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Abstract
Federated Graph Learning (FGL) has gained
significant attention as a privacy-preserving ap-
proach to collaborative learning, but the computa-
tional demands increase substantially as datasets
grow and Graph Neural Network (GNN) layers
deepen. To address these challenges, we pro-
pose EAGLES, a unified sparsification frame-
work. EAGLES applies client-consensus param-
eter sparsification to generate multiple unbiased
subnetworks at varying sparsity levels, reducing
the need for iterative adjustments and mitigating
performance degradation. In the graph structure
domain, we introduced a dual-expert approach:
a graph sparsification expert uses multi-criteria
node-level sparsification, and a graph synergy ex-
pert integrates contextual node information to pro-
duce optimal sparse subgraphs. Furthermore, the
framework introduces a novel distance metric that
leverages node contextual information to measure
structural similarity among clients, fostering ef-
fective knowledge sharing. We also introduce the
Harmony Sparsification Principle, EAGLES
balances model performance with lightweight
graph and model structures. Extensive experi-
ments demonstrate its superiority, achieving com-
petitive performance on various datasets, such
as reducing training FLOPS by 82% ↓ and com-
munication costs by 80% ↓ on the ogbn-proteins
dataset, while maintaining high performance. The
code is anonymously available at this link.

1. Introduction
Federated Graph Learning (FGL) has emerged as a pivotal
field decentralized machine learning, harnessing the
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Figure 1: Problem Illustration. The message-passing mechanism
in GNNs leads to a significant increase in computational demand
as dataset sizes grow and the number of GNN layers deepens.
Existing studies attempt to reduce computational requirements
through model pruning or graph sparsification. However, model
pruning approaches often overlook the variability in parameter im-
portance across different clients, while certain graph sparsification
techniques rely on a single pruning criterion and fail to account for
data heterogeneity, thus limiting their effectiveness.

combined strengths of Federated Learning (FL) systems (Li
et al., 2020; Yang et al., 2016; 2019; Mammen, 2021) and
Graph Neural Networks (GNNs) (Luo & Wu, 2022; Lee
et al., 2019; Gao & Ji, 2019; Wan et al., 2024b; ?). This
approach allows multiple clients to collaboratively train
without sharing their raw data, ensuring data privacy while
effectively extracting knowledge from graph-structured
information. It has already been widely applied in various
domains such as social networks (Goldenberg, 2021; Barnes,
1969), healthcare (Schrodt et al., 2020; Li et al., 2022b),
finance (Cardoso et al., 2020; Saha et al., 2022), and rec-
ommendation systems (Gao et al., 2023; Wang et al., 2021;
Ma et al., 2025). However, as graph data scales continue to
expand, the computational cost of message passing grows
rapidly, posing significant challenges to the computational
resource demands during the training phase of GNNs.

To address this inefficiency and obtain a better-performing
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model, numerous effective methods have been proposed.
These approaches can be mainly categorized into four types:
graph simplification optimization (Chen et al., 2021b;a;
Sohrabi et al., 2021) and model parameter tuning (Ma, 2024;
Yi et al., 2024; Liang et al., 2024; Nguyen et al., 2024),
graph-based knowledge distillation (Zhu et al., 2021; Wang
et al., 2024b; Zhu et al., 2024), graph structure completion
(Baek et al., 2023; Chen et al., 2022; Liang et al., 2024).
The former two groups focus on simplifying graph struc-
tures and adjusting model parameters. Graph simplification
optimization typically reduces the training burden through
sampling or pruning. However these strategies often based
on a single selection strategy (Li et al., 2022a; Parchas et al.,
2018; Fung et al., 2011), which leads to the neglect of criti-
cal information inherent within the graph structure. We refer
to this phenomenon as structure information overfitting. In
model parameter tuning, some methods (Ma, 2024; Yi et al.,
2024) consider lightweighting models by pruning redundant
parameters. However, these approaches necessitate iterative
adjustments to the pruning rate and are not fully suitable
for federated systems, due to the fact that the importance of
parameters may vary across different client models for the
same layer. We present radar charts comparing advanced
centralized methods: Dspar and ACE-GLT with our method,
as shown in Figure 2. The results indicate that advanced
methods relying solely on a single approach and disregard-
ing federated characteristics also face a significant risk of
model performance degradation. Based on the observations,
we raise the following question: I) How can we stream-
line models to reduce the training burden while preserving
critical graph information?

Graph-based knowledge distillation aggregates by trans-
mitting logits or graph embeddings instead of model
parameters. However, neither logits nor graph embeddings
effectively capture structural information, and both
introduce additional computational overhead. As regards
the graph structure completion, certain methods endeavor to
produce missing neighbors and their corresponding features
for peripheral nodes, aiming to enhance the trainability
of these damaged or low-quality nodes. However, these
generative methods encounter even greater computational
overhead compared to graph-based knowledge distilla-
tion, particularly in large-scale graphs. Although both
methods aim to enhance model performance or mitigate
heterogeneity, they all come with substantially higher
computational costs, leading to a strong dependence on
more hardware resources. This leads us to consider: II)
How can we effectively mitigate structural heterogeneity
while minimizing additional computational demands?

To simultaneously overcome the aforementioned ques-
tions, we introduce EAGLES: Towards Effective, Efficient,
And Economical Federated Graph Learning via UnifiEd
Sparsification. To address I), we first introduce a unified

Figure 2: ROC-AUC Comparison on Ogbn-Proteins using 4-
layer DeeperGCN: The radial axis represents ROC-AUC. (left)
ACE-GLT focuses on parameter-level sparsification, while (right)
Dspar specializes in graph-level sparsification. For a detailed
explanation of the ROC-AUC metric, please refer to Appendix B.

sparsification approach, applied at both the graph level and
the model parameter space. At graph level, we deploy two
types of expert models at the client to solve structure in-
formation overfitting, referred to as sparsification experts
and synergy experts. Each sparsification expert specializes
in a particular sparsification criterion, such as jaccard sim-
ilarity, spectral sparsification, and others. They perform
sparsification on the one-hop subgraph of each node based
on specific expertise. To better integrate the sparsified sub-
graphs from multiple experts, synergy expert models node
features employing hard concrete distribution to learn struc-
tural information and dynamically select and integrate key
information from different sparsified versions for each node.
By the combined effect of the two types of expert, we re-
duce graph size, enabling more efficient message passing
and alleviating structure information overfitting. While at
the parameter space, we allow sub-networks with various
pruning rates to share weight parameters and thus avoid the
need for iterative training. This approach produces multiple
sparsified networks in a single pass, reducing parameters
and achieving a more economical communication overhead.

To tackle II), we utilize the node contextual knowledge
learned by the graph synergy expert, applying it to a novel
transmission distance metric for the purpose of assess struc-
tural similarity among clients’ data. This approach encour-
ages structurally similar clients to share more knowledge.
While parameter sparsification is performed, we consider the
varying importance of parameters at corresponding positions
across clients. To achieve this, we introduce a consensus-
based parameter sparsification strategy. This strategy in-
cludes layer-wise alignment of the personalized parameter
sparsification masks. With aggregation adjustments and
parameter consensus sparsification, we more accurately ac-
count for unbiased knowledge sharing, effectively mitigat-
ing the performance degradation caused by heterogeneity.
Additionally, we introduce the Harmony Sparsification
Principle as the guiding principle for the above process.
Thereby we establish an efficient, economical unified and
effective sparsification framework. Our principal contribu-
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tions are summarized as follows:

• We identify that existing sparsification methods lack a
unified framework, considering only graph level or pa-
rameter level sparsification. Moreover, they fail to ensure
effectiveness while achieving efficiency and economy.

• We are the first to introduce unified sparsification in FGL.
This approach performs both graph and parameter space,
minimizing computational and communication demands
while maintaining or improving model performance.

• We conducted extensive experiments on both small
and large graphs, evaluating our method across various
metrics to confirm its superiority. For instance, under the
Ogbn-Proteins + DeeperGCN setting, it achieves state-
of-the-art (SOTA) performance while reducing training
FLOPS by 82% ↓ and communication bytes by 80% ↓.

2. Related Work
2.1. Federated Graph Learning

Federated Graph Learning (FGL) combines the dual ad-
vantages of federated systems and Graph Neural Networks
(GNNs) (Wu et al., 2020; Wan et al., 2025b; Shi et al., 2024;
Wan et al., 2025a), enabling the training of graph-structured
data while preserving data privacy (He et al., 2021; Jin et al.,
2022; Wang et al., 2020; Wu et al., 2021; Zhang et al., 2022;
Wan et al., 2024a; 2025c). While numerous studies have
concentrated on improving model performance, as datasets
continue to grow, reducing computational resource con-
sumption have gradually become pressing challenges (Liu
et al., 2023b; Chen et al., 2023a; 2024). Existing methods
are primarily focused on sparsification within the parame-
ter space of traditional FL (Zeng et al., 2022; Jiang et al.,
2023; Fang et al., 2025). To the best of our knowledge, we
are the first to propose a unified framework that simultane-
ously sparsifies both the graph structure and parameter space.
More importantly, our approach successfully mitigates data
heterogeneity and maintain or enhances model performance.

2.2. Mixture of Experts

The Mixture of Experts (MoE) has emerged as an effective
approach in scaling deep learning models. By dynamically
selecting and combining the outputs of specialized expert
networks, MoE enables the model to perform more
efficiently and accurately across different tasks or inputs. In
graph learning, moE has also been widely applied, including
large-scale graph learning (Wang et al., 2024a; Gupta
et al., 2022; Jacobs et al., 1991), multi-task learning (Liu
et al., 2023a; Chen et al., 2023b; Ma et al., 2018; Shazeer
et al., 2017; Bi et al., 2025a;b;a), and graph classification
(Hu et al., 2021; Yao et al., 2019). In our work, we
leverage MoE to achieve multi-criteria sparsification at the
graph level, alleviating data heterogeneity and enabling
structurally similar clients to share more knowledge.

2.3. Graph Sparsification & Model Pruning
Graph sparsification and model pruning are widely studied
techniques for reducing computational complexity while
maintaining model performance. Graph sparsification aims
to retain the most important structural components of a
graph by removing less critical edges or nodes (Gong et al.,
2021; Müller et al., 2022; Liu et al., 2023c; Batjargal et al.,
2019; Wan & Schweitzer, 2021). On the other hand, model
pruning focuses on removing redundant model parameters
to create more lightweight architectures (Yi et al., 2024;
Qiu et al., 2022; Wu et al., 2023a). For instance, DSpar
selectively retains the connections of high-degree nodes to
sparsify the graph structure (Liu et al., 2023c; Cai et al.,
2024b). PR-FL employs an approach where model pruning
is performed first, followed by the gradual recovery of model
size during the training process (Ma, 2024; Cai et al., 2024a).
However, as mentioned earlier, both methods face different
limitations. We aim to overcome these shortcomings and
obtain a better-performing lightweight model.

3. Preliminary
Notations. Following the general paradigm of federated
graph learning, there are K participants (indexed by k),
each client Ck possesses its own private data, represented
as Gk = (Vk, Ek). Here, Vk = {vi}Nk

i=1 denotes the set of
nodes, containing |Vk| = Nk nodes, while Ek = {emn}m,n

represents the set of edges. The adjacency matrix for the
k-th client’s graph Gk is denoted as Ak = {Aij}i,j , where
Aij = 1 if there is an edge between nodes vi and vj , and
Aij = 0 otherwise. Additionally, each client has a feature
matrix Xk, where each row corresponds to the features of
a specific node in Vk. We define the global model at the
beginning of the t-th communication round as Mt, and the
model of the k-th local client as Mt

k with parameters θtk.

3.1. Graph & Parameters Sparsification

For the graph sparsification task, we define the sparsified set
of edges as Es

k , and the sparsified graph representation of
the k-th client as Gs

k = {Vk, Es
k}. The one-hop subgraph of

node vi is denoted as Gs
k,vi

. We define the parameter matrix

of the k-th local model’s l-th layer as W(l)
k . Its sparsified

version is denoted as W(l),s
k . The sparsification rates for the

graph and weights SG and SW are defined as follows:
Definition 1. (Graph Sparsification Ratio). For a sparsified
graph Gs, we calculate its corresponding graph sparsifica-
tion rate as follows:

Gs = (V, Es), SG =
|Ẽ |
|E|
. (1)

Definition 2. (Model Sparsification Ratio). For a sparsi-
fied model M with L layers, we calculate its parameter
sparsification rate as follows:

Ms = {W(1),W(2), . . . ,W(L)}, SW =

∑L
l=1 |W̃

(l)|∑L
l=1 |W(l)|

. (2)
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where | · | represents the cardinality (i.e., the number of
elements) of a set, and ·̃ denotes the sparsified portions. Our
objective is to maintain or improve the performance of the
local model while maximizing SG and SW.

3.2. Sparsification Criterion Design
Current sparsification research in FGL lacks consideration
for data structure heterogeneity and lacks a unified frame-
work to simultaneously address both graph level and param-
eter space. These constraints prevent deep sparsification, as
illustrated in Figure 2. We argue the conditions that an ideal
sparsification architecture should satisfy as follows:

Ideal Sparsification Architecture for FGL: Given
a sparsification task q, an optimal FGL architecture
to achieve this should fulfill the following specifica-
tions: Effectiveness: The sparsification structure must
effectively mitigate data heterogeneity. Completeness:
The sparsification structure should comprehensively
account for redundant components (i.e., graph and
parameter space). Scalability: The sparsification ar-
chitecture should be capable of efficient operation on
large-scale datasets.

To fulfill the specifications above, we introduce the Harmony
Sparsification Principle to guide the criteria for designing
sparsification architectures in FGL:

Principle 1. (Harmony Sparsification Principle). Given
a graph G = {V, E} and a L-layer model M =
{W(1),W(2), . . . ,W(L)}, along with two ideal sparsifiers
Fg ∈ {0, 1}|E| and Fp ∈ {0, 1}|M|, responsible for graph
and parameter sparsification, respectively. Gs and Ms

should satisfy the following condition:

argmin
Fg,Fp

E

 ∑
N ′∈{N}

N
′
(G,Gs) +

∑
A′∈{A}

A
′
(M,Ms)


+argmax

Fg,Fp

E

 ∑
Q′∈{Q}

Q
′
(G,Gs) +

∑
Z′∈{Z}

Z
′
(M,Ms)


(3)

where E denotes the mathematical expectation, {N}
represents metrics for evaluating differences in graph struc-
ture (e.g., Jaccard similarity, spectral sparsification, etc.),
{A} represents metrics for assessing model parameters
in terms of inference performance (e.g., Top-k Accuracy,
ROC-AUC, etc.), {Q} evaluates metrics related to the
graph message-passing load (e.g., node load, betweenness
centrality, etc.), and {Z} includes metrics for evaluating
reductions in computational resources (e.g., training flops,
communication bytes, etc.).

4. Methodology
4.1. Overview

The proposed EAGLES can be decomposed into two com-
ponents: Consensus-Based Parameter Sparsification and

Heterogeneous-Aware Graph Sparsification, which corre-
spond to section 4.2, section 4.3, respectively. We use
dynamic rollback pruning for layer-wise parameter spar-
sification, performing row-wise pruning within each layer
to obtain subnetworks at different sparsity levels. Based
on task requirements, we select and retrain suitable sub-
networks. Subsequently, we leverage sparsification and
synergy experts to remove redundant edges and unify client
structures. Ultimately, we upload both synergy expert and
backbone parameters, using Optimal Transport to assign
higher weights to clients with similar structures, allowing
the local model to absorb more knowledge from similar data
distributions. The framework of the method is shown in
Figure 3.

4.2. Consensus-Informed Parameter Sparsification
Motivation. GNNs in both centralized and federated dis-
tributed environments face significant computational de-
mands and extended training times, particularly on large
datasets (Hamilton et al., 2017; Chen et al., 2017). However,
traditional model sparsification approaches rely on multiple
iterative cycles with preset pruning rates, directly conflict-
ing with the aim of reducing computational load. Moreover,
existing pruning methods in FL fail to effectively consider
unbiased knowledge sharing, leading to notable efficiency
losses.

Dynamic Mask Thresholds. Traditional lottery ticket net-
works require manually setting sparsity levels, selecting a
fixed proportion of parameters with the smallest absolute
values for pruning. We define the threshold vector for the l-
th layer as κl

θ, corresponding to the parameter matrix Wl in
this layer. The parameter mask m

(l)
ij for the entry located at

the i-th row and j-th column of Wl is computed as follows:

m
(l)
ij =

{
1, if |W(l)

ij | ≥ κ
(l)
θ,i,

0, otherwise,
(4)

where W
(l)
ij denotes the weight in the i-th row and j-th

column, and κ
(l)
θ,i denotes the i-th element of the vector κ(l)

θ .
Dynamic threshold optimization. In the forward pass, we
define a simple binary step function BS(x) to generate a
binary mask based on whether the input exceeds a threshold.
However, this discrete value is non-differentiable during
the backward pass. To address this and facilitate effective
threshold tuning, we employ the straight-through estimator
(STE) method for optimization, whose effectiveness has
been demonstrated in prior works (Bengio et al., 2013; Jang
et al., 2016; Huh et al., 2023; Wu et al., 2023b; Yin et al.,
2019). Specifically, in the backward pass, we approximate
the gradient of BS as the gradient of an identity function:

dBS(x)
dx

=

{
0, if 0 ≤ |x| < 0.5.

1, otherwise.
(5)

This approach allows gradients to bypass the non-
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Equation (23)

Equation (20)

Equation (14)

Equation (11)
Equation (7)

Figure 3: Architecture illustration of EAGLES. (Left) Consensus-Informed Parameter Sparsification is depicted, where the sparsification
threshold vector is optimized using the Straight-Through Estimator (STE). (Right) Heterogeneity-aware graph sparsification is shown,
with the Graph Synergy Expert optimized in reverse via the Hard Concrete distribution. (Middle) The server adjusts aggregation weights
according to structural differences. Best viewed in color. Zoom in for details.

differentiability of BS during the backward pass, enabling
effective updates to the threshold parameter κ(l)

θ . The loss
function for this part is simply defined as follows:

LPara =
∑
l

exp(−κ(l)θ ). (6)

Consensus Parameter Mask Alignment. Client-specific
sparsification masks can lead to progressive overfitting to
local data, a challenge that becomes even more pronounced
during model pruning. Building on this, we propose a
client-consensus-based parameter pruning scheme. After
applying dynamic masking on each client, the resulting
mask vector (in boolean form) is compressed into bit stor-
age, with each 8-bit segment occupying a single byte. This
approach significantly reduces communication overhead
while enabling efficient selection of consensus parameters.

(7)

This approach promotes pruning stability at a macro level
while preserving a degree of generalization in the local
models. To further reinforce deep pruning, we employ a
dynamic rollback strategy. Specifically, we designate the
highest-performing subnetwork within an accuracy range of
±3% around each multiple of ten as the optimal subnetwork
for that pruning point. Before progressing to the next prun-
ing point, we roll back to the optimal subnetwork from the
previous point, ensuring stable and effective pruning depth.

4.3. Heterogeneity-Aware Graph Sparsification
Motivation. The information aggregation mechanism
of GNNs imposes substantial computational demands,
with time complexity growing explosively as the depth of

aggregation increases (Chen et al., 2017; 2018; Chiang
et al., 2019; Rong et al., 2019; Velickovic et al., 2019).
There is limited research on sparsification within feder-
ated distributed settings. Clients in FGL often exhibit
substantial structural differences, and poorly configured
pruning methods can intensify this structural heterogeneity.
Moreover, most existing sparsification methods rely on
a single criterion. This reliance tends to overly preserve
specific structural information aligned with that criterion,
overlooking other aspects and resulting in structure
information overfitting.

Graph Sparsification Expert. The Graph Sparsification
Expert (GSE) is the central module for graph sparsification.
Each GSE applies a unique sparsification criterion, evalu-
ating each edge within the one-hop subgraph of each node
according to its specific scoring standard. Specifically, we
concatenate the feature matrix Xi of node vi, the feature
matrix Xj of its neighboring node vj , and the weight |eij |
of the edge to form the input feature matrix for the GSE:

Xi,Xj ∈ RN×D, |eij | ∈ R1×1,

XGSE
ij = [Xi,Xj , |eij | · 1N×D] ∈ RN×(2D+1).

(8)

Here, |eij | is treated as a vector to enable broadcasting, and
Xij serves as the input matrix for the GSE to compute the
edge score oj corresponding to eij . This process is repeated
Nvi times, where Nvi denotes the number of neighbors of
node vi, ultimately yielding an ordered set of edge scores:

Ovi = {o1, o2, . . . , oNvi
}. (9)

The graph sparsity rate is a predefined hyperparameter,
based on which we determine the final sparsified subgraph
for this GSE: Os

vi = {ok, ok+1, . . . , oNvi
}.

Gs
vi = {V, Es

vi}, Es
vi = {ek, ek+1, . . . , eNvi

}.
(10)

Assuming that t different GSEs have each produced a spar-
sified version for vi, we obtain a set of sparsified graphs:
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Gs
vi = {Gs,katz.

vi ,Gs,Jac.
vi , . . . ,Gs,Cos.

vi }. (11)

Graph Synergy Expert. To integrate the sparsification
results from different experts, we introduce a Graph
Synergy Expert (GSyE), driven by a gating mechanism
(Greff et al., 2016; Li et al., 2015; Srivastava et al.,
2015). However, the activation or deactivation of multiple
sparsification experts poses a discrete binary challenge,
making it non-differentiable in the backward pass. We
propose optimizing the GSyE employing a hard concrete
distribution to address this issue. The optimization of Gs

vi is
essentially an optimization problem over Es

vi . This module
leverages the GSyE at each node to learn its contextual
information, thereby determining the expert assignments
most suitable for each node. On a micro level, the GSyE
optimizes subgraph Synergy by integrating structural details.
On a global macro level, nodes with similar contextual
characteristics across clients tend to preserve more similar
and refined structures, promoting consistency from the node
level. The specific process is as follows:

z = X ·Wgate, X ∈ RN×D, (12)
where N is the number of nodes, and D represents the
dimensionality of the node features. z serves as the input for
sampling from the hard concrete distribution (Louizos et al.,
2017; Maddison et al., 2016; Schlichtkrull et al., 2020).

ψ(z) = α · σ
(
log(z)− log(1− z) + g1 − g2

τ

)
. (13)

The term σ denotes the Sigmoid function, α is a mixing co-
efficient, and τ is the temperature parameter controlling the
smoothness of the distribution. g1 and g2 are random noise
variables sampled for the reparameterization trick, which
ensures differentiability of the binary gating mechanism.

z
′
= HardStep(ψ(z)) =

{
1, if ψ(z) > 0.5.

0, otherwise.
(14)

z
′

is a threshold function used to determine whether an ex-
pert is activated. Furthermore, we obtain the control matrix:

Mij =

{
z

′

ij , if vj ∈ Gs
vi .

0, otherwise.
(15)

Based on this, we define the calculation methods for expert
importance scores and expert load:

I imp.
j =

Nvi∑
i=1

Mij , ILoa.
j =

I imp.
j

Nvi

. (16)

The optimization objective of the GSyE module and the
procedure for optimizing Wgate are formulated as follows:

LGSyE = λ ·
(

Var(I imp.)

(I imp.)2 + ϵ

)
+ (1− λ) ·

(
Var(ILoa.)

(ILoa.)2 + ϵ

)
,

∂L
∂Wgate

=
∂L
∂z′ ·

∂z
′

∂ψ(z)
· ∂ψ(z)

∂z
· ∂z

∂Wgate
,

(17)

where Var denotes the variance, λ serves as a balancing
coefficient to regulate the trade-off between the variance of
importance scores and load scores, and ϵ is a small constant
added to avoid division by zero. The primary node pre-
diction task uses the standard negative log-likelihood loss:

LNLL = − 1

N

N∑
i=1

log(p(yi|xi)). (18)

The final loss function comprises three components and is
formulated as:

Ltot. = λ1 · LNLL + λ2 · LGSyE + λ3 · LPara, (19)
where λi controls the relative weight of each loss compo-
nent. LGSyE and LPara are defined in Equation (17) and
Equation (6), respectively. λ3 is applied only during pre-
training for subnetwork training, and is set to λ3 = 0 during
retraining.

Transport-based Similarity. During each communication
round, local clients upload their GNN parameters along with
Wgate from the GSyE. The matrix Wgate encodes structural
information derived from each client’s data, as detailed in
Section 4.3. The OT distance between clients Ci and Cj is
then defined as:

dij = min
T∈T (a,b)

∑
m,n

Tmn ·Cmn, (20)

where a and b denote the distributions derived from the
unfolded Wgate matrices of clients Ci and Cj , respectively.
Here, T (a, b) is the set of feasible transport plans that
satisfy supply and demand constraints. Tmn represents the
amount of mass transported from the m-th element of dis-
tribution a to the n-th element of distribution b, while Cmn

denotes the unit transportation cost between these elements.

Structure-Similarity Personalized Aggregation. We lever-
age the OT distance between clients, formulated as:

dnorm
ij =

dij −min(d)

max(d)−min(d) + ϵ
, (21)

where d represents the set of distance values between all
pairs of clients. The similarity and personalized aggregation
weight between clients Cj and Ci are defined as follows:

Sij = 1− dnormij , Wij =
Sij∑K

k=1 Sik + ϵ
. (22)

The parameter update rule for client Ci is formulated as:

θt+1
i =

K∑
j=1

W t
ij · θtj . (23)

4.4. Discussion
Our method employs a unified sparsification framework
to significantly reduce computational demands and
communication overhead in federated systems. The
parameter sparsification module identifies subnetworks
across all sparsity levels in a single pass, albeit with
a pretraining step inherited from conventional lottery
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Table 1: Node classification performance comparison across multiple metrics with various methods from state-of-the-art federated
systems and centralized environments. All reported results represent the mean over five runs. Green arrows ↑↓ indicate advancements in the
given metric, while red arrows ↑↓ denote regressions. The best and second-best results are highlighted in bold and underlined, respectively.
Please refer to section 5.2 for additional analysis. Additional experimental results on more datasets can be found in Appendix D.

Pubmed - (GCN) Ogbn-Arxiv - (GraphSAGE) Ogbn-Proteins - (DeeperGCN)

Methods Effe.Effi.Econ. Top-1 Max Training Communication Top-1 Max Training Communication
ROC-AUC (↑)

Max Training Communication

Accuracy (↑) FLOPS (↓) BYTES (↓) Accuracy (↑) FLOPS (↓) BYTES (↓)
ROC-AUC (↑)

FLOPS (↓) BYTES (↓)

FedAvg [ASTAT17] % % % 85.65 1x(2.49E9) 1x(6.19E9) 63.99 1x(1.58E10) 1x(6.14E9) 81.54 1x(1.81E9) 1x(2.26E9)

FedProx [arXiv18] % % % 84.51↓1.14 1.00x↑0.00x 1.00x↓0.00x 64.05↑0.06 1.00x↑0.00x 1.00x↓0.00x 81.12↓0.42 1.00x↑0.00x 1.00x↓0.00x
FedSage+ [NeurIPS21] ! ! % – – – 64.23↑0.24 1.00x↓0.81x 1.00x↓0.00x – – –

APPLE [IJCAI22] % % % 83.23↓2.32 1.00x↑0.00x 1.00x↑0.00x 63.21↓0.78 1.00x↑0.00x 1.00x↑0.00x 80.02↓1.52 1.00x↑0.00x 1.00x↑0.00x
FedCP [KDD23] ! % % 85.82↑0.17 1.03x↑0.03x 1.17x↑0.17x 64.11↑0.12 3.22x↑2.22x 1.22x↑0.22x 81.49↓0.05 3.86x↑2.86x 1.28x↑0.28x

FedTAD [IJCAI24] ! % % 86.15↑0.50 4.22x↑3.22x 1.05x↑0.05x 65.03↑1.04 35.33x↑34.33x 1.13x↑0.13x 82.02↑0.48 31.21x↑30.21x 1.15x↑0.15x
FedSSP [NeurIPS24] ! % % 86.32↑0.67 3.21x↑2.21x 2.45x↑1.45x 64.34↑0.35 27.89x↑26.89x 2.33x↑1.33x 81.98↑0.44 25.78x↑24.78x 2.89x↑1.89x

FGGP [AAAI24] % % % 84.55↓1.10 1.15x↑0.15x 1.32x↑0.32x 63.78↓0.21 5.78x↑4.78x 1.44x↑0.44x 80.56↓0.98 11.23x↑10.23x 7.65x↑6.65x
FedGTA [VLDB 24] ! % % 86.45↑0.80 1.00x↑0.00x 1.00x↑0.00x 64.13↑0.14 1.00x↑0.00x 1.00x↑0.00x 81.78↑0.24 1.00x↑0.00x 1.00x↑0.00x
PruneFL [TNNLS19] % ! % 80.45↓5.11 0.67x↓0.33x 1.00x↓0.00x 60.88↓3.11 0.55x↓0.45x 1.00x↓0.00x 78.89↓2.65 0.66x↓0.34x 1.00x↓0.00x
FedTiny [ICDCS23] % ! ! 82.84↓2.81 0.77x↓0.23x 0.80x↓0.20x 61.98↓2.01 0.51x↓0.49x 0.69x↓0.31x 79.92↓1.62 0.55x↓0.45x 0.59x↓0.41x
FedDIP [ICDM23] % ! ! 83.30↓2.35 0.59x↓0.41x 0.56x↓0.44x 63.85↓0.14 0.38x↓0.62x 0.58x↓0.42x 81.21↓0.33 0.56x↓0.44x 0.42x↓0.58x
DSpar [TMLR23] % % % 84.14↓1.51 1.00x↓0.00x 1.00x↓0.00x 63.44↓0.55 1.00x↓0.00x 1.00x↓0.00x 80.86↓0.68 1.00x↓0.00x 1.00x↓0.00x

ACE-GLT [CVPR24] ! ! % 85.68↑0.03 0.55x↓0.45x 1.00x↓0.00x 64.04↑0.05 0.36x↓0.64x 1.00x↓0.00x 81.58↑0.04 0.59x↓0.41x 1.00x↓0.00x
EAGLES ! ! ! 86.97↑1.32 0.48x↓0.52x 0.37x↓0.63x 65.37↑1.38 0.32x↓0.68x 0.48x↓0.52x 82.10↑0.56 0.18x↓0.82x 0.20x↓0.80x

networks. This pretraining, however, enables substantial
parameter sparsification, greatly reducing communication
costs during federated updates. At the graph sparsification
level, a multi-expert approach is introduced to effectively
mitigate structure information overfitting, a common issue
in single-standard sparsification methods.

5. Experiments
In this section, we omprehensively evaluate our proposed
EAGLES by addressing the following key questions.

• Q1: Superiority. Does EAGLES maintain or surpass
baseline performance?

• Q2: Efficiency and Economical. Is EAGLES capable of
reducing computational resource requirements and com-
munication bytes?

• Q3: Resilience. What is the performance of EAGLES
under varying sparsification rates and different numbers
of clients?

• Q4: Sensitivity. How does EAGLES perform with differ-
ent hyper-parameter settings?

The answer of Q1-Q3 are illustrated in 5.2-5.4, and the
analyses of Q4 can be found in Appendix D.

5.1. Experiment Setup
Datasets and Split. To comprehensively evaluate EA-
GLES across different datasets and tasks, we selected Cora
(Mammen, 2021), Pubmed (Shchur et al., 2018), and Photo
(McAuley et al., 2015) from small to medium-scale datasets,
and Ogbn-Arxiv, Ogbn-Proteins, and Ogbn-Products from
large-scale datasets (Hu et al., 2020). Detailed descriptions
for these datasets can be found in Appendix A.

Backbone and Parameter Configurations. For small to
medium-scale datasets, we use a two-layer GCN as the back-

bone, while for large-scale datasets, we select a four-layer
GraphSAGE and DeeperGCN as the backbones (Defferrard
et al., 2016; Li et al., 2018; Zhang et al., 2018). Please see
Appendix E for more details.

Evaluation Details. We utilize a range of metrics to
comprehensively evaluate the multi-faceted performance of
each method: ❶ Top-1 Accuracy (Top-1-AC). ❷ Receiver
Operating Characteristic-Area Under the Curve (ROC-
AUC) (Bradley, 1997). ❸ Max Training FLOPS (TF). ❹
Communication Bytes (CB). We compared our method
with traditional FL methods: (1) FedAvg (McMahan et al.,
2017); (2) FedProx (Li et al., 2020); (3) FedSage+ (Zhang
et al., 2021); six state-of-the-art FGL methods: (4) APPLE
(Luo & Wu, 2022); (5) FedCP (Zhang et al., 2023); (6)
FedTAD (Zhu et al., 2024); (7) FedSSP (Tan et al., 2024);
(8) FGGP (Wan et al., 2024a); (9) FedTGA (Li et al., 2024);
two widely used graph sparsification methods: (10) DSpar
(Liu et al., 2023c); (11) ACE-GLT (Wang et al., 2023);
and three recent pruning methods for traditional FL: (12)
FedDIP (Long et al., 2023); (13) PruneFL (Jiang et al.,
2022); (14) FedTiny (Huang et al., 2023). Additional
evaluation details are provided in Appendix B.

5.2. Superiority
To address Q1, we compare EAGLES against state-of-the-
art methods in federated and centralized settings across
multiple metrics, as shown in Table 1. Most existing
methods excel in specific metrics but fail to achieve overall
superiority: ❶ FedCP, FedTAD, and FedSSP improve
model generalization but neglect the redundancy in graph
data and model parameters, which hampers training quality
and limits potential gains. ❷ Graph sparsification and model
pruning methods, such as DSpar, reduce computational
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Figure 4: Node classification performance comparison of accuracy on the Pubmed and Ogbn-arxiv datasets, illustrating results for
random pruning, EAGLES, and the advanced dual-sparsification approach ACE-GLT. Please see details in section 5.4.

costs but often compromise model performance due to
simplistic criteria like single-factor sparsification, leading
to structural overfitting. ❸ FedTiny adopts non-recoverable
pruning without considering parameter importance across
clients, resulting in significant performance degradation.
In contrast, EAGLES achieves superior performance
across all metrics, effectively minimizing Training FLOPS
and Communication BYTES while maintaining or even
enhancing model performance.

5.3. Efficiency
To address Q2, we examine Training FLOPS and Commu-
nication BYTES, as summarized in Table 1, with metric de-
tails provided in Appendix B. Methods like FedSSP and Fed-
TAD improve local or global generalization but at the cost of
higher computational and communication overhead, partic-
ularly in large-scale graphs. Sparsification approaches, such
as PruneFL and ACE-GLT, involve weight recovery, prevent-
ing reductions in communication bytes. Moreover, PruneFL
lacks graph-level sparsification, and both methods overlook
client-specific parameter importance, limiting their contribu-
tions to FGL. FedTiny and FedDIP avoid weight recovery by
pruning during training, reducing both Training FLOPS and
Communication BYTES, but at the expense of model per-
formance. In contrast, EAGLES employs consensus-based
parameter sparsification to identify subnetworks at each
pruning rate, leveraging these subnetworks during retraining
to simultaneously reduce dataset size and ensure both effi-
ciency and effectiveness. Furthermore, the reduced param-
eter size of the subnetworks significantly lowers communi-
cation bytes, achieving a more economical training process.

5.4. Resilience
To address Q3, we conducted extensive experiments. Ta-
ble 2 and Table 4 present the Top-1 Accuracy of EAGLES
across various sparsification rates. Observations: ❶ The op-
timal graph sparsification rate is approximately 30%, while
parameter sparsification shows greater flexibility. For exam-
ple, under the Ogbn-Proteins + DeeperGCN configuration,
a parameter sparsification rate of 81.79% (rounded to 80%
in the table) results in a 0.4% performance improvement
over the baseline. We present ablation experiments on the
number of clients in Figure 6a and Figure 6b.

Figure 4 compares EAGLES with ACE-GLT, a state-

(a) Ogbn-proteins (b) Ogbn-Arxiv
Figure 5: Three-dimensional bar chart delineates the influence
of weight sparsity on three key metrics: AC (Top-1 Accuracy),
CB (Communication BYTES), and TF (Training FLOPS). For an
in-depth analysis, please refer to section 5.4.

of-the-art dual-sparsification method for centralized
systems, and random sparsification on node classification
tasks for Pubmed and Ogbn-Arxiv. For weight sparsity
analysis, graph sparsity is fixed at 30%; for graph sparsity
analysis, weight sparsity is fixed at 50%. Observations: ❷
EAGLES consistently outperforms the baseline under most
conditions, while ACE-GLT falls short. This discrepancy
likely arises from ACE-GLT’s limited consideration of
data heterogeneity in federated systems and the varying
importance of parameters across clients.

Figure 5 presents two three-dimensional bar charts il-
lustrating three key metrics—AC (Top-1 Accuracy), CB
(Communication BYTES), and TF (Training FLOPS)—on
the Ogbn-Arxiv and Ogbn-Proteins datasets. Baseline met-
rics are normalized to 1.00x, with all results reported as
percentages relative to this baseline. We observe that Obs.
❸ as weight sparsity increases, both TF and CB steadily de-
crease, while AC remains stable, consistently near or above
the baseline. Collectively, these observations provide strong
evidence of the resilience of EAGLES.

6. Conclusion
In this paper, we are pioneers in addressing the challenge
of reducing computational resource demands in federated
graph learning. We introduce EAGLES: Towards Effective,
Efficient, And Economical Federated Graph Learning via
UnifiEd Sparsification. Previous works rely on sparsifica-
tion in a single aspect, we are the first to propose unified
sparsification, overcoming issues such as parameter space
sparsification without federated characteristics and graph
sparsification constrained by single criteria. Our method’s
superiority is demonstrated across multiple metrics on sev-
eral datasets. We hope this work offers a novel perspective
for future research focused on reducing computational re-
source consumption in federated graph systems.

8



EAGLES: Towards Effective, Efficient, and Economical Federated Graph Learning via Unified Sparsification

Acknowledgement
This research is supported by the National Key Research
and Development Project of China (2024YFC3308400),
the National Natural Science Foundation of China (Grants
62361166629, 62176188, 623B2080), the Wuhan Univer-
sity Undergraduate Innovation Research Fund Project. The
supercomputing system at the Supercomputing Center of
Wuhan University supported the numerical calculations in
this paper. Carl Yang was not supported by any funds from
China.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Baek, J., Jeong, W., Jin, J., Yoon, J., and Hwang, S. J. Per-

sonalized subgraph federated learning. In International
conference on machine learning, pp. 1396–1415. PMLR,
2023.

Barnes, J. A. Graph theory and social networks: A technical
comment on connectedness and connectivity. Sociology,
3(2):215–232, 1969.

Batjargal, D., Khan, K. U., and Lee, Y.-K. Em-fgs: Graph
sparsification via faster semi-metric edges pruning. Ap-
plied Intelligence, 49:3731–3748, 2019.
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A. Datasets Details
All datasets are used for node classification tasks. For the small to medium group Cora, pubmed and Amz-Photo, we split
training, validation and test set as 60%, 20%, 20%. we manually split the data into 60% for training, 20% for validation, and
20% for testing, while for the latter group, we utilized the official dataset splits. The official (training, validation, test) splits
for OGBN-Arxiv, OGBN-Proteins, and OGBN-Products are (53.7%, 17.6%, 28.7%), (65.3%, 13.9%, 20.8%), and (8.03%,
4.01%, 87.96%), respectively. The statistics of the datasets used in our experiments are provided in Table 5.

• Citation Network (Cora and pubmed): The Citation Network datasets Cora and pubmed are standard benchmarks for
graph neural networks in machine learning. The Cora dataset contains 2,708 scientific publications divided into seven
categories. Each publication is linked by citations and represented by a binary word vector from a vocabulary of 1,433
unique words. The pubmed dataset focuses on diabetes and includes 19,717 publications across three categories: Diabetes
Mellitus, Experimental Diabetes Mellitus Type 1, and Diabetes Mellitus Type 2. It has 44,338 citation links, with each
publication represented by a TF-IDF weighted word vector from a dictionary of 500 unique terms (Yang et al., 2016).

• Amz-purchase (Photo): The Amz-purchase Photo dataset, derived from Amazon’s co-purchase network, is widely utilized
for classification tasks in recommendation systems and market analysis. In this dataset, nodes represent products, while
edges indicate co-purchase relationships, which capture products often bought together. Each product is associated with
specific features, and the main task is to predict its category. This dataset supports research on consumer behavior, product
categorization, and recommendation algorithms (McAuley et al., 2015).

• OGBN-ARXIV The OGBN-ARXIV dataset from the Open Graph Benchmark (OGB) supports node property prediction
tasks within an academic citation network. This dataset comprises 169,343 nodes, each representing a computer science
paper from the arXiv repository with directed edges indicating citation relationships. Each node includes a 128-dimensional
feature vector derived from embeddings of the paper’s title and abstract. The main task is to predict the paper’s subject
area across 40 classes. The dataset is partitioned by publication year: papers published up to 2017 are used for training,
those from 2018 for validation, and those from 2019 onward for testing (Hu et al., 2020).

• OGBN-PROTEINS The OGBN-PROTEINS dataset from the Open Graph Benchmark (OGB) supports node property
prediction tasks within a protein-protein association network. This undirected weighted graph contains 132,534 nodes,
each representing a protein from one of eight species. Edges indicate biologically meaningful associations such as physical
interactions, co-expression, or homology. Each edge has an 8-dimensional feature vector where each dimension represents
the confidence score (from 0 to 1) of a specific association type. The primary task is to predict 112 different protein
functions in a multi-label binary classification setup. The dataset is split by species, allowing models to be evaluated on
their generalization across species (Hu et al., 2020).

• OGBN-PRODUCTS The OGBN-PRODUCTS dataset from the Open Graph Benchmark (OGB) supports node prop-
erty prediction tasks within an Amazon product co-purchasing network. This undirected unweighted graph includes
approximately 2.4 million nodes, each representing a product, and 61.9 million edges indicating frequent co-purchase
relationships. Each node has a 100-dimensional feature vector derived from the product description. The primary task is
to predict the product category among 47 top-level classes in a multi-class classification setup. The dataset is split by sales
rank, with the top 8% of products for training, the next 2% for validation, and the remaining 90% for testing, simulating a
realistic scenario where popular products have labeled data while predictions are required for less popular items (Hu et al.,
2020).

B. More Evaluation Details
The metrics used in the experiments in this paper are calculated as follows:

• Top-1 Accuracy Top-1 Accuracy is a common evaluation metric used in classification tasks, particularly for multi-class
problems. It represents the proportion of predictions where the model’s highest confidence label (the top-1 prediction)
matches the true label. This metric is calculated as the ratio of correctly classified samples to the total number of samples,
providing a straightforward measure of the model’s ability to correctly identify the primary class for each input.

Accuracy =
1

T

T∑
i=1

∑N
j=1 1{ytrue[j, i] = ypred[j, i]}

N
(24)
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Table 2: Node classification performance of EAGLES evaluated across numerous values of SG and SW on pubmed,
Ogbn-Arxiv and Ogbn-Proteins. The reported performance represents the average over five runs and is measured within a
target sparsity range of ±3%. Please refer to appendix D for additional analysis.

Parameter Graph Sparsity% - pubmed Graph Sparsity% - Ogbn-Arxiv Graph Sparsity% - Ogbn-Proteins
Sparsity% 0 10 30 50 0 10 30 50 0 10 30 50

0 84.88↓0.77 85.50↓0.15 85.71↑0.06 84.98↓0.67 63.45↓0.54 63.32↓0.67 64.01↓0.02 62.89↓1.10 81.89↑0.35 82.13↑0.59 81.92↑0.38 81.88↑0.34
10 84.65↓1.00 85.51↓0.14 85.75↑0.10 84.88↓0.77 63.23↓0.76 63.48↓0.51 63.97↓0.02 62.57↓1.42 81.84↑0.30 82.11↑0.57 81.90↑0.36 81.97↑0.43
20 84.66↓0.99 85.79↑0.14 86.73↑1.08 84.27↓1.38 63.11↓0.88 63.88↓0.11 64.11↑0.12 62.66↓1.33 82.97↑1.43 82.62↑1.08 82.22↑0.68 81.70↑0.16
30 85.66↑0.01 86.99↑1.34 86.76↑1.11 84.24↓1.41 64.42↑0.43 64.12↑0.13 64.05↑0.06 63.92↓0.07 82.82↑1.28 83.76↑2.22 82.69↑1.15 82.61↑1.07
40 85.12↓0.53 84.55↓1.10 86.14↑0.49 84.38↓1.27 64.95↑0.96 64.59↑0.60 64.35↑0.36 63.66↓0.33 82.62↑1.08 82.29↑0.75 83.05↑1.51 82.54↑1.00
50 85.81↑0.16 85.88↑0.23 86.97↑1.32 85.71↑0.06 65.09↑1.10 64.35↑0.36 64.64↑0.65 63.21↓0.78 81.47↓0.07 82.18↑0.64 83.24↑1.70 81.44↓0.10
60 84.89↓0.76 85.44↓0.21 85.86↑0.21 82.78↓2.87 62.63↓1.36 63.02↓0.97 64.85↑0.86 64.08↑0.09 82.63↑1.09 82.25↑0.71 82.64↑1.10 82.52↑0.98
70 83.88↓1.77 85.78↑0.13 85.67↑0.02 83.19↓2.46 64.19↑0.20 64.20↑0.21 65.37↑1.38 63.34↓0.65 81.58↑0.04 81.29↓0.25 81.55↑0.01 81.27↓0.27
80 82.28↓3.37 83.89↓1.76 83.98↓1.67 82.17↓3.48 61.28↓2.71 60.41↓3.58 62.96↓1.03 60.13↓3.86 81.94↑0.40 80.50↓1.04 82.10↑0.56 80.87↓0.67

Vanilla 85.65 63.99 81.54

Table 3: Statistics of datasets used in experiments.

Dataset #Nodes #Edges #Classes #Average Degree #Metric
Cora 2,708 5,278 7 2.25 Accuracy

pubmed 19,717 44,324 3 8.00 Accuracy
Amz-Photo 7,650 287,326 8 31.12 Accuracy
Ogbn-Arixv 169,343 1,166,243 40 13.77 Accuracy

Ogbn-Proteins 132,534 39,561,252 2 597.00 ROC-AUC
Ogbn-Products 2,449,029 61,859,140 47 50.52 Accuracy

• ROC-AUC The ROC-AUC is a widely adopted metric for evaluating binary classifiers and can be extended to multi-label
settings. The ROC curve plots the true positive rate (TPR) against the false positive rate (FPR) across various thresholds,
illustrating the model’s performance over a range of decision boundaries. The AUC (Area Under the Curve) quantifies the
likelihood that a randomly chosen positive instance ranks above a randomly chosen negative instance. An AUC of 1.0
indicates perfect discrimination, while an AUC of 0.5 suggests performance no better than random guessing.

ROC-AUC =
1

T

T∑
i=1

∫ 1

0

TPRi

(
FPR−1

i (t)
)
dt,

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

.

(25)

where TP (True Positives) denotes correctly classified positive samples, FN (False Negatives) represents positive samples
misclassified as negative, FP (False Positives) indicates negative samples misclassified as positive, and TN (True Negatives)
is the count of correctly classified negative samples. These values are essential for calculating the True Positive Rate (TPR)
and False Positive Rate (FPR), which are used to plot the ROC curve and compute the Area Under the Curve (ROC-AUC).

• MAX Training FLOPS The calculation of MAX Training FLOPs primarily addresses two main components: message-
passing operations and feature transformation. The message-passing aspect accounts for the computational load of
propagating information across nodes and edges, while the feature transformation component captures operations within
masked linear layers and activation functions such as ReLU and BatchNorm (with Mixture of Experts (MoE) modules in
the case of EAGLES). This approach provides a comprehensive assessment of the FLOPs required for both propagation
and transformation processes within the model.

• Communication BYTES Communication cost is calculated based on the total bytes transmitted by clients to the server
(upload bytes) and the bytes required for the server to broadcast the aggregated global model back to each client (download
bytes). The model size serves as the basis for calculating both upload and download bytes, with each client transmitting
its model to the server and receiving the updated global model after aggregation. This metric reflects the overall data
transfer required to synchronize model updates across the network.
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Table 4: Node classification performance of EAGLES evaluated across numerous values of SG and SW on Cora, photo and
Ogbn-Products. Please refer to appendix D for additional analysis.

Parameter Graph Sparsity% - Cora Graph Sparsity% - Photo Graph Sparsity% - Ogbn-Products
Sparsity% 0 10 30 50 0 10 30 50 0 10 30 50

0 74.89↓0.06 75.11↑0.16 74.77↓0.18 73.55↓1.40 92.03↑0.01 85.51↓0.14 85.75↑0.10 84.88↓0.77 73.82↓0.04 73.81↓0.05 73.66↓0.20 72.75↓1.11
10 76.08↑1.13 75.48↑0.53 75.11↑0.16 73.60↓1.35 92.86↑0.84 92.68↑0.66 92.52↑0.50 92.18↑0.16 73.65↓0.21 73.89↑0.03 73.99↑0.13 73.82↓0.04
20 76.23↑1.28 75.59↑0.64 74.77↓0.18 73.46↓1.49 92.40↑0.38 92.21↑0.19 92.54↑0.52 92.28↑0.26 73.88↓0.02 74.11↑0.25 74.13↑0.27 74.02↑0.16
30 75.55↑0.60 74.97↑0.02 74.60↓0.35 72.27↓2.68 92.04↑0.02 92.37↑0.35 92.42↑0.40 92.25↑0.23 73.81↓0.05 73.99↑0.13 74.22↑0.36 74.15↑0.29
40 76.14↑1.19 75.15↑0.20 75.10↑0.15 72.58↓2.37 92.46↑0.44 92.41↑0.39 92.31↑0.29 92.26↑0.24 74.23↑0.37 74.85↑0.99 74.98↑1.12 74.16↓0.30
50 75.30↑0.35 75.25↑0.30 74.43↓0.52 73.09↓1.86 92.26↑0.24 92.11↑0.09 91.95↓0.07 91.86↓0.16 74.33↑0.47 74.78↑0.92 74.46↑0.60 74.09↑0.23
60 74.85↓0.10 75.26↑0.31 74.31↓0.64 72.75↓2.20 92.40↑0.38 92.08↑0.06 92.49↑0.47 92.14↑0.12 73.99↑0.13 74.07↑0.21 73.76↓0.10 73.94↑0.08
70 75.23↑0.28 75.04↑0.09 74.88↓0.07 72.69↓2.26 92.23↑0.21 92.09↑0.07 92.75↑0.73 92.77↓0.75 73.88↑0.02 73.64↓0.22 73.93↑0.07 73.82↓0.04
80 73.94↓1.01 75.33↑0.38 72.46↓2.59 71.44↓3.51 91.88↑0.14 92.27↑0.25 92.23↑0.21 91.52↓0.50 73.52↓0.34 73.84↓0.02 72.65↓1.21 72.99↓0.87

Vanilla 74.95 92.02 73.86

Table 5: Detailed hyper-parameter configurations.

Dataset #Model #Round #Weight Decay #learning rate #Optimizer
Cora GCN 200 2e-4 0.01 Adam

pubmed GCN 500 2e-4 0.01 Adam
Amz-Photo GCN 800 2e-4 0.01 Adam
Ogbn-Arixv GraphSAGE 800 1e-6 0.01 Adam

Ogbn-Proteins DeeperGCN 300 5e-6 0.01 Adam
Ogbn-Products GraphSAGE 800 1e-6 0.01 Adam

In Table 1, the reported FLOPS and BYTES values for each sparsification baseline method correspond to the scenarios
where the highest accuracy is achieved. And the details of the baseline employed for comparison are as follows:

• FedAvg (McMahan et al., 2017): FedAvg is a foundational algorithm in federated learning, allowing multiple clients to
collaboratively train a global model without sharing their raw data. Each client locally computes model updates based
on its data, and the server aggregates these updates through periodic averaging to form the global model. This process
maintains data privacy and minimizes communication costs, making it efficient for distributed environments.

• FedProx (Li et al., 2020): FedProx extends FedAvg by introducing a proximal term in the objective function, which
helps address issues related to client heterogeneity. By regularizing local updates toward the global model, FedProx
stabilizes convergence, particularly in federated learning environments with non-iid data distributions and clients with
diverse computational capabilities.

• APPLE (Luo & Wu, 2022): The Adaptive Personalized Cross-Silo Federated Learning (APPLE) framework addresses
non-IID data challenges by enabling clients to personalize models through selective integration of others’ model
information. APPLE employs three components: Core Model Sharing, where clients share a core model with the server
for distribution; Directed Relationship (DR) Vector, assigning weights to received core models to enhance relevant
integration; and a Dynamic Penalty Mechanism that balances global and local objectives, allowing clients to tailor the
model to both global trends and local needs.

• FedSage+ (Zhang et al., 2021): FedSage+ is a federated learning framework designed for graph neural networks
(GNNs), addressing challenges of distributed graph data and heterogeneity. The framework leverages Dynamic
Neighbor Sampling to efficiently sample and aggregate information from local graph structures, reducing computational
overhead while maintaining performance. FedSage+ employs three key components: Local Subgraph Training, where
clients independently train on sampled subgraphs to preserve data privacy; Federated Aggregation, combining client
models via weighted averaging (e.g., FedAvg); and Model Sparsification, reducing communication costs by pruning
less important model parameters. This design achieves efficient learning while balancing global knowledge and local
data diversity.

16



EAGLES: Towards Effective, Efficient, and Economical Federated Graph Learning via Unified Sparsification

• FedCP (Zhang et al., 2023): The Federated Conditional Policy (FedCP) method addresses client data heterogeneity in
federated learning by separating global and personalized information within feature representations. It employs a Con-
ditional Policy Network (CPN) to generate sample-specific policies that partition features into global and personalized
components. These components are then processed by a shared global head and a client-specific personalized head,
respectively. This approach enables more fine-grained personalization, enhancing model performance across diverse
client data distributions.

• FedTAD (Zhu et al., 2024): FedTAD is a topology-aware data-free knowledge distillation method designed for subgraph
federated learning. It addresses subgraph heterogeneity by decoupling node and topology variations, which correspond
to differences in label distribution and structure homophily. FedTAD enhances reliable knowledge transfer from local
models to the global model by leveraging topology-aware node embeddings to measure class-wise knowledge reliability.
This approach improves the performance of the global graph neural network without requiring raw data exchange,
making it suitable for scenarios with data privacy constraints.

• FedSSP (Tan et al., 2024): FedSSP is a federated graph learning framework that addresses structural heterogeneity
across clients by sharing generic spectral knowledge and accommodating personalized preferences. It introduces a
global spectral knowledge-sharing mechanism to capture common structural patterns and a personalized preference
module to adjust local message-passing schemes. This combination enhances model performance in cross-domain
scenarios by effectively balancing global collaboration and local adaptation.

• FGGP (Wan et al., 2024a): Federated Graph Learning with Generalizable Prototypes (FGGP) addresses the challenge
of domain shift in federated graph learning. It decouples the global model into two levels—feature extractor and
classifier—and bridges them via prototypes, which serve as semantic centers derived from the feature extractor. At
the classifier level, FGGP leverages clustered prototypes to capture domain-specific information and enhance class
discriminability. At the feature extractor level, it employs contrastive learning to obtain more robust prototypes, thereby
improving the generalization ability of the feature extractor across diverse domains.

• FedGTA (Li et al., 2024): FedGTA (Federated Graph Topology Augmentation) is a federated learning framework
tailored for graph data, tackling challenges of graph heterogeneity and sparsity. The framework introduces Topology
Augmentation, dynamically enhancing local graph structures by generating virtual neighbors or predicting missing
edges based on node feature similarity and local connectivity. FedGTA employs three key components: Local Graph
Enhancement, where clients augment their subgraphs to address sparsity; Federated Aggregation, combining model
updates and augmentation summaries to improve global learning; and Personalized Topology Rules, allowing clients to
adapt global trends to their unique graph structures. This approach enhances performance in distributed, heterogeneous
graph scenarios while ensuring data privacy.

• DSpar (Liu et al., 2023c): DSpar offers a straightforward strategy for improving the efficiency of Graph Neural
Network (GNN) training and inference by selectively sparsifying graph structures based on node degree. By prioritizing
higher-degree nodes, DSpar reduces the number of edges while preserving essential structural information, thus
significantly lowering computational demands without compromising model accuracy. This approach is particularly
suitable for large-scale graphs, where computational efficiency is critical.

• ACE-GLT (Wang et al., 2023): Adaptive Compression and Efficient Gradient Learning Transmission (ACE-GLT)
is a centralized sparsification method that adaptively compresses gradients during transmission. This technique
effectively reduces communication costs while maintaining model performance, making it especially advantageous in
environments with bandwidth constraints or high communication costs.

• PruneFL (Jiang et al., 2022): PruneFL employs an adaptive, distributed pruning strategy within federated learning
to optimize performance on resource-constrained edge devices. Initially, an aggressive pruning phase reduces model
size on a chosen client, followed by further pruning during training across clients. This iterative approach lowers both
communication and computational demands while preserving model accuracy, making it highly suitable for deployment
in edge environments with limited resources.
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• FedTiny (Huang et al., 2023): FedTiny is a distributed pruning framework tailored to produce compact neural networks
for federated learning on devices with limited memory and computational capacity. It employs an adaptive batch
normalization selection to address data heterogeneity and a progressive pruning module that incrementally adjusts
pruning policies at each layer. This design effectively minimizes computational and memory overhead while preserving
model accuracy, making it well-suited for deployment in resource-constrained edge environments.

C. Ablation with Different Number of Clients
In this section, we conduct ablation experiments on the number of clients. Figure 6a and Figure 6b respectively show
the system performance for 10, 30, 50, 70, and 100 clients on Ogbn-Arxiv and Ogbn-Proteins. As the number of clients
increases, overall performance tends to decline. However, EAGLES consistently outperforms the baseline in most cases.
For instance, with 100 clients on Ogbn-Proteins, EAGLES surpasses the baseline by 2.13%, demonstrating its resilience.
In contrast, on Ogbn-Arxiv with 100 clients, EAGLES shows a 0.26% decrease compared to the baseline. This may be
attributed to the smaller size of Ogbn-Arxiv, where splitting the dataset among 100 clients results in fewer training nodes per
client, limiting the model’s ability to effectively learn patterns inherent in the dataset graph.

(a) Abalation Analysis of the number of clients on the Ogbn-
ArXiv. Please refer to appendix C for additional analysis.

(b) Abalation Analysis of the number of clients on the Ogbn-
Proteins. Please refer to appendix C for additional analysis.

D. Sensitivity Analysis
In this section, we address Q4 by conducting extensive ablation studies. Table 2 and Table 4 present a sensitivity analysis
across various sparsification rates. Obs. ❶ When fixing the row and observing the column data, we observe that overall
model performance follows a trend of initially increasing and then decreasing, with optimal performance achieved when SG

is approximately 30%. Obs. ❷ Fixing the column and analyzing the row data reveals that parameter sparsification can be
effectively deepened, achieving optimal performance in the range of 50% to 70% for SW, although slight variations may
arise depending on the dataset. Obs. ❸ Simultaneous application of graph-level and parameter-level sparsification leads
to significant improvements in model performance; for instance, in Ogbn-Arxiv with (SG , SW) = (30%, 70%), accuracy
increases by 1.38% ↑, while in Ogbn-Proteins with (SG , SW) = (30%, 50%), accuracy improves by 1.70% ↑.

Figure 7a and Figure 7b illustrate the ablation analysis of two key parameters in our method: λ2 and the number of sparsifica-
tion experts Ne. Obs. ❹ We observed that λ2 exerts minimal influence on model performance, reaching its peak within the
range of 0.3 to 0.4. Obs. ❺ The classification accuracy exhibits an increasing trend with the growth ofNe. In our experiments,
we set Ne to 3, which prevents the introduction of excessive experts while still achieving relatively superior performance.

(a) Abalation Analysis of λ2 on the Ogbn-Proteins and Ogbn-
ArXiv. Please refer to appendix D for additional analysis.

(b) Abalation Analysis of the number of esparsification ex-
perts Ne on the Ogbn-Proteins and Ogbn-ArXiv. Please refer
to appendix D for additional analysis.
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E. Implementation Details
The experiments are conducted using NVIDIA GeForce RTX 3090 GPUs as the hardware platform, coupled with an
Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz. The deep learning framework employed is Pytorch, version 2.0.1, alongside
CUDA version 11.7. For the small datasets Cora, pubmed and Ama-photo we utilized 2-layer GCN. For the larger datasets
ogbn-arxiv and ogbn-products we employed 4-layer GraphSage and applied 4-layer DeeperGCN to ogbn-proteins. The
default number of clients is set to 10.

F. Quantitative analysis of heterogeneity reduction
We compute the overall similarity between two graphs by equally weighting structure similarity and feature similarity (50%
each). The computation methods for each are as follows:

Sstruct = 1− |Ei − Ej |
Ei + Ej + ϵ

, Sfeature =
F i · F j

∥F i∥ ∥F j∥
, Stotal = 0.5 · Sstruct + 0.5 · Sfeature

where Ei and Ej denote the number of edges in the two graphs, and ϵ is included to prevent division by zero. The average
node feature vector for graph i is defined as F i =

1
|Vi|

∑
v∈Vi

Fv, the feature vectors are truncated to the same dimension
dmin = min(di, dj) during computation.

Employing the above calculation, we present heatmap visualizations for 10 clients on the PubMed and Ogbn-arxiv datasets.
These visualizations illustrate the client subgraphs both at initialization and after five rounds of communication. Notably,
an overall increase in isomorphism among clients can be observed, suggesting improved structural alignment through
communication. The results are shown below.

(a) Quantitative analysis of heterogeneity reduction on
Pubmed.

(b) Quantitative analysis of heterogeneity reduction on Ogbn-
arxiv.

19


