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Summary

Parkinson’s disease (PD) is a progressive neurodegenerative disorder
characterized by complex and heterogeneous changes in brain
morphometry over time. Modeling these longitudinal trajectories is
essential for understanding disease pathology, guiding treatment
development, and enabling personalized "digital twin" simulations to
forecast the evolution of PD under various hypothetical interventions.
However, existing methods usually adopt recurrent neural networks and
transformer architectures, which rely on discrete, regularly sampled data
and struggle to handle the irregular and sparse magnetic resonance
imaging (MRI) in PD cohorts. Moreover, these methods have difficulty in
capturing individual heterogeneity including variations in disease onset,
progression rate, and symptom severity, which is a hallmark of PD. To
address these challenges, we propose CNODE (Conditional Neural ODE),
a novel framework for continuous, individualized PD progression
forecasting. The core of CNODE is to model morphological brain changes
as continuous temporal processes using a neural ODE model. In addition,
we jointly learn patient-specific initial time and progression speed to
align individual trajectories into a shared progression trajectory. We
validate CNODE on the Parkinson’s Progression Markers Initiative
(PPMI) dataset. Experimental results show that our method outperforms
state-of-the-art baselines in forecasting PD progression, which can pave
the way for deeper insights into PD dynamics and improved clinical
decision support.

Framework

Figure: The overall framework of CNODE.

CNODE first extracts vertex-wise medial thickness from MRI scans, along
with subcortical structure volumes and metadata. Then CNODE
constructs a shared progression trajectory, aligning patient data through
two neural networks that predict for individual start time τi and
progression speed γi. And the aligned time t̃i,k for each visit ti,k in the
shared trajectory is then computed as:

t̃i,k = τi + γi · (ti,k − ti,1), (1)

where ti,1 is the first observed visit time for patient i. To ensure that visits
with similar shape features are mapped closer in time, we integrate
contrastive learning. This is achieved by computing feature-based
similarity scores and optimizing a contrastive loss to refine the shared
trajectory.
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where sim(t̃i, t̃j) is the cosine similarity, and τ is a temperature scalar.
Next, we employ a Neural ODE [1] to model the continuous evolution of
shape features. The model consists of an encoder that maps observed
features to a latent space, an ODE solver that predicts latent state
dynamics over time, and a decoder that reconstructs shape features from
the latent representations.

Results

Dataset. We evaluate CNODE using the PPMI dataset [2], a
comprehensive, multi-center study aimed at identifying progression
markers for Parkinson’s disease. For this study, we utilize T1-weighted
MRI, which provides high-resolution anatomical details of the brain. The
vertex-wise features were extracted from 68 sub-cortical brain regions
using FreeSurfer. Our cohort includes 161 PD subjects, with 50
individuals having three visits and another 111 having two visits. The
average visit interval is 1.11 years, with a maximum of 2.27 years and a
minimum of 0.61 years.
Experimental Results. We evaluated our model’s performance in
forecasting PD progression against several baseline models, including
Recurrent Neural Networks (RNNs), Long Short-Term Memory networks
(LSTMs), Gated Recurrent Units (GRUs), Neural Ordinary Differential
Equations (Neural ODEs), Transformer, and LLMTime. Table shows that
CNODE outperforms all baselines, achieving the lowest MSE, lowest
RMSE, and highest R2 score.

Table: Comparison of PD progression forecasting performance. All metrics are presented
as averages with their standard deviations under 5-fold cross-validation. The best
performances are in bold.

Model MSE ↓ RMSE ↓ R2 ↑
RNN 0.0305 ± 0.0027 0.1745 ± 0.0076 0.7947 ± 0.0179
LSTM 0.0292 ± 0.0019 0.1708 ± 0.0056 0.8037 ± 0.0130
GRU 0.0281 ± 0.0012 0.1675 ± 0.0036 0.8112 ± 0.0082
Transformer 0.0291 ± 0.0010 0.1705 ± 0.0030 0.8038 ± 0.0069
Neural ODE 0.0283 ± 0.0019 0.1632 ± 0.0043 0.7907 ± 0.0147
LLMTime 0.0282 ± 0.0105 0.1652 ± 0.0226 0.8041 ± 0.0739

w/o CL 0.0276 ± 0.0003 0.1662 ± 0.0010 0.8136 ± 0.0022
w/o PS 0.0278 ± 0.0006 0.1667 ± 0.0016 0.8126 ± 0.0037
Ours 0.0258 ± 0.0001 0.1606 ± 0.0003 0.8260 ± 0.0006

Ablation Study. We conduct an ablation study by comparing two model
variants: (1) CNODE w/o CL, which removes contrastive learning, and (2)
CNODE w/o PS, which excludes progression speed prediction and instead
uses true time intervals.
Visualization of Parkinson’s Disease Progression. To further
demonstrate the interpretability of CNODE, we visualize the predicted
disease progression trajectories for individual patients. It highlights
CNODE’s ability to generate biologically plausible progression patterns
that closely align with real patient data. This interpretability is
particularly valuable for identifying high-risk individuals and enabling
timely interventions.
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Figure: Visualization of PD progression trajectory. The green curves denote the predicted
progression trajectories, while the red crosses represent the true observed values.
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