. Github repositories are one of the
most extensive sources of code data for state-of-
the-art language models (i.e., LLMs), such as
GPTs. Python is the most widely used coding lan-
guage on Github14. In addition, Python is known
for its readability and maintainability. The clean
and expressive syntax of Python makes it easier
for researchers and developers to understand, mod-
ify, and extend the codebase of EHRAgent. This
is particularly important when extended to real-
world clinical research and practice, where the
system may need to be updated frequently to in-
corporate new knowledge and adapt to evolving
requirements.

E Additional Implementation Details

E.1 Hardware and Software Details

All experiments are conducted on CPU: Intel(R)
Core(TM) i7-5930K CPU @ 3.50GHz and GPU:
NVIDIA GeForce RTX A5000 GPUs, using
Python 3.9 and AutoGen 0.2.015.

E.2 Data Preprocessing Details

During the data pre-processing stage, we create
EHR question-answering pairs by considering text
queries as questions and executing SQL commands
in the database to automatically generate the cor-
responding ground-truth answers. We filter out
samples containing unexecutable SQL commands
or yielding empty results throughout this process.

E.3 Code Generation Details

Given that the majority of LLMs have been pre-
trained on Python code snippets (Gao et al., 2023),
and Python’s inherent modularity aligns well with
tool functions, we choose Python 3.9 as the pri-
mary coding language for interaction coding and
AutoGen 0.2.0 (Wu et al., 2023) as the interface for
communication between the LLM agent and the
code executor.

14https://madnight.github.io/githut/#/pull_
requests/2023/1

15https://github.com/microsoft/autogen

https://madnight.github.io/githut/#/pull_requests/2023/1
https://madnight.github.io/githut/#/pull_requests/2023/1
https://github.com/microsoft/autogen

E.4 Selection of Initial Set of Demonstrations
The initial set of examples is collected manually,
following four criteria: (1) using the same demon-
strations across all the baselines; (2) utilizing all
the designed tools; (3) covering as many distinct
tables as possible; and (4) including examples in
different styles of questions. With these criteria in
mind, we manually crafted four demonstrations
for each dataset. To ensure a fair comparison,
we use the same initial four-shot demonstrations
(K = 4) for all baselines and EHRAgent, consider-
ing the maximum length limitations of input con-
text in baselines like ReAct (Yao et al., 2023b) and
Chameleon (Lu et al., 2023).

E.5 Evaluation Metric Details
Our main evaluation metric is the success rate
(SR), quantifying the percentage of queries that
the model successfully handles. In addition, we
leverage completion rate (CR) as a side evalua-
tion metric to represent the percentage of queries
for which the model is able to generate executable
plans, regardless of whether the results are correct.
Specifically, following existing LLM-based agent
studies (Xu et al., 2023; Kirk et al., 2024), we use
CR to assess the effectiveness of LLM-based agents
in generating complete executable plans without
execution errors. One of our key components in
EHRAgent is interactive coding with environmen-
tal feedback. By using CR, we can demonstrate
that our proposed EHRAgent, along with other base-
lines that incorporate environmental feedback (e.g.,
ReAct (Yao et al., 2023b), Reflexion (Shinn et al.,
2023), Self-Debugging (Chen et al., 2024), and
AutoGen (Wu et al., 2023)), has a stronger ca-
pability (higher CR) in generating complete ex-
ecutable plans without execution errors, compared
to baselines without environmental feedback (e.g.,
CoT (Wei et al., 2022), Self-Consistency (Wang
et al., 2023d), Chameleon (Lu et al., 2023), and
LLM2SQL (Nan et al., 2023)).

E.6 EHR Metadata Details
⋄ MIMIC-III.

<MIMIC_III> Metadata

Read the following data descriptions, generate
the background knowledge as the context
information that could be helpful for
answering the question.

(1) Tables are linked by identifiers which
usually have the suffix 'ID'. For example,
SUBJECT_ID refers to a unique patient,
HADM_ID refers to a unique admission to

the hospital, and ICUSTAY_ID refers to a
unique admission to an intensive care unit.

(2) Charted events such as notes, laboratory
tests, and fluid balance are stored in a
series of 'events' tables. For example the
outputevents table contains all measurements
related to output for a given patient,
while the labevents table contains
laboratory test results for a patient.

(3) Tables prefixed with 'd_' are dictionary
tables and provide definitions for
identifiers.c For example, every row of
chartevents is associated with a single
ITEMID which represents the concept
measured, but it does not contain the
actual name of the measurement. By joining
chartevents and d_items on ITEMID, it is
possible to identify the concept represented
by a given ITEMID.

(4) For the databases, four of them are used to
define and track patient stays: admissions,
patients,icustays, and transfers. Another
four tables are dictionaries for cross-
referencing codes against their respective
definitions: d_icd_diagnoses,
d_icd_procedures, d_items, and d_labitems.
The remaining tables, including chartevents,
cost, inputevents_cv, labevents,
microbiologyevents, outputevents,
prescriptions, procedures_icd, contain data
associated with patient care, such as
physiological measurements, caregiver
observations, and billing information.

⋄ eICU.

<eICU> Metadata
Read the following data descriptions, generate

the background knowledge as the context
information that could be helpful for
answering the question.

(1) Data include vital signs, laboratory
measurements, medications, APACHE components,
care plan information, admission diagnosis,
patient history, time-stamped diagnoses
from a structured problem list, and
similarly chosen treatments.

(2) Data from each patient is collected into a
common warehouse only if certain interfaces
are available. Each interface is used to
transform and load a certain type of data:
vital sign interfaces incorporate vital
signs, laboratory interfaces provide
measurements on blood samples, and so on.

(3) It is important to be aware that different
care units may have different interfaces in
place, and that the lack of an interface
will result in no data being available for
a given patient, even if those measurements
were made in reality. The data is provided
as a relational database, comprising
multiple tables joined by keys.

(4) All the databases are used to record
information associated to patient care,
such as allergy, cost, diagnosis,
intakeoutput, lab, medication, microlab,
patient, treatment, vitalperiodic.

⋄ TREQS.

<TREQS> Metadata

Read the following data descriptions, generate
the background knowledge as the context
information that could be helpful for
answering the question.

(1) The database contains five categories of
information for patients, including
demographics, laboratory tests, diagnosis,
procedures and prescriptions, and prepared
a specific table for each category
separately.

(2) These tables compose a relational patient
database where tables are linked through
patient ID and admission ID.

E.7 Prompt Details
In the subsequent subsections, we detail the prompt
templates employed in EHRAgent. The complete
version of the prompts is available at our code
repository due to space limitations.
⋄ Prompt for Code Generation. We first present
the prompt template for EHRAgent in code genera-
tion as follows:

<LLM_Agent> Prompt

Assume you have knowledge of several tables:
{OVERALL_EHR_DESCRIPTIONS}
Write a python code to solve the given question.

You can use the following functions:
{TOOL_DEFINITIONS}
Use the variable 'answer' to store the answer

of the code. Here are some examples:
{4-SHOT_EXAMPLES}
(END OF EXAMPLES)
Knowledge:
{KNOWLEDGE}
Question: {QUESTION}
Solution:

⋄ Prompt for Knowledge Integration. We then
present the prompt template for knowledge
integration in EHRAgent as follows:

<Medical_Knowledge> Prompt

Read the following data descriptions, generate
the background knowledge as the context
information that could be helpful for
answering the question.

{OVERALL_EHR_DESCRIPTIONS}
For different tables, they contain the

following information:
{COLUMNAR_DESCRIPTIONS}

{4-SHOT_EXAMPLES}

Question: {QUESTION}
Knowledge:

⋄ Prompt for ‘Rubber Duck’ Debugging. The
prompt template used for debugging module in

EHRAgent is shown as follows:

<Error_Exploration> Prompt

Given a question:
{QUESTION}
The user has written code with the following

functions:
{TOOL_DEFINITIONS}

The code is as follows:
{CODE}

The execution result is:
{ERROR_INFO}

Please check the code and point out the most
possible reason to the error.

⋄ Prompt for Few-Shot Examples. The prompt
template used for few-shot examples in EHRAgent
is shown as follows:

<Few_Shot_Examples> Prompt

Question: {QUESTION_I}
Knowledge:
{KNOWLEDGE_I}
Solution: {CODE_I}

Question: {QUESTION_II}
Knowledge:
{KNOWLEDGE_II}
Solution: {CODE_II}

Question: {QUESTION_III}
Knowledge:
{KNOWLEDGE_III}
Solution: {CODE_III}

Question: {QUESTION_IV}
Knowledge:
{KNOWLEDGE_IV}
Solution: {CODE_IV}

F Additional Experimental Results

F.1 Effect of Base LLMs

Table 6 presents a summary of the experimental re-
sults obtained from EHRAgent and all baselines us-
ing a different base LLM, GPT-3.5-turbo (0613).
The results clearly demonstrate that EHRAgent con-
tinues to outperform all the baselines, achieving
a performance gain of 6.72%. This highlights
the ability of EHRAgent to generalize across dif-
ferent base LLMs as backbone models. When
comparing the experiments conducted with GPT-4
(Table 1), the performance of both the baselines
and EHRAgent decreases. This can primarily be
attributed to the weaker capabilities of instruction-
following and reasoning in GPT-3.5-turbo.

Dataset (→) MIMIC-III

Complexity Level (→) I II III IV All

Methods (↓) /Metrics (→) SR. SR. CR.

w/o Code Interface

CoT (Wei et al., 2022) 23.16 10.40 2.99 1.71 8.62 41.55
Self-Consistency (Wang et al., 2023d) 25.26 11.88 4.19 2.56 10.52 47.59
Chameleon (Lu et al., 2023) 27.37 11.88 3.59 2.56 11.21 47.59
ReAct (Yao et al., 2023b) 26.32 10.89 3.59 3.42 9.66 61.21
Reflexion (Shinn et al., 2023) 30.53 12.38 9.58 8.55 13.28 66.72

w/ Code Interface

LLM2SQL (Nan et al., 2023) 21.05 15.84 4.19 2.56 10.69 59.49
Self-Debugging (Chen et al., 2024) 36.84 33.66 22.75 16.24 27.59 72.93
AutoGen (Wu et al., 2023) 28.42 25.74 13.17 10.26 19.48 52.42
EHRAgent (Ours) 43.16 42.57 29.94 18.80 34.31 78.80

Table 6: Experimental results of success rate (i.e., SR.)
and completion rate (i.e., CR.) on MIMIC-III using
GPT-3.5-turbo as the base LLM. The complexity of
questions increases from Level I (the simplest) to Level
IV (the most difficult).

F.2 Additional Ablation Studies

We conduct additional ablation studies to evalu-
ate the effectiveness of each module in EHRAgent
on eICU in Table 7 and obtain consistent results.
From the results from both MIMIC-III and eICU,
we observe that all four components contribute sig-
nificantly to the performance gain.
⋄ Medical Information Integration. Out of all
the components, the medical knowledge injection
module mainly exhibits its benefits in challenging
tasks. These tasks often involve more tables and re-
quire a deeper understanding of domain knowledge
to associate items with their corresponding tables.
⋄ Long-term Memory. Following the reinforce-
ment learning setting (Sun et al., 2023; Shinn et al.,
2023), the long-term memory mechanism improves
performance by justifying the necessity of select-
ing the most relevant demonstrations for planning.
In order to simulate the scenario where the ground
truth annotations (i.e., rewards) are unavailable, we
further evaluate the effectiveness of the long-term
memory on the completed cases in Table 8, regard-
less of whether they are successful or not. The re-
sults indicate that the inclusion of long-term mem-
ory with completed cases increases the completion
rate but tends to reduce the success rate across most
difficulty levels, as some incorrect cases might be
included as the few-shot demonstrations. We have
also performed multi-round experiments with shuf-
fled order and observed that the order had almost
no influence on the final performance in all three
datasets. Nonetheless, it still outperforms the per-

formance without long-term memory, confirming
the effectiveness of the memory mechanism.
⋄ Interactive Coding. For the ablation study set-
ting of EHRAgent w/o interactive coding, we di-
rectly chose CoT (Wei et al., 2022) as the backbone,
where we deteriorate from generating code-based
plans to natural language-based plans. Once the
steps are generated, we execute them in a step-by-
step manner and obtain error information from the
tool functions. By combining the error messages
with tool definitions and language-based plans, we
are still able to prompt the LLMs to deduce the
most probable underlying cause of the error. The
medical information injection and long-term mem-
ory components remain unchanged from the orig-
inal EHRAgent. From the ablation studies, we can
observe that the interactive coding interface is the
most significant contributor to the performance
gain across all complexity levels. This verifies
the importance of utilizing the code interface for
planning instead of natural languages, which en-
ables the model to avoid overly complex contexts
and thus leads to a substantial increase in the com-
pletion rate. Additionally, the code interface also
allows the debugging module to refine the planning
with execution feedback, improving the efficacy of
the planning process.
⋄ Debugging Module. The ‘rubber duck’ debug-
ging module enhances the performance by guiding
the LLM agent to figure out the underlying reasons
for the error messages. This enables EHRAgent to
address the intrinsic error that occurs in the original
reasoning steps. We then further illustrate the dif-
ference between debugging modules in EHRAgent
and others. Self-debugging (Chen et al., 2024)
that sends back the execution results with an ex-
planation of the code for plan refinement. Reflex-
ion (Shinn et al., 2023) sends the binary reward
of whether it is successful or not back for refine-
ment, which contains little information. In both
cases, however, the error message is still informa-
tion on the surface, like âĂŸincorrect queryâĂŹ,
etc. This is aligned with our empirical observations
that LLM agents tend to make slight modifications
to the code snippets based on the error message
without further debugging. Taking one step further,
our debugging module in EHRAgent incorporates
an error tracing procedure that enables the LLM to
analyze potential causes beyond the current error
message. Our debugging module aims to leverage
the conversation format to think one step further
about potential reasons, such as âĂŸincorrect col-

umn names in the queryâĂŹ or âĂŸincorrect values
in the queryâĂŹ.

Complexity level I II III All

Metrics SR. SR. CR.

EHRAgent 54.82 53.52 25.00 53.10 91.72
w/o medical information 36.75 28.39 6.25 30.17 47.24
w/o long-term memory 52.41 44.22 18.75 45.69 78.97
w/o interactive coding 46.39 44.97 6.25 44.31 65.34
w/o rubber duck debugging 50.60 46.98 12.50 47.07 70.86

Table 7: Additional ablation studies on success rate
(i.e., SR.) and completion rate (i.e., CR.) under different
question complexity (I-III) on eICU dataset.

Complexity level I II III IV All

Metrics SR. SR. CR.

EHRAgent (LTM w/ Success) 71.58 66.34 49.70 49.14 58.97 85.86
LTM w/ Completion 76.84 60.89 41.92 34.48 53.24 90.05
w/o LTM 65.96 54.46 37.13 42.74 51.73 83.42

Table 8: Comparison on long-term memory (i.e., LTM)
design under different question complexity (I-IV) on
MIMIC-III dataset.

F.3 Cost Estimation
Using GPT-4 as the foundational LLM model, we
report the average cost of EHRAgent for each query
in the MIMIC-III, eICU, and TREQS datasets as
$0.60, $0.17, and $0.52, respectively. The cost is
mainly determined by the complexity of the ques-
tion (i.e., the number of tables required to answer
the question) and the difficulty in locating relevant
information within each table.

G Additional Empirical Analysis

G.1 Additional Question Complexity Analysis
We further analyze the model performance by con-
sidering various measures of question complexity
based on the number of elements in questions, and
the number of columns involved in solutions, as
shown in Figure 4. Incorporating more elements
requires the model to either perform calculations or
utilize domain knowledge to establish connections
between elements and specific columns. Similarly,
involving more columns also presents a challenge
for the model in accurately locating and associ-
ating the relevant columns. We notice that both
EHRAgent and baselines generally exhibit lower
performance on more challenging tasks16. Notably,

16Exceptions may exist when considering questions of
seven elements in Figures 4(a) and 4(b), as it comprises only

our model consistently outperforms all the baseline
models across all levels of difficulty. Specifically,
for those questions with more than 10 columns,
the completion rate of those open-loop baselines
is very low (less than 20%), whereas EHRAgent
can still correctly answer around 50% of queries,
indicating the robustness of EHRAgent in handling
complex queries with multiple elements.

G.2 Additional Error Analysis

We conducted a manual examination to analyze all
incorrect cases generated by EHRAgent in MIMIC-
III. Figure 6 illustrates the percentage of each type
of error frequently encountered during solution gen-
eration:
⋄ Date/Time. When addressing queries related to
dates and times, it is important for the LLM agent
to use the ‘Calendar’ tool, which bases its calcu-
lations on the system time of the database. This
approach is typically reliable, but there are situa-
tions where the agent defaults to calculating dates
based on real-world time. Such instances may lead
to potential inaccuracies.
⋄ Context Length. This type of error occurs when
the input queries or dialog histories are excessively
long, exceeding the context length limit.
⋄ Incorrect Logic. When solving multi-hop rea-
soning questions across multiple databases, the
LLM agent may generate executable plans that
contain logical errors in the intermediate reasoning
steps. For instance, in computing the total cost of a
hospital visit, the LLM agent might erroneously
generate a plan that filters the database using
patient_id instead of the correct admission_id.
⋄ Incorrect SQL Command. This error type
arises when the LLM agent attempts to integrate
the SQLInterpreter into a Python-based plan to
derive intermediate results. Typically, incorrect
SQL commands result in empty responses from
SQLInterpreter, leading to the failure of subse-
quent parts of the plan.
⋄ Fail to Follow Instructions. The LLM agent of-
ten fails to follow the instructions provided in the
initial prompt or during the interactive debugging
process.
⋄ Fail to Debug. Despite undertaking all T -step
trials, the LLM agent consistently fails to identify
the root cause of errors, resulting in plans that are
either incomplete or inexcusable.

eight samples and may not be as representative.

G.3 Additional Empirical Comparison of
Primary Programming Languages

We conduct an additional analysis based on the
empirical results (byond main results in Table 1)
to further justify the selection of Python as our
primary programming language.

Data Complexity. The SPIDER (Yu et al., 2018)
dataset, which is commonly used in SQL base-
lines (Pourreza and Rafiei, 2023), typically only
involves referencing information from an average
of 1.1 tables per question. In contrast, the EHRQA
datasets we utilized require referencing informa-
tion from an average of 1.9 tables per question.
This significant gap in # tablesquestions indicates
that EHRQA requires more advanced reasoning
across multiple tables.

Sample Efficiency. SQL-based methods require
more demonstrations. As SQL occupies a relatively
smaller proportion of training data, it is quite dif-
ficult for LLMs to generate valid SQL commands.
Usually, the methods need at least tens of demon-
strations to get the LLMs familiar with the data
schema and SQL grammar. In EHRAgents, we
only need four demonstrations as few-shot multi-
tabular reasoning.

Environment Feedback. DIN-SQL (Pourreza
and Rafiei, 2023) establishes a set of rules to au-
tomatically self-correct the SQL commands gener-
ated. Nevertheless, these rules are rigid and may
not cover all potential scenarios. While it does con-
tribute to enhancing the validity of the generated
SQL commands to some extent, DIN-SQL lacks tai-
lored information to optimize the code based on dif-
ferent circumstances, resulting in a lower success
rate compared to self-debugging and EHRAgent,
which provide error messages and deeper insights.

Execution Time Efficiency. We acknowledge
that when handling large amounts of data, Python
may experience efficiency issues compared to
SQL commands. We have also observed sim-
ilar challenges when working with the TREQS
dataset, which contains a massive database with
millions of records. However, in the MIMIC-III
dataset, EHRAgent (avg. 52.63 seconds per ques-
tion) still demonstrates higher efficiency compared
to the state-of-the-art LLM4SQL method, DIN-
SQL (Pourreza and Rafiei, 2023) (avg. 103.28 sec-
onds per question). We will consider the efficiency
of Python when dealing with large-scale databases

as one of the important future directions.

H Additional Case Studies

We present additional case studies to showcase the
effectiveness of each module in EHRAgent, includ-
ing medical information integration (Section H.1),
long-term memory (Section H.2), code interface
(Section H.3), and rubber duck debugging mod-
ule (Section H.4). In addition, we include Fig-
ures 13 and 14 to showcase the entire workflow of
EHRAgent with accumulative domain knowledge
and coding capability for EHR reasoning.

H.1 Case Study of Medical Information
Integration

Figure 8 presents a case study of integrated medical
knowledge based on a given query. When faced
with a question related to ‘aspirin ec’ and ‘venous
cath nec’, EHRAgent effectively summarizes and
integrates relevant knowledge containing drug and
procedure information, successfully reasoning and
identifying the potential locations of the required in-
formation (tables and records) in the EHR database
(e.g., ‘prescriptions’, ‘d_icd_procedures’), along
with the detailed identifiers (e.g., ‘ICD9_CODE’,
‘HADM_ID’) needed to associate them.

Question: count the number of patients who were prescribed
aspirin ec within 2 month after having received a venous
cath nec procedure until 4 year ago.

EHRAgent

Knowledge:
- As aspirin ec is a drug, we can find the corresponding
information in the prescriptions database.
- As venous cath nec is a procedure, we can find the
corresponding ICD9_CODE in the d_icd_procedures database.
- The ICD9_CODE can be used to find the corresponding HADM_ID in
the procedures_icd database.
- The HADM_ID can be used to find the corresponding SUBJECT_ID in
the admissions database.
- We can then count the number of unique SUBJECT_IDs in the
prescriptions database who were prescribed aspirin ec within 2
months after having received a venous cath nec procedure until 4
years ago.

Figure 8: Case study of medical information injection
in EHRAgent on MIMIC-III dataset. Given a question
related to ‘aspirin ec’ and ‘venous cath nec’, EHRAgent
effectively integrates knowledge about their potential
location in the database and the identifiers required to
associate them.

H.2 Case Study of Long-Term Memory

Figure 9 presents a case study of updating few-shot
demonstrations from long-term memory. Due to
the constraints of limited context length, we are
only able to provide a limited number of examples
to guide EHRAgent in generating solution code. For

a given question, the initial set of examples is pre-
defined and fixed, which may not cover the specific
reasoning logic or knowledge required to solve it.
Using long-term memory, EHRAgent replaces origi-
nal few-shot demonstrations with the most relevant
successful cases from past experiences for effec-
tive plan refinement. For example, none of the
original few-shot examples relate to either ‘count
the number’ scenarios or procedure knowledge; af-
ter selecting from the long-term memory pool, we
successfully retrieve more relevant examples, thus
providing a similar solution logic for reference.

H.3 Case Study of Code Interface
Figures 10 and 11 present two case studies of har-
nessing LLMs as autonomous agents in a multi-turn
conversation for code generation, in comparison
to a natural language-based plan such as ReAct.
From the case studies, we can observe that ReAct
lacks a code interface, which prevents it from uti-
lizing code structures for efficient action planning
and tool usage. This limitation often results in a
lengthy context for ReAct to execute, which even-
tually leads to a low completion rate.

H.4 Case Study of Rubber Duck Debugging
Figure 12 showcases a case study comparing the
interactive coding process between AutoGen and
EHRAgent for the same given query. When exe-
cuted with error feedback, AutoGen directly sends
back the original error messages, making slight
modifications (e.g., changing the surface string of
the arguments) without reasoning the root cause of
the error. In contrast, EHRAgent can identify the
underlying causes of the errors through interactive
coding and debugging processes. It successfully
discovers the underlying error causes (taking into
account case sensitivity), facilitating accurate code
refinement.

Question: count the number of times that patient 85895 received a ph lab test last month.

Original Examples
Question: What is the maximum total hospital cost that involves
a diagnosis named comp-oth vasc dev/graft since 1 year ago?
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: Had any tpn w/lipids been given to patient 2238 in
their last hospital visit?
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: What was the name of the procedure that was given two
or more times to patient 58730?
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: What was the last time patient 4718 had a peripheral
blood lymphocytes microbiology test in the last hospital visit?
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Examples from Long-Term Memory
Question: Count the number of times that patient 52898 were
prescribed ns this month.
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: Count the number of times that patient 14035 had a d10w
intake.
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: Count the number of times that patient 99791 received a
op red-int fix rad/ulna procedure.
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: Count the number of times that patient 54825 received a
rt/left heart card cath procedure last year.
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Figure 9: Case study of long-term memory in EHRAgent on MIMIC-III dataset. From the original few-shot examples
on the left, none of the questions related to either ‘count the number’ scenarios or procedure knowledge. In contrast,
when we retrieve examples from the long-term memory, the new set is exclusively related to ‘count the number’
questions, thus providing a similar solution logic for reference.

Question: what was the amount of pioglitazone that patient 16992 were prescribed in total?

ReAct
...
Observation 3: The corresponding HADM_ID are 155667, 107483.
Thought 4: We need to find the related information from
prescriptions database.
Action 4: LoadDB[prescriptions]
Observation 4: We have successfully loaded the prescriptions
database, including the following columns: Please modify it.
ROW_ID, SUBJECT_ID, HADM_ID, STARTDATE, ENDDATE, DRUG,
DOSE_VAL_RX, DOSE_UNIT_RX, ROUTE
Thought 5: Then, we need to filter information related to
HADM_ID=155667 and DRUG=pioglitazone.
Action 5: FilterDB[HADM_ID=155667, DRUG=pioglitazone]
Observation 5: We have successfully filtered the data (1 rows).
Thought 6: Then we need to get the DOSE_VAL_RX value.
Action 6: FilterDB[DOSE_VAL_RX, sum]
Observation 6: The corresponding DOSE_VAL_RX value is 6.0.
Thought 7: We need to find the related information from
prescriptions database.
Action 7: LoadDB[prescriptions]
Observation 7: We have successfully loaded the prescriptions
database, including the following columns: Please modify it.
ROW_ID, SUBJECT_ID, HADM_ID, STARTDATE, ENDDATE, DRUG,
DOSE_VAL_RX, DOSE_UNIT_RX, ROUTE
Thought 8: Then, we need to filter information related to
HADM_ID=155667 and DRUG=pioglitazone.
Action 8: FilterDB[HADM_ID=107483, DRUG=pioglitazone]
Observation 8: We have successfully filtered the data (1 rows).
Thought 9: Then we need to get the DOSE_VAL_RX value.
Action 9: FilterDB[DOSE_VAL_RX, sum]
Observation 9: The corresponding DOSE_VAL_RX value is 9.0.
...

EHRAgent
We can find the visiting information of patient 16992 in the
admissions database.
patient_db = LoadDB('admissions')
filtered_patient_db = FilterDB(patient_db, 'SUBJECT_ID=16992')
print(len(filtered_patient_db))
hadm_id_list = GetValue(filtered_patient_db, 'HADM_ID, list')
print(hadm_id_list)

As pioglitazone is a drug, we can find the corresponding
information in the prescriptions database.
prescriptions_db = LoadDB('prescriptions')

We can find the total amount of dose of pioglitazone that
patient 16992 were prescribed by summing up the DOSE_VAL_RX in
the prescriptions database.
total_dose = 0
for hadm_id in hadm_id_list:
 filtered_prescriptions_db = FilterDB(prescriptions_db,
'HADM_ID={}||DRUG=pioglitazone'.format(hadm_id))
 dose_list = GetValue(filtered_prescriptions_db, 'DOSE_VAL_RX,
list')
 print(dose_list)
 for dose in dose_list:
 total_dose += float(dose)

answer = total_dose

Figure 10: Case study 1 of code interface in EHRAgent on MIMIC-III dataset. The baseline approach, ReAct, lacks a
code interface and encounters limitations when performing identical operations on multiple sets of data. It resorts to
generating repetitive action steps iteratively, leading to an extended solution trajectory that may exceed the context
limitations. In contrast, EHRAgent leverages the advantages of code structures, such as the use of ‘for loops’, to
address these challenges more efficiently and effectively. The steps marked in red on the left side indicate the
repeated actions by ReAct, while the steps marked in green are the corresponding code snippets by EHRAgent. By
comparing the length and number of steps, the code interface can help EHRAgent save much context space.

Question: Show me patient 28020's length of stay of the last hospital stay.

ReAct
Thought 1: First, we need to find the last hospital stay of
patient 28020.
Action 1: LoadDB[admissions]
Observation 1: We have successfully loaded the admissions
database, including the following columns: ROW_ID, SUBJECT_ID,
HADM_ID, ADMITTIME, DISCHTIME, ADMISSION_TYPE,
ADMISSION_LOCATION, DISCHARGE_LOCATION, INSURANCE, LANGUAGE,
MARITAL_STATUS, ETHNICITY, AGE.
Thought 2: Next, we need to filter the data to only include
records for patient 28020.
Action 2: FilterDB[SUBJECT_ID=28020, max(DISCHTIME)]
Observation 2: We have successfully filtered the data (1 rows).
Thought 3: Now we have the last hospital stay record for patient
28020. We need to find the length of stay for this stay.
Action 3: GetValue[DISCHTIME-ADMITTIME, duration]
Observation 3: The value you are querying does not exist. Please
modify it.
Thought 4: It seems there was an error in step 3. Let's correct
the mistake and try again.
Action 4: GetValue[DISCHTIME - ADMITTIME, Calendar]
Observation 4: The value you are querying does not exist. Please
modify it.
Thought 5: It seems that the calculation of the length of stay
is not possible using the given steps. I apologize for the
inconvenience.
Action 5: Finish[None]
Observation 5: Answer is INCORRECT

EHRAgent
Import the datetime module
import datetime

Load the admissions
databaseadmissions_db = LoadDB('admissions')

Filter the database for patient 28020
filtered_admissions_db = FilterDB(admissions_db,
'SUBJECT_ID=28020')

Get the ADMITTIME and DISCHTIME of the last hospital
stayadmit_disch_tuple = SQLInterpreter('SELECT ADMITTIME,
DISCHTIME FROM admissions WHERE SUBJECT_ID=28020 ORDER BY
ADMITTIME DESC LIMIT 1')

Extract the ADMITTIME and DISCHTIME from the tuple
admit_time, disch_time = admit_disch_tuple[0]

Convert the ADMITTIME and DISCHTIME to datetime
objectsadmit_time = datetime.datetime.strptime(admit_time, '%Y-
%m-%d %H:%M:%S')
disch_time = datetime.datetime.strptime(disch_time, '%Y-%m-%d
%H:%M:%S')

Calculate the length of hospital stay
length_of_stay = disch_time - admit_time

Store the answer
answer = length_of_stay.days

Figure 11: Case study 2 of code interface in EHRAgent on MIMIC-III dataset. When encountering challenges in
tool use, ReAct will keep making trials and can be stuck in the modification process. On the other hand, with code
interface, EHRAgent can take advantage of Python built-in functions to help with debugging and code modification.

Question: Was the rdw value of patient 273 second measured greater than that first measured on the last hospital visit?
AutoGen

Error: The filtering query LABEL=RDW is incorrect.

...
As RDW is a laboratory test, we can find the corresponding
ITEMID in the d_labitems database.
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=RDW')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

...
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=Red cell
distribution width (RDW)')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

Error: The filtering query LABEL=Red cell distribution
width (RDW) is incorrect.

...
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=RDW')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

EHRAgent
...
As RDW is a laboratory test, we can find the corresponding
ITEMID in the d_labitems database.
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=RDW')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

Error: The filtering query LABEL=RDW is incorrect.

There is no RDW value in the column. Five example values in
the column are rbc, cd7, i, cd8, rdw.
Potential Reasons: The most possible reason for the error is
that the filter condition for the 'LABEL' column in the
'd_labitems' database is case-sensitive. The error message
indicates that there is a 'rdw' value in the column, but not
'RDW'. Therefore, the filter condition 'LABEL="RDW"' does not
match any records. The filter condition should be changed to
'LABEL="rdw"'.

...
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=rdw')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

Figure 12: Comparative case study of the interactive coding process between AutoGen (left) and EHRAgent (right),
where EHRAgent delves deeper into environmental feedback via debugging module to achieve plan refinement.

Question: what was the last length of icu stay of patient 28037?

Error: The filtering query SUBJECT_ID=28037 AND max(INTIME) is
incorrect. There is no 28037 AND max(INTIME) value in the column. Five
example values in the column are 28037, 21037, 288037, 28039, 208037.
Please check if you get the correct HADM_ID value.
Please make modifications accordingly and make sure the rest code works
well with the modification.

from datetime import datetime
We can find the ICU stay information of patient 28037 in the icustays
database.
icustays_db = LoadDB('icustays')
filtered_icustays_db = FilterDB(icustays_db, 'SUBJECT_ID=28037 AND
max(INTIME)')
The length of ICU stay can be calculated by the difference between INTIME
and OUTTIME in the icustays database.
intime = GetValue(filtered_icustays_db, 'INTIME')
outtime = GetValue(filtered_icustays_db, 'OUTTIME')
Calculate the number of days that have passed since the patient was
admitted to the hospital
answer = Calculate('({} - {}) / 86400'.format(in_time, out_time))

from datetime import datetime
We can find the ICU stay information of patient 28037 in the icustays
database.
icustays_db = LoadDB('icustays')
filtered_icustays_db = FilterDB(icustays_db, 'SUBJECT_ID=28037||max(INTIME)')
The length of ICU stay can be calculated by the difference between INTIME
and OUTTIME in the icustays database.
intime = GetValue(filtered_icustays_db, 'INTIME')
outtime = GetValue(filtered_icustays_db, 'OUTTIME')

Error: Invalid input query for Calculator. Please check the input query
or use other functions to do the computation..
Please make modifications accordingly and make sure the rest code works
well with the modification.

from datetime import datetime
We can find the ICU stay information of patient 28037 in the icustays
database.
icustays_db = LoadDB('icustays')
filtered_icustays_db = FilterDB(icustays_db, 'SUBJECT_ID=28037||max(INTIME)')
The length of ICU stay can be calculated by the difference between INTIME
and OUTTIME in the icustays database.
intime = GetValue(filtered_icustays_db, 'INTIME')
outtime = GetValue(filtered_icustays_db, 'OUTTIME')
intime = datetime.strptime(intime, '%Y-%m-%d %H:%M:%S')
outtime = datetime.strptime(outtime, '%Y-%m-%d %H:%M:%S')
length_of_stay = outtime - intime
if length_of_stay.seconds // 3600 > 12:
 answer = length_of_stay.days + 1
else:
 answer = length_of_stay.days

Potential Reasons: The most possible reason for the error is that the
FilterDB function does not support multiple conditions in the CONDITIONS
argument. The function is trying to find a single value "28037 AND
max(INTIME)" in the SUBJECT_ID column, instead of filtering the database
where HADM_ID equals 28037 and max(INTIME).

Potential Reasons: The most possible reason for the error is that the
'Calculate' function is trying to perform arithmetic operations on date
values. The function is expecting numerical values for its calculation,
but it's receiving date values from 'last_visit_date' and 'birth_date'.

4

Output: The answer is 4.

Calculate the number of days that have passed since the patient was admitted
to the hospital
answer = Calculate('({} - {}) / 86400'.format(in_time, out_time))

Figure 13: A complete version of case study in Figure 7 showcasing interactive coding with environment feedback.

Question: count the number of patients who stayed in careunit csru until 2101?

Error: The filtering query FIRST_CAREUNIT=csru OR LAST_CAREUNIT=csru is
incorrect. There is no csru OR LAST_CAREUNIT value in the column. Five
example values in the column are csru, ccu, sicu, micu, tsicu. Please
check if you get the correct FIRST_CAREUNIT value.
Please make modifications accordingly and make sure the rest code works
well with the modification.

Import the datetime module
from datetime import datetime
Load the icustays database
icustays_db = LoadDB('icustays')
Filter the database for stays in CSRU
filtered_icustays_db = FilterDB(icustays_db, 'FIRST_CAREUNIT=csru OR
LAST_CAREUNIT=csru')
Get the SUBJECT_IDs and OUTTIMEs
subject_ids_and_outtimes = SQLInterpreter('SELECT SUBJECT_ID, OUTTIME FROM
icustays WHERE FIRST_CAREUNIT="csru" OR LAST_CAREUNIT="csru"')
Convert the OUTTIMEs to datetime objects and filter the SUBJECT_IDs for
those until 2101
subject_ids_until_2101 = [subject_id for subject_id, outtime in
subject_ids_and_outtimes if datetime.strptime(outtime, '%Y-%m-%d
%H:%M:%S').year <= 2101]
Convert the SUBJECT_IDs to a set to remove duplicates and count the number
of unique SUBJECT_IDs
answer = len(set(subject_ids_until_2101))

TypeError: strptime() argument 1 must be str, not None. The error
messages occur in the code line "subject_ids_until_2101 = [subject_id
for subject_id, outtime in subject_ids_and_outtimes if
datetime.strptime(outtime, '%Y-%m-%d %H:%M:%S').year <= 2101]".

Import the datetime module
from datetime import datetime
Load the icustays database
icustays_db = LoadDB('icustays')
Filter the database for stays in CSRU
filtered_icustays_db_first = FilterDB(icustays_db, 'FIRST_CAREUNIT=csru')
filtered_icustays_db_last = FilterDB(icustays_db, 'LAST_CAREUNIT=csru')
Get the SUBJECT_IDs and OUTTIMEs
subject_ids_and_outtimes_first = SQLInterpreter('SELECT SUBJECT_ID, OUTTIME
FROM icustays WHERE FIRST_CAREUNIT="csru"')
subject_ids_and_outtimes_last = SQLInterpreter('SELECT SUBJECT_ID, OUTTIME
FROM icustays WHERE LAST_CAREUNIT="csru"')
Combine the two lists
subject_ids_and_outtimes = subject_ids_and_outtimes_first +
subject_ids_and_outtimes_last
Convert the OUTTIMEs to datetime objects and filter the SUBJECT_IDs for
those until 2101
subject_ids_until_2101 = [subject_id for subject_id, outtime in
subject_ids_and_outtimes if outtime is not None and datetime.strptime(outtime,
'%Y-%m-%d %H:%M:%S').year <= 2101]
Convert the SUBJECT_IDs to a set to remove duplicates and count the number
of unique SUBJECT_IDs
answer = len(set(subject_ids_until_2101))Potential Reasons: The most possible reason for the error is that the

filter conditions in the FilterDB function are case-sensitive. The code
is trying to filter with 'csru' while the actual value in the database
is 'CSRU'. The correct filter condition should be 'FIRST_CAREUNIT=CSRU
OR LAST_CAREUNIT=CSRU'.

Potential Reasons: The most possible reason for the error is that the
'OUTTIME' value for some records in the 'icustays' database is None. The
datetime.strptime() function is trying to convert a None value into a
datetime object, which is causing the TypeError.

39

Output: The answer is 39.

Import the datetime module
from datetime import datetime
Load the icustays database
icustays_db = LoadDB('icustays')
Filter the database for stays in CSRU
filtered_icustays_db_first = FilterDB(icustays_db, 'FIRST_CAREUNIT=csru')
filtered_icustays_db_last = FilterDB(icustays_db, 'LAST_CAREUNIT=csru')
Get the SUBJECT_IDs and OUTTIMEs
subject_ids_and_outtimes_first = SQLInterpreter('SELECT SUBJECT_ID, OUTTIME
FROM icustays WHERE FIRST_CAREUNIT="csru"')
subject_ids_and_outtimes_last = SQLInterpreter('SELECT SUBJECT_ID, OUTTIME
FROM icustays WHERE LAST_CAREUNIT="csru"')
Combine the two lists
subject_ids_and_outtimes = subject_ids_and_outtimes_first +
subject_ids_and_outtimes_last
Convert the OUTTIMEs to datetime objects and filter the SUBJECT_IDs for
those until 2101
subject_ids_until_2101 = [subject_id for subject_id, outtime in
subject_ids_and_outtimes if datetime.strptime(outtime, '%Y-%m-%d
%H:%M:%S').year <= 2101]
Convert the SUBJECT_IDs to a set to remove duplicates and count the number
of unique SUBJECT_IDs
answer = len(set(subject_ids_until_2101))

Assume you have knowledge of following medical records: [EHR
Metadata (medical records descriptions)]. Write a Python code
to solve the given question. You can use the following
functions: [Tool Definitions (API name, API description)].

Medical Information:
- The information about patients' stay in different care units
can be found in the icustays database.
- Filter the records in the icustays database where
FIRST_CAREUNIT or LAST_CAREUNIT is 'CSRU' and OUTTIME<=2101.
- The number of unique SUBJECT_IDs in these records will be the
number of patients who stayed in careunit CSRU until 2101.

Here are some examples:
Question: count patients who had a swab microbiology until 2104.
Information: <med_info_1> Solution: <solution_1>
Question: count icu visits of patient 45612 until 2101.
Information: <med_info_2> Solution: <solution_2>
Question: count patients who had a atg intake until 2 year ago.
Information: <med_info_3> Solution: <solution_3>
Question: count patients who had a nutren pulmonary until 2103.
Information: <med_info_4> Solution: <solution_4>

Agent Prompt

Medical Information Integration

Demonstration Optimization through Long-Term Memory

Interactive Coding

Environmental Feedback

Rubber Duck Debugging via Error Tracing

Figure 14: Case study of the complete workflow in EHRAgent. With EHR metadata and tool definitions, EHRAgent
(1) integrates medical information to locate the required tables/records, (2) retrieves relevant examples from long-
term memory, (3) generates and executes code, (4) iteratively debugs with error messages until the final solution.

	Introduction
	Preliminaries
	EHRAgent: LLMs as Medical Agents
	Medical Information Integration
	Demonstration Optimization through Long-Term Memory
	Interactive Coding with Execution
	Rubber Duck Debugging via Error Tracing

	Experiments
	Experiment Setup
	Main Results
	Ablation Studies
	Quantitative Analysis
	Error Analysis
	Case Study

	Related Work
	Conclusion
	Dataset and Task Details
	Task Details
	Question Complexity Level
	MIMIC-III
	eICU
	TREQS

	Tool Set Details
	Baseline Details
	Selection of Primary Programming Language
	Additional Implementation Details
	Hardware and Software Details
	Data Preprocessing Details
	Code Generation Details
	Selection of Initial Set of Demonstrations
	Evaluation Metric Details
	EHR Metadata Details
	Prompt Details

	Additional Experimental Results
	Effect of Base LLMs
	Additional Ablation Studies
	Cost Estimation

	Additional Empirical Analysis
	Additional Question Complexity Analysis
	Additional Error Analysis
	Additional Empirical Comparison of Primary Programming Languages

	Additional Case Studies
	Case Study of Medical Information Integration
	Case Study of Long-Term Memory
	Case Study of Code Interface
	Case Study of Rubber Duck Debugging

