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Abstract
Clinical natural language processing faces chal-
lenges like complex medical terminology and
clinical contexts. Recently, large language mod-
els (LLMs) have shown promise in this do-
main. Yet, their direct deployment can lead
to privacy issues and are constrained by re-
sources. To address this challenge, we delve
into synthetic clinical text generation with
LLMs for clinical NLP tasks. We propose an
innovative, resource-efficient approach, CLIN-
GEN, which infuses knowledge into the pro-
cess. Our model involves clinical knowledge
extraction and context-informed LLM prompt-
ing. Both clinical topics and writing styles are
drawn from external domain-specific knowl-
edge graphs and LLMs to guide data genera-
tion. Our extensive empirical study across 8
clinical NLP tasks and 18 datasets reveals that
CLINGEN consistently enhances performance
across various tasks by 7.7%-8.7% on aver-
age, effectively aligning the distribution of real
datasets and enriching the diversity of gener-
ated training instances. Our code is available at
https://github.com/ritaranx/ClinGen.

1 Introduction

Clinical Natural Language Processing (NLP)
emerges as a distinct subfield including the extrac-
tion, analysis, and interpretation of unstructured
clinical text (Wornow et al., 2023). Despite its sig-
nificance, unique challenges exist for methodology
development in clinical NLP. For example, clinical
texts are often dense with abbreviations and spe-
cialized medical terminologies can be perplexing
to standard NLP models (Lee et al., 2023). Fortu-
nately, recent advances in Large Language Models
(LLMs) (Brown et al., 2020; Chung et al., 2022;
Ouyang et al., 2022; OpenAI, 2023b,a) provide a
promising way to resolve these issues, as they con-
tain billions of parameters and have been pretrained
on massive corpora, thus inherently capture a signif-
icant amount of clinical knowledge (Agrawal et al.,

2022; Singhal et al., 2023). These progresses in-
spire the need for designing specialized approaches
for adapting LLMs to clinical settings, which both
address the terminology complexities and improve
models through clinical data finetuning (Tu et al.,
2023; Liu et al., 2023).

Despite the strong capacity of general LLMs,
directly applying them to infer over clinical text
data is often undesired in practice. Firstly, these
LLMs often have billions of parameters that trans-
late to significant computational resources even
for inference, leading to increased infrastructure
costs and long inference time. Furthermore, the
sensitive patient information in the clinical text nat-
urally raises privacy and regulatory compliance
concerns (Meskó and Topol, 2023). To combat
these challenges, generating synthetic training data
using LLMs serves as a promising solution, as it
leverages the capability of LLMs in a resource-
efficient and privacy-centric way. When trained
with synthetic data mimicking real-world clinical
data, models can achieve high performance while
obeying data protection regulations.

Synthetic data generation with LLMs is a pop-
ular research area in NLP (Meng et al., 2022; Ye
et al., 2022a,b; Wang et al., 2023), with a focus on
gemeral-domain data. However, adapting LLMs
trained on general texts for generating high-quality
clinical data poses distinct challenges. To assess
the quality of data generated by existing methods,
we carry out an evaluation centered on distribu-
tion and diversity, detailed in Section 3, which
indicate a noteworthy data distribution shift. We
further examine the clinically-related entity quan-
tities and frequencies in synthetic data, where a
notable decline is observed when contrasting syn-
thetic data with ground truth data. While some
research has delved into clinical data generation
with language models, many of these efforts are
tailored to specific tasks. Examples include med-
ical dialogues (Chintagunta et al., 2021), clinical
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notes (Giorgi et al., 2023), and electronic health
records (Ive et al., 2020; Wang and Sun, 2022).
These studies often directly adopt language models
for text generation, and sometimes on excessive
training data. Till now, a unified principle to bet-
ter adapt LLMs for generating synthetic text for
facilitating clinical downstream applications is still
missing.

Motivated by the above analysis, we propose
CLINGEN, a clinical knowledge-infused frame-
work for high-quality clinical text generation in
few-shot scenarios. Our ultimate goal is to bridge
the gap between synthetic and real data while en-
hancing topic diversity. Towards this end, we pro-
pose to utilize clinical knowledge extraction to con-
textualize the prompts. This includes generating
clinical topics on entity and relation information
from both KGs and LLMs and deriving writing
style suggestions from LLMs. By doing this, CLIN-
GEN integrates both non-parametric insights from
external clinical knowledge graphs with the intrin-
sic parametric knowledge encoded in LLMs and
enjoys higher diversity via dynamically composing
different topics and writing styles together during
the data generation process. It is worth noting that,
CLINGEN only relies on minimal additional human
efforts, and can be readily applied to a wide array
of core tasks in clinical NLP.

Our contributions can be summarized as follows:

• We propose CLINGEN, a generic clinical
knowledge-infused framework for clinical text data
generation in few-shot settings. It can be readily
applied to a wide range of tasks in clinical NLP.

• We present an analysis of the pitfall of existing
data generation approaches for clinical text data,
and propose a simple yet effective strategy to ex-
tract clinical knowledge and customize the prompts
toward target clinical NLP tasks. This includes gen-
erating clinical topics from both KGs and LLMs
and deriving writing style suggestions from LLMs.

• We conduct an exhaustive evaluation of syn-
thetic clinical data generation across 8 clinical
NLP tasks and 18 datasets. Empirical findings
demonstrate that CLINGEN not only aligns more
closely with the distribution of the original data
but also amplifies the diversity of the generated
training samples. The empirical performance gains
are consistent across various tasks with different
LLMs and classifiers (8.7% for PubMedBERTBase

and 7.7% for PubMedBERTLarge).

2 Related Work

Generating additional training data enables a more
precise analysis of medical text, and has gained
more attention in the past years. Earlier research
has employed data augmentation techniques to gen-
erate similar samples to existing instances with
word substitution (Kang et al., 2021), back transla-
tion (Xie et al., 2020), pretrained transformers (Ku-
mar et al., 2020; Zhou et al., 2022). But they often
yield rigid transformations and the quality of the
augmented text cannot be always guaranteed.

The emergence of LLMs has presented new pos-
sibilities for synthetic data generation (Meng et al.,
2022, 2023; Ye et al., 2022a; Li et al., 2023). How-
ever, these methods often use generic and simple
prompts that may not fully capture domain-specific
knowledge, thus potentially limiting the quality of
the generated data. Liu et al. (2022a); Chung et al.
(2023); Yu et al. (2023) employ interactive learn-
ing to generate instances, at the cost of additional
human efforts. Several recent studies explore LLM-
based synthetic data generation for clinical NLP.
Tang et al. (2023) rely on a much larger training set
to generate candidate entities, which disregards the
practical low-resource setting (Perez et al., 2021).
Moreover, these studies often concentrate on spe-
cific target tasks, thus lacking generality for diverse
clinical NLP scenarios.

On the other hand, several works aimed at op-
timizing prompts using LLMs (Zhou et al., 2023;
Wang et al., 2024) or knowledge graphs (Liu et al.,
2022b; Chen et al., 2022b), yet they mainly focus
on refining prompts to obtain the answer for the
given input, and the prompt template often remains
unchanged. Instead, we focus on the different task
of generating training instances. By composing dif-
ferent topics and styles together, we can generate
diverse templates for prompting LLMs to improve
the quality of the synthetic data.

3 Preliminary Study

This section first presents the foundational setup
of synthetic data generation. Then, we provide an
in-depth investigation into the pitfalls of existing
synthetic data generation methods.

3.1 Problem Setup

In this paper, we study synthetic data generation
under the few-shot setting. The input consists of a
training set D = {(xi, yi)}Ki=1, where (xi, yi) rep-
resents an input text and its corresponding label
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Figure 1: Preliminary Studies. (c) is from BC5CDR-Disease and is in log scale.

yi ∈ Y for the i-th example. K denotes the to-
tal number of training samples, which is kept at a
very small value (5-shot per label). The primary
objective is to harness the LLM M to generate a
synthetic dataset, denoted as D̃ = {(x̃i, ỹi)}Ni=1,
where N is the number of generated samples
(N ≫ K). We use ρ(·) to denote the generation
process from the LLM. For each downstream task,
we fine-tune a classifier Cθ (a moderate-size pre-
trained language model) parameterized by θ on the
synthetic dataset D̃ for evaluating its quality.1

3.2 Limitations of Existing Methods

Denote the task-specific prompts for class la-
bel name j as pj , we take a closer look at the
synthetic text data generated by two represen-
tative approaches: ZeroGen (Ye et al., 2022a),
which directly instructs LLMs for data genera-
tion as D̃Zero ∼ ρj∼Y(·; pj), and DemoGen (Yoo
et al., 2021; Meng et al., 2023), which augments
the prompt with few-shot demonstrations D as
D̃Demo ∼ ρj∼Y (·; [pj ,D]). The prompt format of
ZeroGen and DemoGen are in Appendix E.3. We
observe that these methods often introduce distri-
bution shifts and exhibit limited diversity, which
can lead to suboptimal downstream performance.
Distribution Shift. An inherent issue when adapt-
ing LLMs to specific domains for text generation
is the distribution shift, given that LLMs are pri-
marily trained on vast amounts of web text in gen-
eral domains. To quantify the data distribution
shift, we employ Central Moment Discrepancy
(CMD) (Zellinger et al., 2017) to measure the gap
between synthetic and real data across six clinical
NLP datasets — a high CMD value indicates a
large gap between two distributions2. Figure 1(a)
illustrates that both ZeroGen and DemoGen exhibit

1While In-context Learning (Brown et al., 2020) can also
be utilized, it is often hard to fit all generated instances into the
context window, especially for datasets with high cardinality.

2Details of calculating CMD is in Appendix A.

elevated CMD scores. Despite the inclusion of
few-shot demonstrations in DemoGen, this limita-
tion remains evident, indicating a notable disparity
between the ground-truth and synthetic data.
Limited Diversity. Clinical datasets in real-world
scenarios often include rich domain knowledge that
can be challenging to replicate in synthetic data.
We evaluate synthetic dataset diversity by using
both entity quantity and their normalized frequen-
cies. The results are illustrated in Figures 1(b) and
1(c). Our analysis reveals that datasets generated by
ZeroGen and DemoGen exhibit a limited number
of clinical entities, having a substantial discrep-
ancy with the ground truth. Furthermore, it is high-
lighted that only a minority of potential entities and
relations are frequently referenced across instances,
while the majority are generated infrequently.

To explicitly illustrate the limitations, we present
a case study in Figure 9, Appendix B. The com-
parison reveals that samples generated by ZeroGen
and DemoGen lack sufficient details present in the
ground truth data. Besides, the generated samples
adhere to a more uniform style, while the ground
truth encompasses various situations and writing
styles, including urgent and informal inquiries.

4 Knowledge Infused Data Generation

Section 3 highlights the necessity of domain-
tailored knowledge for clinical synthetic data gen-
eration. In pursuit of this, we present CLINGEN, a
knowledge-informed framework for clinical data
generation. The overview of CLINGEN is shown in
Figure 2. This two-step methodology harnesses the
emergent capabilities of LLMs and external knowl-
edge from KGs to facilitate the synthesis of clinical
data, even with few-shot examples only.

4.1 Clinical knowledge extraction

Contrary to previous studies (Ye et al., 2022a,b;
Meng et al., 2023) which employ generic queries pj
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Figure 2: The overview of CLINGEN.

to prompt LLMs for text generation, CLINGEN em-
phasizes refining clinically informed prompts. This
approach aims to extract rich clinically relevant
knowledge from parametric (e.g. LLMs) or non-
parametric sources (e.g. knowledge graphs) and tai-
lor it to clinical NLP tasks. To realize this, our mod-
eling contains two dimensions including clinical
topics T and writing styles W , which are integrated
into the original prompts to infuse domain-specific
knowledge. The Clinical topic refers to a clinical
entity (e.g., disease) or relation (e.g., the relation-
ship between diseases and medications), which is
usually a phrase, while the writing style is a phrase
that depicts the tone, and overall presentation of
the text. By composing different topics and writ-
ing styles together, CLINGEN provide a diverse
suite of prompts, resulting in a wider spectrum of
text produced from the LLM M. For details of
prompt formats across various tasks, please see
Appendix E.

4.1.1 Clinical Topics Generation
We provide two choices to generate clinical topics
T – one is to sample related entities or relations
from external KG, and the other is to query relevant
knowledge from LLM.
Topics TKG sampled from Non-Parametric KGs.
Healthcare KGs offer a rich collection of medical
concepts and their complex relationships, which or-
ganizes medical knowledge in a structured way (Li
et al., 2022). In our study, we employ the inte-
grative biomedical knowledge hub (iBKH) as the
KG (Su et al., 2023) G to generate topics TKG ∼
query(G) due to its broad coverage over clinical
entities. To illustrate, for the Disease Recogni-
tion task (NCBI, Dogan et al. (2014)), we extract
all disease nodes e from the iBKH to bolster the
medical information as T NCBI

KG ∼ query(Gdisease),

Gdisease = {e ∈ G| type(e) = disease}. As an-
other example, we retrieve links between chem-
icals c and diseases d for the chemical and dis-
ease relation extraction (CDR, Wei et al. (2016))
as T CDR

KG ∼ query(Grelation_cd), Grelation_cd =
{⟨c, r, d⟩ ∈ G| type(r) = has_relation}. By in-
jecting information from the KG into the data gen-
eration step, we ensure the generated samples are
more contextually accurate and semantically rich.
Topics TLLM queried from Parametric LLMs.
Pre-trained on extensive text corpora such as medi-
cal literature, LLMs provide an alternative method
for acquiring domain knowledge. Specifically, we
aim to harness the rich clinical domain knowledge
encoded in ChatGPT (gpt-3.5-turbo-0301) to
augment the prompt. The incorporated prior knowl-
edge from LLMs focus on entity types that hold
relevance within clinical text datasets, including
diseases, drugs, symptoms, and side effects. For
each of entity types ei, we prompt the LLMs by for-
mulating inquiries q(ei), e.g., “Suppose you are a
clinician and want to collect a set of <Entity Type>.
Could you list 300 entities about <Entity Type>?”.
These crafted conversational cues serve as effective
prompts to retrieve clinically significant entities
from the rich domain knowledge within LLMs as
TLLM ∼ ρ (·; q(ei)). For each entity type, we gen-
erate 300 entities for synthetic data generation.

4.1.2 Clinical Writing Styles Suggestion
Styles suggested by LLMs. To address the limita-
tions mentioned in Sec 3.2 and introduce a diverse
range of writing styles W for synthetic samples,
we leverage the powerful LLM to suggest candi-
date writing styles for each task. Specifically, for
the task i, we incorporate task names ni into our
prompts pstylei (e.g., disease entity recognition, rec-
ognizing text entailment) and integrate few-shot



demonstrations dstylei . We then engage LLM in sug-
gesting several potential sources, speakers, or au-
thors of the sentences as W ∼ ρ

(
·; [pstylei , dstylei ]

)
.

Responses such as “medical literature" or “patient-
doctor dialogues" are augmented into the prompts
to imitate the writing styles found in real datasets.

4.2 Knowledge-infused Data Generation
With the generated topics and styles, the key chal-
lenge becomes how to leverage them to extract
rich clinical information from the LLM for improv-
ing synthetic data quality. Directly putting all the
elements to enrich the prompt is often infeasible
due to the massive size of entities. To balance in-
formativeness as well as diversity, we propose a
knowledge-infused strategy, where for each class
label name j ∈ Y , the collected clinical topics and
writing styles serve as the base unit. In each step,
we randomly sample a topic t ∈ T and a writing
style w ∈ W from the candidate set to augment the
prompt for class j ∈ Y as pClin

j (t, w) = [pj , t, w].
Then, we use the augmented prompt pClin

j (t, w)
together with the few-shot demonstrations D to
generate the synthetic dataset D̃Clin as

D̃Clin ∼ ρj∼Y,t∼T ,w∼W (·; [pj , t, w] ,D) .

Despite its simplicity, this strategy enjoys several
merits: (1) Clinical infusion: the clinical context
is incorporated into the prompts to directly guide
data generation; (2) Diversity: it encourages data
diversity via dynamically composing different enti-
ties and writing styles into prompts; (3) Flexibility:
it is compatible with different sources of T and
W without reliance on specific knowledge formats.
Consequently, the quality and clinical relevance of
the generated synthetic data are enhanced. While
some works focus on prompt optimization for data
generation or other NLP tasks, they typically utilize
a fixed prompt and optimize this prompt format,
which is orthogonal to CLINGEN.

4.3 Language Model Fine-tuning
After generating synthetic data D̃, we fine-tune a
pre-trained classifier Cθ for each downstream task.
Following Meng et al. (2023), we first fine-tune Cθ
on D with standard supervised training objectives
on few-shot examples (denoted as ℓ(·)) in Stage 1,
then on synthetic data D̃ in Stage 2 as

θ(1) = min
θ

E(x,y)∼Dℓ (f(x; θ), y) ,

θ(2) = min
θ

E
(x̃,ỹ)∼D̃ℓ (f(x̃; θ), ỹ) , θinit = θ(1).

It’s important to highlight that we strictly follow a
standard fine-tuning process and avoid using any
extra techniques: (1) for standard classification
tasks, ℓ(·) is the cross-entropy loss; (2) for multi-
label classification tasks, ℓ(·) is the binary cross-
entropy loss; (3) for token-level classification tasks,
we stack an additional linear layer as the classifica-
tion head and ℓ(·) is the token-level cross-entropy
loss. The design of advanced learning objectives
as well as data mixing strategies, while important,
are orthogonal to the scope of this paper.

5 Empirical Evaluation

Given our focus on data generation, our major inter-
est lies in faithfully evaluating different synthetic
text generation approaches under few-shot scenar-
ios, rather than competing in a “state-of-the-art"
race with general few-shot NLP methods. The fol-
lowing questions particularly intrigue us: RQ1:
How does CLINGEN perform when compared with
baselines on different downstream tasks? RQ2:
What impact do factors like LLM generators and
synthetic data size have on the performance of
CLINGEN? RQ3: How is the quality of the syn-
thetic data generated by CLINGEN and baselines?

5.1 Experiment Setup

We conduct experiments in the few-shot settings
with 5 examples for each class. We employ Chat-
GPT (OpenAI, 2023b) (gpt-3.5-turbo-0301) as
the LLM generator M3 and maintain the same
amount of synthetic training data for both CLIN-
GEN and baselines for a fair comparison. The
pre-trained PubMedBERT (Gu et al., 2021) is then
applied to fine-tune on the synthetic data for both
CLINGEN and baselines, where we consider both
the Base and Large model.
Datasets and Tasks. We undertake a comprehen-
sive evaluation of 18 datasets across a diverse array
of tasks in clinical NLP benchmarks (Peng et al.,
2019; Fries et al., 2022): 2 text classification, 3 re-
lation extraction (RE), 3 natural language inference
(NLI), 2 fact verification, 2 question answering
(QA), 1 sentence similarity (STS), 4 Named En-
tity Recognition (NER), and 1 attribute extraction
datasets. Please see Appendix C for descriptions
and the statistics of each dataset.
Baselines. We compare CLINGEN with 10 base-
lines in total, including 6 data augmentation and

3Studies on using Medical LLMs are in Appendix J.



Task
Single-Sentence Tasks Sentence-Pair Tasks Token Classification Tasks

Text Class (2) RE (3) NLI (3) Fact Verification (2) STS (1) QA (2) NER (4) MedAttr (1)

F1 F1 Acc Acc F1 Acc Acc F1 F1-subset∗ P R F1

PubMedBERTBase

Supervised-Full 77.01 77.34 79.20 67.58 65.49 75.70 74.70 89.67 87.27 — — —
Supervised-Few 18.61 43.89 44.64 29.43 27.10 55.70 54.74 39.41 34.12 38.11 43.82 40.77

DA-Word Sub (2020) 40.74 38.14 55.08 28.86 25.83 54.40 53.58 44.30 40.41 40.25 47.65 43.64
DA-Back Trans (2020) 47.24 — 54.30 32.15 28.04 55.80 53.28 — — — — —
DA-Mixup (2020; 2020) 45.09 43.37 53.52 32.78 29.12 58.20 51.91 42.20 37.65 42.37 48.96 45.43
DA-Transformer (2022; 2020) 41.02 47.56 55.71 35.32 31.77 58.80 56.36 44.75 39.66 37.82 44.28 40.80
LightNER† (2022a) — — — — — — — —- 39.49 — — —
KGPC† (2023) — — — — — — — — 51.60 — — —

ZeroGen (2022a; 2022) 59.02 63.84 55.96 35.30 32.50 68.35 61.89 56.97 48.26 52.80 49.53 51.11
DemoGen (2023; 2021) 64.09 67.46 59.80 40.30 35.95 70.85 62.01 60.16 53.91 58.15 56.84 57.49
ProGen (2022b) 65.16 67.23 59.57 37.71 34.54 69.30 60.74 60.49 55.11 57.76 58.57 58.16
S3 (2023) 65.12 67.60 61.36 40.17 36.44 70.20 63.58 60.36 54.25 56.21 63.60 59.68

CLINGEN w/ KG 67.15 69.01 64.89 43.83 39.43 72.20 71.49 64.26 60.11 71.75 65.20 68.32
CLINGEN w/ LLM 67.82 70.06 67.24 46.50 41.46 73.30 69.60 63.17 58.49 68.19 66.79 67.48
Performance Gain 4.08% 3.63% 9.58% 15.38% 13.77% 3.47% 12.44% 6.23% — — — 14.48%

PubMedBERTLarge

Supervised-Full 80.06 79.64 82.65 72.97 69.23 78.80 80.37 90.15 87.68 — — —
Supervised-Few 17.86 52.68 50.00 40.90 30.50 59.73 59.50 42.84 37.57 41.30 45.02 43.08

DA-Word Sub (2020) 43.99 44.35 57.66 35.51 31.95 55.30 58.57 46.67 43.70 46.77 43.52 45.09
DA-Back Trans (2020) 50.98 — 58.39 34.12 31.36 56.40 57.19 — — — — —
DA-Mixup (2020; 2020) 46.74 50.97 57.35 34.01 31.10 58.50 56.68 46.69 43.01 41.25 52.09 46.04
DA-Transformer (2022; 2020) 44.41 46.12 58.94 35.09 30.95 58.10 59.30 46.94 43.50 43.36 45.78 44.54

ZeroGen (2022a; 2022) 61.51 65.18 63.47 41.12 36.10 72.69 66.02 57.79 49.10 54.04 51.40 52.69
DemoGen (2023; 2021) 64.97 68.65 64.58 42.61 38.69 74.37 65.04 61.43 55.61 62.67 61.02 61.83
ProGen (2022b) 65.01 69.23 63.32 42.79 38.63 74.90 63.27 62.47 57.31 57.21 63.70 60.28
S3 (2023) 64.33 69.65 65.07 41.76 37.72 73.20 66.33 61.97 56.29 63.07 62.72 62.89

CLINGEN w/ KG 66.76 71.47 70.90 48.62 42.45 75.40 73.94 65.48 62.23 70.96 69.66 70.30
CLINGEN w/ LLM 67.61 72.81 70.50 49.51 43.72 76.21 73.40 65.36 61.89 71.61 66.86 69.15
Performance Gain 4.00% 4.54% 8.96% 15.70% 13.00% 3.47% 11.47% 1.76% — — — 11.78%

Table 1: Experimental results aggregated by tasks. Bold and underline denote the best and second-best results. †:
Models exclusive to NER tasks. ∗: Since the two † models only report results on two NER datasets, we report the
average performance on those two datasets for a fair comparison. "Supervised-Full" and "Supervised-Few" denote
the results using the original dataset and using only the few-shot examples as training data, respectively.

4 LLM-based data generation techniques. See Ap-
pendix D for their descriptions.
Implementation Details. For implementation, we
use PyTorch (Paszke et al., 2019) and Hugging-
Face (Wolf et al., 2019). For each dataset, we
randomly sample 5 examples from each class to
provide few-shot demonstrations and keep a valida-
tion set of the same size. During the data generation
process when we call the ChatGPT APIs (OpenAI,
2023b), we set the parameter top_p = 1.0 and
temperature t = 1.0 to balance between the quality
of the generated text as well as diversity (Chung
et al., 2023; Yu et al., 2023)4. In the experiments,
We generate 5000 synthetic training data for both
CLINGEN and the baselines and report the average
performance over 3 random seeds for all the re-
sults. With the generated synthetic dataset, we fol-
low the common few-shot learning setting (Perez
et al., 2021) to train all the models for 6 epochs
and use the model with the best performance on the
validation set for evaluation. During the PubMed-

4We do not further increase t, as previous analysis (Chung
et al., 2023; Yu et al., 2023) has shown that increasing t to
larger value does not help with additional performance gain.

BERT fine-tuning, we adopt AdamW (Loshchilov
and Hutter, 2019) for optimization with a linear
warmup of the first 5% steps and linear learning
rate decay. The learning rate is set to 2e-5 for Base
and 1e-5 for Large, and the maximum number of
tokens per sequence is 256.

5.2 Model Performance with Synthetic Data

Table 1 summarizes the experimental results. Due
to space limits, we report the average performance
over all datasets for each task, but provide the de-
tailed results for each dataset in Tables 7, 8, 9 in
Appendix F. Based on the experimental results, we
have the following findings:
⋄ Our approach, CLINGEN, consistently outper-
forms the baselines across all tasks. The average
performance gain over all main metrics is 8.7% at
Base scale and 7.7% at Large scale. LLM-based
methods outperform traditional DA techniques,
showcasing their ability to capture task-specific
information from a few examples. DemoGen and
ProGen’s gains over ZeroGen highlight the positive
impact of few-shot examples. Despite being one
of the most powerful data generation approaches,
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Figure 4: Different proportion of data at Base.

HOC GAD ChemProt MEDIQA-RQE PUBHEALTH NCBI-Disease CASI

F1 P R F1 F1 ACC ACC F1 P R F1 P R F1

ChatGPT Inference (OpenAI) 68.76 84.21 97.46 90.35 49.42 74.31 69.50 52.47 46.62 52.31 49.30 48.82 74.75 59.07
PMC-LLaMa-13B Inference (Wu et al.) 50.07 89.61 81.18 85.19 33.35 52.17 48.01 32.84 27.11 23.97 25.44 56.38 36.87 41.58
MedAlpaca-13B Inference (Han et al.) 40.44 71.95 72.48 72.21 31.29 58.12 55.40 34.63 44.69 31.16 27.85 52.51 49.16 51.64

CLINGEN w/ KG 77.71 94.30 89.09 91.62 60.12 79.92 50.20 41.26 62.46 64.08 63.26 70.96 69.66 70.30
CLINGEN w/ LLM 78.14 95.08 86.14 90.39 63.05 77.36 52.96 43.31 61.12 60.16 60.64 71.61 66.86 69.15

Table 2: Comparison between prompting LLM for inference and CLINGEN at Large scale.

S3’s gains are marginal in the few-shot setting due
to its reliance on large validation sets.
⋄ In token classification tasks, CLINGEN performs
better with KG compared to LLM due to the better
alignment between the task’s target and the gener-
ated domain knowledge, where the extracted topics
serve as direct labels. Conversely, single-sentence
and sentence-pair tasks favor LLM-based knowl-
edge extraction. This could be because (1) These
tasks prioritize sentence comprehension over spe-
cific terminologies, and some specialized terms
might even impede LLM comprehension. (2) KGs
may not always contain the required information,
e.g., certain relations in chemical/protein relation
extraction tasks, limiting performance gains.
⋄ Some DA methods are task-specific, limiting
their generalizability. For example, LightNER and
KGPC are designed for NER. It is also non-trivial
to apply Back Translation to NER or RE, as it re-
quires locating related entities in the generated sen-
tence accurately. In contrast, CLINGEN is flexible
and can be readily applied to various tasks.

5.3 Ablation and Parameter Studies

Effect of Different LLM Generators. To investi-
gate the impact of various LLMs on CLINGEN, we
utilize InstructGPT (text-curie-001) (Ouyang
et al., 2022) and GPT-4 (OpenAI, 2023a). Note
that we only generate 500 samples in the GPT-4 set-
ting due to budget constraints, but we provide the
results of GPT-3.5 with same amount of synthetic
samples for a fair comparison. From Figure 3 we
observe that CLINGEN generally outperforms the
best baseline in all settings. Additionally, we ob-
serve generally improved performance with larger
models, as they often have better capabilities to fol-

HOC CDR MEDIQA-RQE NCBI-Disease

w/ KG w/ LLM w/ KG w/ LLM w/ KG w/ LLM w/ KG w/ LLM

CLINGEN 76.28 76.42 61.74 63.34 74.85 72.40 59.46 55.95
w/o Styles 73.25 74.40 59.10 60.15 67.21 66.50 57.97 54.70
w/o Topics 70.86 58.51 69.86 55.09

Table 3: Ablation studies on topic extraction and style
suggestion at Base scale.

low our designed instructions for the given prompts.
See Appendix G for more results.
Effect of Size of Synthetic Data. In Figure 4 (and
more in Appendix G), we study the effect of the
size of synthetic data. The result shows that CLIN-
GEN consistently outperforms the best baseline,
using only around 10% of the synthetic examples.
This illustrates that incorporating domain knowl-
edge and increasing the diversity of the prompts
could be an effective way to improve the sample
efficiency and narrow the gap between the perfor-
mance of synthetic and ground-truth datasets.
Comparison with few-shot inference via prompt-
ing LLM. We also evaluate the performance of 5-
shot in-context learning with ChatGPT and 3 med-
ical LLMs, namely PMC-LLaMa-13b (Wu et al.,
2023), MedAlpaca-13b (Han et al., 2023). Due to
budget limits, we run experiments on datasets with
few testing samples for each task. As presented
in Table 2, CLINGEN at PubMedBERTLarge scale
achieves better results on 5 out of 6 datasets than
ChatGPT few-shot learning, which uses ∼ 530×
more parameters. One exception is for PUB-
HEALTH, as it requires complex reasoning abili-
ties that PubMedBERTLarge may not fully possess.
Three medical LLMs, on the other hand, perform
less effectively than both CLINGEN and GPT-3.5
due to fewer parameters, limited reasoning capa-
bilities, and training on a general medical corpus
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Sentence A: I've been experiencing a 
discomfort in my stomach, what could be 
causing it?
Sentence B: What are the possible causes 
for abdominal pain?

Sentence A: I recently started working with 
metal and found out about the health risks of 
beryllium exposure. What are the symptoms 
of beryllium poisoning, and how can I protect 
myself from it?
Sentence B: What are the symptoms and 
preventive measures for berylliosis?

Sentence A: Why are my nails turning 
yellow? It's never happened before.
Sentence B: What are some home remedies 
for acne scars?

Sentence A: I feel like food is getting stuck in 
my throat, is there anything I can do to make 
it easier to swallow?
Sentence B: What are some home remedies 
for a sore throat?
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Figure 5: Data distribution and diversity measures on CLINGEN. (a) is from BC5CDR-Disease and (b) is from
MEDIQA-RQE using CLINGEN with LLM.
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Figure 6: Data distribution and diversity measures on CLINGEN. (c) is from BC5CDR-Disease.

unsuited for the tasks. Overall, CLINGEN offers
cost-effective and time-efficient advantages. While
it entails a one-time investment in both money and
time for synthetic training data generation, subse-
quent prediction relying on a moderate-sized model
is much more efficient. Besides, the continued use
of ChatGPT for inference on new testing data in-
curs ongoing time and financial costs, while our
model requires zero additional costs for new data.
Effect of Topic Extraction and Style Suggestion.
We inspect different components of CLINGEN in
Table 3. It is observed that both Topics Extrac-
tion and Style Suggestion contribute to model per-
formance as they enhance the relevance of gener-
ated samples to domain knowledge and introduce
greater diversity. Different from the other datasets,
MEDIQA-RQE shows more performance gain in-
corporating writing style than topics. It is because
NLI tasks focus on capturing the relationships be-
tween two sentences while incorporating additional
knowledge entities does not directly help the model
improve the reasoning ability.

6 Quality Analysis of the Synthetic Data

Data Distribution Measures. Figure 5(a) shows
the t-SNE plot of data generated by CLINGEN and
baselines compared with the ground truth. This
visualization demonstrates that CLINGEN exhibits

HOC CDR MEDIQA-RQE NCBI-Disease

ZeroGen 0.512 0.469 0.277 0.528
DemoGen 0.463 0.377 0.289 0.281
ProGen 0.481 0.321 0.290 0.357
CLINGEN w/ KG 0.440 0.291 0.243 0.180
CLINGEN w/ LLM 0.432 0.338 0.255 0.155
Ground truth 0.265 0.268 0.164 0.262

Table 4: Average Pairwise Similarity.

a greater overlap with the ground truth, indicating
a similar distribution as the original dataset. In ad-
dition, as depicted in Figure 6(a), the embedding
of CLINGEN aligns more closely with the ground
truth distribution than other baselines across all six
datasets, further justifying the efficacy of CLIN-
GEN for mitigating the distribution shift issue.
Diversity Measures. Table 4 calculates the average
cosine similarity for sample pairs using Sentence-
BERT embeddings. Compared to baselines, the
dataset generated with CLINGEN exhibits lower
cosine similarity and the average similarity is close
to that of the ground truth training data, which
shows CLINGEN could render more diverse data.

Moreover, Figure 6(b) highlights CLINGEN cov-
ers a broader range of entities than baselines, with
CLINGEN w/ KG capturing more entities due to
KGs’ extensive knowledge. Figure 6(c) reflects
CLINGEN has a more balanced entity frequency
distribution aligned with ground truth, ensuring
diverse topic coverage.
Case Study. In Figure 5(b), we present a case



HOC GAD ChemProt MEDIQA-RQE PUBHEALTH NCBI-Disease CASI

GPT-3.5 Inference 1.09 1.05 5.75 2.15 2.80 0.90 1.30
DemoGen 0.59 0.66 1.35 0.81 0.92 1.12 1.28
CLINGEN w/ KG 0.65 0.73 1.47 0.86 1.01 1.41 1.55
CLINGEN w/ LLM 0.72 0.84 1.51 0.90 1.34 1.49 1.62

Table 5: The average cost (in US dollars) of running CLINGEN on various datasets per 1000 samples, compared
with prompting GPT-3.5 for inference and DemoGen.

study of examples generated by CLINGEN with
LLM on MEDIQA-RQE dataset, which consists of
consumer health queries. The examples reveal that
the sentences generated by CLINGEN include more
extensive contextual information compared with
the baseline. These sentences closely resemble the
queries people might pose in real-life scenarios.
Study on Factual Consistency. A human evalua-
tion was carried out to assess the factual accuracy
of the generated outputs across six representative
tasks: LitCovid, CDR, Mediqa-RQE, MQP, Pub-
Health, and BC5CDR. For each task, a sample
of 100 examples per class was randomly selected.
Medical students then examine the generated text
and evaluate its factuality. The findings from this
rigorous human study revealed no instances of mis-
information or hallucinated content in the randomly
sampled examples, verifying the system’s reliabil-
ity in generating factually sound outputs.
Monetary Cost We display the monetary cost of
CLINGEN for calling the OpenAI APIs, with a
comparison with prompting GPT-3.5 for direct in-
ference and DemoGen. From the values shown
in Table 5, we observe that inference via GPT-3.5
generally has a higher cost, as it needs to input
all the testing samples for prompting. In contrast,
DemoGen has a relatively lower cost, because it
does not include the topics and writing styles to the
prompts as CLINGEN does.

7 Conclusion

In this work, we study clinical text data generation
using LLMs. We thoroughly assess existing meth-
ods for clinical data generation and identify issues
including distribution shifts and limited diversity.
To tackle these challenges, we introduce CLIN-
GEN, a framework that leverages clinical knowl-
edge from non-parametric KGs and parametric
LLMs. This empowers data generation by utiliz-
ing clinical topic knowledge and real-world writing
styles in domain-specific prompts. Our extensive
empirical evaluations across 8 clinical NLP tasks
and 18 datasets, compared to 10 baseline methods,
consistently show that CLINGEN improves task

performance, aligns closely with real data, and en-
hances data diversity. We expect CLINGEN can be
seamlessly incorporated into a broad suite of clini-
cal text tasks to advance clinical NLP research.
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Limitation

In this work, we propose CLINGEN to better har-
ness the LLM for synthetic text data generation.
Despite its strong performance, we mainly verify
their efficacy from their empirical performance,
sample diversity, and distribution gaps. There are
still some limitations to this work:
Factuality of LLM-generated Text. One issue
with LLM-based synthetic data generation is the
phenomenon of hallucination, wherein the model
generates information that does not ground in re-
ality (Zhang et al., 2023). This can lead to the
propagation of misinformation, which may have
negative impacts on the clinical domain. However,
we have conducted a human study to justify that
our generated synthetic data does not suffer from
the issue of misinformation.
Application to other type of clinical data. Apart
from text, there are other types of clinical data:
For example, EHR data falls within a distinct



modality (i.e. tabular data) from textual data,
which may require different methodologies and
approaches (Wornow et al., 2023).

Ethics Consideration

On specific issue is about patient privacy. To elimi-
nate this concern, we carefully select the five few-
shot demonstrations to ensure they are fully free
from any Protected Health Information (PHI) re-
lated to patients. We also make a deliberate effort to
avoid any instructions that can potentially extract
sensitive patient information within the prompts.
Lastly, we conduct rigorous inspections of the gen-
erated synthetic data across all covered tasks to
affirm that no such private information exists in the
synthetic data generated by our method. In addi-
tion, we have opted out of human review for the
data by completing the Azure OpenAI Additional
Use Case Form5. This allows us to use the Azure
OpenAI service while ensuring Microsoft does not
have access to patient data.
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A Details on the Calculation of CMD

We introduce the Central Moment Discrepancy
(CMD) (Zellinger et al., 2017), which is a widely
used metric to measure the domain shift in the
area of domain-invariant representation learning.
Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be
bounded feature vectors independent and identi-
cally distributed from two probability distributions
p and q. The central moment discrepancy metric
(CMD) is defined by

CMD(p, q) =
1

|b− a|
∥E(X)− E(Y )∥2

+
∞∑
k=2

1

|b− a|k
∥ck(X)− ck(Y )∥2

where E(X) is the expectation of X , and

ck(X) =

(
E

(
N∏
i=1

(Xi − E (Xi))
ri

))
r1+...+rN=k
r1,...,rn≥0

is the central moment vector of order k. To es-
timate the CMD efficiently without infinite-order
calculation, we follow (Zellinger et al., 2017) and
use a K-order approximation of CMD as

CMDk(p, q) =
1

|b− a|
∥E(X)−E(Y )∥2

+
K∑
k=2

1

|b− a|k
∥Ck(X)− Ck(Y )∥2

where E(X) = 1
|X|
∑

x∈X x is the empirical ex-
pectation vector computed on the sample X and
Ck(X) = E

(
(x−E(X))k

)
is the vector of all

kth order sample central moments of the coordi-
nates of X6. To adapt CMD in our work, we set
K = 5, and use the embedding from Sentence-
BERT (Reimers and Gurevych, 2019) to calculate
the embedding X,Y for instances.

B Additional Preliminary Studies

We present additional preliminary studies of the
t-SNE plots in Figure 7 and the regularized entity
frequencies in Figure 8. In Figure 7, we visualize
the embeddings7 of both the ground truth training

6The implementation of CMD is available
at https://gist.github.com/yusuke0519/
724aa68fc431afadb0cc7280168da17b

7We employ SentenceBERT (Reimers and Gurevych,
2019) as the text encoder.

data and synthetic datasets generated via two rep-
resentative methods. Overall, these methods use
generic prompts (see Appendix E.3 for details) with
minimal domain-specific constraints. These results
further justify the distribution shift issue mentioned
in section 3.2, demonstrating that the limited diver-
sity as well as the distribution shift issue generally
exists for a broad range of clinical NLP tasks.

Figure 9 shows a case study, where we ran-
domly select one sample from each class within
the training set generated by ZeroGen and De-
moGen. These selected samples are compared
with the ground truth data from the MEDIQA-
RQE dataset, which aims to predict whether a
consumer health query can entail an existing Fre-
quently Asked Question (FAQ). It is evident that
the samples generated by ZeroGen and DemoGen
exhibit a limited range of writing styles and tend
to follow a specific template, whereas the ground
truth sample contains more contextual elements
that are typically encountered in real-life scenarios.

C Dataset Description

The evaluation tasks and datasets are summarized
in Table 6. Note that the number of training sam-
ples indicates the size of the original training set.
Specifically, we consider the following datasets:

• Single-Sentence Tasks

◦ Text Classification:

* The LitCovid dataset (Chen et al., 2021)
consists of COVID-19-related publications
from PubMed. The task is to predict the top-
ics of the sentences, including “Epidemic
Forecasting", “Treatment", “Prevention",
“Mechanism", “Case Report", “Transmis-
sion", and “Diagnosis".

* The HOC dataset (Baker et al., 2015) also
extracts sentences from PubMed articles,
each annotated at the sentence level. The
task is to predict the topics of the sentences,
including “evading growth suppressors",
“tumor promoting inflammation", “enabling
replicative immortality", “cellular energet-
ics", “resisting cell death", “activating in-
vasion and metastasis", genomic instabil-
ity and mutation", “inducing angiogene-
sis", “sustaining proliferative signaling",
and “avoiding immune destruction".

◦ Relation Extraction:

https://gist.github.com/yusuke0519/724aa68fc431afadb0cc7280168da17b
https://gist.github.com/yusuke0519/724aa68fc431afadb0cc7280168da17b
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Figure 7: The t-SNE plots of datasets generated by ZeroGen and DemoGen compared with the ground truth.

* The GAD (Bravo et al., 2015) dataset is to
predict whether there is a relation between
the given disease and gene in the sentences.
Note that the original annotation for this
dataset is Noisy. To remedy this issue, we
relabel 350 examples from the original test
set to form a clean subset for faithful evalu-
ation.

* The CDR (Wei et al., 2016) dataset is to
predict whether the provided chemical can
induce the disease in the sentences.

* The ChemProt (Taboureau et al., 2010)
dataset focuses on the chemical-protein re-
lations, and the labels include “Upregula-
tor", “Downregulator", “Agonist", “Antago-
nist", “Product_of" and “No relation".

• Sentence-Pair Tasks

◦ Natural Language Inference (NLI):

* The MedNLI (Shivade, 2017) dateset con-
sists of sentences pairs derived from
MIMIC-III, where we predict the relations
between the sentences. The labels include
“entailment", “neutral" and “contradiction".

* The MEDIQA-NLI (Ben Abacha et al.,
2019) dataset comprises text-hypothesis
pairs. Their relations include “entailment",
“neutral" and “contradiction".

* The MEDIQA-RQE (Abacha and Demner-
Fushman, 2016) dataset contains NIH con-
sumer health question pairs, and the task is
to recognize if the first question can entail
the second one.

◦ Fact Verification:

* The PUBHEALTH (Kotonya and Toni,
2020) encompasses claims paired with
journalist-crafted explanations. The task
is to predict the relations between the claim
and evidence, including “Refute", “Un-
proven", “Support", and “Mixture".

* The HealthVer (Sarrouti et al., 2021) con-
tains evidence-claim pairs from search en-
gine snippets regarding COVID-19 ques-
tions. The relations between claims and
evidences are chosen from “Refute", “Un-
proven", and “Support".

◦ Question Answering (QA):

* The PubmedQA task (Jin et al., 2019) en-
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Figure 8: The regularized entity frequencies of datasets generated by ZeroGen and DemoGen compared with the
ground truth in log scale.

Sentence A: Can drinking 
alcohol increase the risk of liver 
disease?
Sentence B: Does alcohol 
consumption contribute to liver 
disease risk?

Sentence A: What are the side 
effects of chemotherapy?
Sentence B: What are the 
possible adverse effects of 
chemotherapy?

Sentence A: My 3yrs old boy 
found my bleach at the laundry 
and I suspect he swallowed a 
bit of it. How do I treat this pls.
Sentence B: What the Doc will 
do if a child swallows bleach?

Sentence A: What are the side 
effects of metformin?
Sentence B: Can I take 
ibuprofen for a headache?

Sentence A: What are the 
common symptoms of 
influenza?
Sentence B: Can I take 
ibuprofen to manage my 
headache?

Sentence A: I have exercise 
induced asthma. Would any of 
these non drug devises be 
suitable please?
Sentence B: Are there any 
treatments or cures for 
albinism?

ZeroGen DemoGen Ground Truth

Entail

Not
Entail

Figure 9: Case study of generated samples by existing methods ZeroGen and DemoGen.

tails responding to inquiries regarding the
abstracts of biomedical research papers.

* The BioASQ task (Tsatsaronis et al., 2015)
spans multiple question types, including
factoid, list, summary, and yes/no questions
derived from expert-reviewed biomedical
research papers.

◦ Sentence Similarity (STS):

* the MQP (McCreery et al., 2020) dataset
comprises a collection of medical question
pairs designed for identifying semantically
similar questions. The task is to predict

whether the two questions are equivalent or
not.

• Token Classification Tasks

◦ Named Entity Recognition (NER):

* The BC5CDR-Disease (Li et al., 2016) is
to recognize diseases in the sentences.

* The BC5CDR-Chemical (Li et al., 2016) is
to recognize chemicals in the sentences.

* The NCBI-Disease (Dogan et al., 2014) is
to recognize diseases in the sentences.



Corpus Tasks #Class #Train/#Test Metrics

Single-Sentence Tasks

LitCovid (Chen et al., 2021) Text Classification 7 24960/6238 F1
HOC (Baker et al., 2015) Text Classification 10 3091/898 F1
GAD (Bravo et al., 2015) Relation Extraction (RE) 1 4750/350 P, R, F1
CDR (Wei et al., 2016) Relation Extraction (RE) 1 8431/2522 P, R, F1
ChemProt (Taboureau et al., 2010) Relation Extraction (RE) 5 8793/1087 F1

Sentence-Pair Tasks

MedNLI∗ (Shivade, 2017) Natural Language Inference (NLI) 3 11232/1422 Acc
MEDIQA-NLI† (Ben Abacha et al., 2019) Natural Language Inference (NLI) 3 -/405 Acc
MEDIQA-RQE (Abacha and Demner-Fushman, 2016) Natural Language Inference (NLI) 2 8588/302 Acc
PUBHEALTH (Kotonya and Toni, 2020) Fact Verification 4 9804/1231 Acc, F1
HealthVer (Sarrouti et al., 2021) Fact Verification 3 10591/1824 Acc, F1
MQP (McCreery et al., 2020) Sentences Similarity (STS) 2 10/3033 Acc
PubmedQA (Jin et al., 2019) Question Answering (QA) 2 500/500 Acc
BioASQ (Tsatsaronis et al., 2015) Question Answering (QA) 2 670/140 Acc

Token Classification Tasks

BC5CDR-Disease (Li et al., 2016) Named Entity Recognition (NER) 1 4882/5085 P, R, F1
BC5CDR-Chemical (Li et al., 2016) Named Entity Recognition (NER) 1 4882/5085 P, R, F1
NCBI-Disease (Dogan et al., 2014) Named Entity Recognition (NER) 1 5336/921 P, R, F1
CHEMDNER (Krallinger et al., 2015) Named Entity Recognition (NER) 1 14522/12430 P, R, F1
CASI (Agrawal et al., 2022; Moon et al., 2014) Attribute Extraction 6 5/100 F1

Table 6: Dataset statistics. We do not count the non-entity/non-relation class for relation extraction and token
classification tasks to align with existing works. P and R stand for Precision and Recall. Metrics in bold are
considered as the main metrics. ∗ is not allowed to put into GPT and † does not provide training data, so we sample
few-shot examples from the SciTail (Khot et al., 2018) instead.

* The CHEMDNER (Krallinger et al., 2015)
is to recognize chemicals in the sentences.

◦ Attribute Extraction (MedAttr):

* The CASI dataset (Agrawal et al., 2022;
Moon et al., 2014) aims to identify interven-
tions including medication, dosage, route,
freq, reason, duration

D Baseline Details

In this section, we give a detailed introduction for
all baselines used in this study.

Data Augmentation Methods:

• DA-Word Sub (Ribeiro et al., 2020): It per-
forms word substitution for few-shot demonstra-
tions to create new training sample. Specifically,
we follow Checklist (Ribeiro et al., 2020) and
maintain a word list to generate new examples.

• DA-Back Translation (Xie et al., 2020): It em-
ploy back translation to augment the training
data (Xie et al., 2020), including translating text
from the target language to the source language
and then back to the target language.

• DA-Mixup (Chen et al., 2020; Zhang et al.,
2020): It adds interpolation on the embedding
space of the training examples to create virtual
augmented examples.

• DA-Transformer (MELM) (Kumar et al.,
2020; Zhou et al., 2022): It introduces a
conditional data augmentation technique that
prepends class labels to text sequences for pre-
trained transformer-based models. Specifically,
it leverage the sequence to sequence transformer
to perform conditional text generation based on
the seed examples.

• LightNER (Chen et al., 2022a): It adopts a
seq2seq framework, generating the entity span
sequence and entity categories under the guid-
ance of a self-attention-based prompting mod-
ule. It is designed specifically for NER tasks.

• KGPC (Chen et al., 2023): It injects the se-
mantic relations of the knowledge graph to se-
quence to text generation models to perform
knowledge-guided instance generation for few-
shot biomedical NER. It also only applies to
NER tasks.

LLM-based Generation Methods.

• ZeroGen (Ye et al., 2022a): It generates a
dataset using simple class-conditional prompts
and then trains a tiny task-specific model for
zero-shot inference. We follow the prompting



method mentioned in their original paper as im-
plementation, which does not consider any style
information as well as domain knowledge.

• DemoGen (Meng et al., 2023; Yoo et al., 2021):
It leverages LLMs to synthesize novel training
data by feeding few-shot samples as demonstra-
tions to guide the data generation process. Note
that we focus on using the black-box LLM as
the generator, thus we do not tune the LLM as
(Meng et al., 2023).

• ProGen (Ye et al., 2022b): It first identifies
the most important examples from the gener-
ated synthetic data using the influence function,
then adds these examples as demonstrations to
generate new training instances. To ensure fair
comparison, we also add the few-shot demon-
strations for data generation.

• S3 (Wang et al., 2023): It is a synthetic data gen-
eration method that iteratively extrapolates er-
rors made by the classifier model trained on syn-
thetic data leveraging a large language model.
To adapt it in our few-shot setting, we use few-
shot demonstrations D as the validation set.

E Prompt Format

E.1 The prompts for Writing Styles
Suggestion with CLINGEN

Listing 1: Prompt Format for writing styles suggestion
with CLINGEN.

Suppose you need to generate a
synthetic clinical text dataset
on [task] tasks. Here are a few
examples from the original
training set:
[demonstrations]
Please write three potential
sources , speakers or authors of
the sentences.

[task]: The task names for each specific task.
[demonstrations]: The few-shot demonstrations
from the original training set.

E.2 The prompts for Data Generation with
CLINGEN

In the following prompt format, [topic] and
[style] are randomly sampled from the topics
candidate set and styles candidate set we formulate
in the knowledge extraction step, respectively.

Named entity recognition tasks:

Listing 2: Prompt Format for NER tasks with CLIN-
GEN.

Suppose you need to create a
dataset for [domain] recognition.
Your task is to:
1. generate a sentence about
[domain],
2. output a list of named entity
about [domain] only ,
3. the sentence should mimic the
style of [style],
4. the sentence should mention
the [domain] named [topic].

[domain]: “disease" for BC5CDR-Disease and
NCBI-Disease; “chemical" for BC5CDR-Chemical
and CHEMDNER.

Medication attributes tasks:
Listing 3: Prompt Format for medication attributes tasks
with CLINGEN.

Suppose you need to create a
dataset for clinical attributes
recognition. Your task is to:
1. generate a sentence about
clinical attributes , The Clinical
Attributes you need to extract

include "Medication", "Dosage", "
Route", "Frequency", "Reason", "
Duration ". For each attribute
class , please return a list of
attributes within the class that
occurs in the Sentence.
2. the sentence should mimic the
style of [style],
3. the sentence should be
relevant to [topic].

Text classification tasks:
Listing 4: Prompt Format for text classification tasks
with CLINGEN.

Suppose you need to create a
dataset for [domain]. Your task
is to:
1. generate a sentence about
[domain].
2. the sentence should mimic the
style of [style].

3. the sentence should be
relevant to the subtopic of
[topic] for [class_name].



[domain]: “COVID-19 Literature" for LitCovid
and “Cancer Document" for HOC.
[class_name]: the label name for this gener-

ated sample, listed in Appendix C.
Relation extraction tasks:

Listing 5: Prompt Format for relation extraction tasks
with CLINGEN.

Suppose you need to generate
synthetic data for the biomedical
[domain] task. Your task is to:

1. give a sentence about
[class_name] relation between
[entity0] and [entity1]
2. the sentence should discuss
the [entity0]: [topic0] and
[entity1]: [topic1] with the
relation [label_desc].
3. the sentence should mimic the
style of [style].

[domain]: “Disease Gene Relation" for GAD,
“Chemical Disease Relation" for CDR, and “Chem-
ical Protein Relation" for ChemProt.
[entity0] and [entity1]: “disease" and

“gene" for GAD, “chemical" and “disease: for CDR,
and “chemical" and “protein" for ChemProt.
[class_name]: the label name for this gener-

ated sample, listed in Appendix C.
[label_desc]: the description of the selected

label. For example, the label “upregulator" in
ChemProt has a description of “the chemical acti-
vates expression of the protein."

Natural language inference tasks:

Listing 6: Prompt Format for generating the first sen-
tence in NLI tasks with CLINGEN.

Suppose you need to create a set
of [content]. Your task is to:
1. generate one sentence for a
[content].
2. the [content] should be
relevant to [topic],
3. The [content] should mimic the
style of [style].

[content]: “health question" for MEDIQA-RQE,
“claim" for MEDIQA-NLI, MedNLI and MQP, and
“health news" for PUBHEALTH and HealthVer.

Listing 7: Prompt Format for generating the second
sentence in NLI tasks with CLINGEN.

Suppose you need to create a pair
of sentences for the [domain]

task with the label '[class_name]'.
Given the [content]: '

[first_sentence]', Your task is to:
1. generate one short [content]
about [topic] so that [label_desc].
2. The [content] should mimic the
style of the first sentence.

[domain]: “Question Entailment" for MEDIQA-
RQE, “Natural Language Entailment" for
MEDIQA-NLI and MedNLI, “Fact Verification"
for PUBHEALTH and HealthVer, and “Sentence
Similarity Calculation" for MQP.
[content]: “health question" for MEDIQA-

RQE, “hypothesis" for MEDIQA-NLI, MedNLI,
“evidence" for PUBHEALTH and HealthVer, and
“sentence" for MQP.

[class_name]: the label name for this gener-
ated sample, listed in Appendix C.
[label_desc]: the description of the selected

label. For "entailment", the description is "we can
infer the [content] from the given sentence". For
"neutral", the description is "there is no clear re-
lation between the [content] from the given sen-
tence". For "contradict", the description is "we can
refute the [content] from the given sentence".
[first_sentence]: the first sentence we gen-

erate

E.3 Prompts for ZeroGen, DemoGen, ProGen
We use the same set of prompts for ZeroGen, De-
moGen and ProGen, while DemoGen and ProGen
have additional demonstrations augmented to the
prompts. DemoGen uses the few-shot examples
in the training set as demonstrations, and ProGen
leverages feedbacks from previous rounds to itera-
tively guide the generation.

Named entity recognition tasks:

Listing 8: Prompt Format for NER tasks with baselines.

Suppose you need to create a
dataset for [domain] recognition.
Your task is to generate a
sentence about [domain] and output
a list of named entity about

[domain] only.

[domain]: “disease" for BC5CDR-Disease and
NCBI-Disease; “chemical" for BC5CDR-Chemical
and CHEMDNER.

Medication attributes tasks:
Listing 9: Prompt Format for medication attributes tasks
with baselines.



Suppose you need to create a
dataset for clinical attributes
recognition. Your task is to
generate a sentence about
clinical attributes , The Clinical
Attributes you need to extract

include "Medication", "Dosage", "
Route", "Frequency", "Reason", "
Duration ". For each attribute
class , please return a list of
attributes within the class that
occurs in the Sentence.

Text classification tasks:

Listing 10: Prompt Format for text classification tasks
with baselines.

Suppose you are a writer for
[domain]. Your task is to give a
synthetic [domain] about
[class_name].

[domain]: “COVID-19 Literature" for LitCovid
and “Cancer Document" for HOC.
[class_name]: the label name for this gener-

ated sample, listed in Appendix C.
Relation extraction tasks:

Listing 11: Prompt Format for relation extraction tasks
with baselines.

Suppose you need to generate
synthetic data for the biomedical
[domain] task. Your task is to

give a sentence about [class_name]
relation between [entity0] and
[entity1] so that [label_desc].

[domain]: “Disease Gene Relation" for GAD,
“Chemical Disease Relation" for CDR, and “Chem-
ical Protein Relation" for ChemProt.
[entity0] and [entity1]: “disease" and

“gene" for GAD, “chemical" and “disease: for CDR,
and “chemical" and “protein" for ChemProt.
[class_name]: the label name for this gener-

ated sample, listed in Appendix C.
[label_desc]: the description of the selected

label. For example, the label “upregulator" in
ChemProt has a description of “the chemical acti-
vates expression of the protein."

Natural language inference tasks:

Listing 12: Prompt Format for generating the first sen-
tence in NLI tasks with baselines.

Suppose you need to create a set
of [content]. Your task is to
generate one sentence for a
[content].

[content]: “health question" for MEDIQA-RQE,
“claim" for MEDIQA-NLI, MedNLI and MQP, and
“health news" for PUBHEALTH and HealthVer.

Listing 13: Prompt Format for generating the second
sentence in NLI tasks with baselines.

Suppose you need to create a pair
of sentences for the [domain]

task with the label '[class_name]'.
Given the [content]: '

[first_sentence]', Your task is to
generate one short [content] so
that [label_desc].

[domain]: “Question Entailment" for MEDIQA-
RQE, “Natural Language Entailment" for
MEDIQA-NLI and MedNLI, “Fact Verification"
for PUBHEALTH and HealthVer, and “Sentence
Similarity Calculation" for MQP.
[content]: “health question" for MEDIQA-

RQE, “hypothesis" for MEDIQA-NLI, MedNLI,
“evidence" for PUBHEALTH and HealthVer, and
“sentence" for MQP.

[class_name]: the label name for this gener-
ated sample, listed in Appendix C.
[label_desc]: the description of the selected

label. For "entailment", the description is "we can
infer the [content] from the given sentence". For
"neutral", the description is "there is no clear re-
lation between the [content] from the given sen-
tence". For "contradict", the description is "we can
refute the [content] from the given sentence".
[first_sentence]: the first sentence we gen-

erate.

F Detailed Per-task Experimental Results

In this section, we present additional experimental
results on every dataset in Tables 7, 8, 9. We also
include the experimental results combining topic
from both KG and LLM, which yields a perfor-
mance improvement, though not a substantial one.
However, note that in practice, it is challenging to
tune the ratio in the few-shot setting.



LitCovid HOC CDR GAD ChemProt

F1 F1 P R F1 P R F1 F1

PubMedBERTBase

Supervised-Full (SOTA) 73.55 84.35 67.81 76.60 71.96 — — 84.39 77.97
Supervised-Full 71.70 82.32 67.81 76.60 71.96 82.55 85.10 83.81 76.24
Supervised-Few 24.08 13.13 41.62 52.96 46.61 57.71 46.54 51.53 33.54

DA-Word Sub 36.49 44.98 40.50 46.20 43.16 51.15 32.10 39.45 31.82
DA-Back Trans 39.70 54.78 — — — — — — —
DA-Mixup 40.82 49.35 41.40 44.80 43.03 55.44 48.30 51.62 35.45
DA-Transformer 39.86 42.18 44.60 61.70 51.77 59.40 46.50 52.16 38.73

ZeroGen 50.50 67.90 38.82 91.82 54.57 84.38 80.68 82.49 54.46
DemoGen 57.65 70.52 46.90 83.3 60.01 93.14 80.19 86.18 56.18
ProGen 58.06 72.25 51.35 71.58 59.80 90.52 85.14 87.75 54.15
S3 58.67 71.58 49.76 76.08 60.17 94.85 80.19 86.90 55.75

CLINGEN w/ KG 58.01 76.28 56.98 67.38 61.75 93.33 83.68 88.24 57.04
CLINGEN w/ LLM 59.22 76.42 60.60 66.35 63.34 94.61 78.17 85.61 61.22

CLINGEN w/ KG+LLM 56.56 78.02 57.97 71.09 63.86 92.57 88.59 90.54 58.48

PubMedBERTLarge

Supervised-Full (SOTA) — 84.87 — — — — — 84.90 78.77
Supervised-Full 74.59 85.53 72.31 74.88 73.57 84.95 88.75 86.81 78.55
Supervised-Few 22.59 13.13 42.27 67.51 51.99 57.58 90.07 70.25 35.80

DA-Word Sub 37.20 50.78 47.70 43.50 45.50 63.40 42.00 50.53 37.01
DA-Back Trans 40.50 61.46 — — — — — — —
DA-Mixup 40.03 53.45 43.34 73.50 54.53 62.20 59.93 60.52 37.87
DA-Transformer 38.95 49.86 50.70 31.60 38.93 59.80 57.76 58.76 40.66

ZeroGen 52.86 70.16 42.95 80.67 56.06 92.26 76.73 83.78 55.71
DemoGen 56.29 73.65 50.86 74.30 60.39 96.85 76.83 85.69 59.88
ProGen 54.71 75.31 50.36 76.08 60.60 91.11 85.63 88.29 58.79
S3 53.56 75.11 51.51 78.30 62.14 92.12 83.80 87.76 59.05

CLINGEN w/ KG 55.81 77.71 60.45 65.04 62.66 94.30 89.08 91.62 60.12
CLINGEN w/ LLM 57.07 78.14 67.13 62.98 64.99 95.08 86.14 90.39 63.05

CLINGEN w/ KG+LLM 56.80 79.07 64.19 67.70 65.90 92.41 92.07 92.24 59.95

Table 7: Performance on single-sentence tasks evaluated by PubMedBERTBase and PubMedBERTLarge. Bold and
underline indicate the best and second best results for each dataset, respectively. Note that the performance of
‘Supervised-Full (SOTA)’ is copied from the existing paper. If the value in this field is missing, this means we
cannot find reported results with the same-scale model on that dataset. (Same as below).



MEDIQA-RQE MEDIQA-NLI MedNLI PUBHEALTH HealthVer MQP PubmedQA BioASQ

ACC ACC ACC ACC F1 ACC F1 ACC ACC ACC

PubMedBERTBase

Supervised-Full (SOTA) — — 86.60 70.52 69.73 73.54 74.82 79.20 70.20 91.43
Supervised-Full 77.15 79.01 81.43 65.16 62.96 70.00 68.02 75.70 61.84 87.56
Supervised-Few 57.51 40.00 36.40 28.30 23.70 30.55 30.49 55.70 55.90 53.57

DA-Word Sub 58.60 50.24 56.40 23.67 17.64 34.05 34.02 54.40 52.88 54.28
DA-Back Trans 59.16 49.92 53.82 30.70 23.32 33.60 32.76 55.80 53.70 52.86
DA-Mixup 57.71 49.38 53.47 31.45 24.45 34.11 33.78 58.20 51.68 52.14
DA-Transformer 62.25 51.19 53.70 34.81 27.75 35.83 35.78 58.80 54.14 58.57

ZeroGen 63.28 52.89 57.71 35.80 31.50 34.80 33.50 68.35 55.20 68.57
DemoGen 66.56 56.29 58.56 42.60 35.40 38.00 36.50 70.85 57.60 66.42
ProGen 65.94 57.28 59.49 38.70 33.10 36.72 35.97 69.30 57.90 63.57
S3 66.02 58.30 59.75 42.40 34.90 37.94 37.97 70.20 58.60 68.57

CLINGEN w/ KG 74.85 58.03 61.80 44.60 36.80 43.05 42.06 72.20 65.80 77.14
CLINGEN w/ LLM 72.40 64.44 64.89 48.50 40.60 44.50 42.32 73.30 61.30 77.85

CLINGEN w/ KG+LLM 75.10 64.12 65.81 50.57 40.65 40.60 39.59 68.30 66.70 77.85

PubMedBERTLarge

Supervised-Full (SOTA) — — 86.57 — — — — 81.00 72.18 94.82
Supervised-Full 81.10 82.89 83.96 70.21 63.45 75.72 75.01 78.80 67.38 93.36
Supervised-Few 63.79 47.40 38.80 46.20 27.20 35.60 33.80 59.73 60.44 58.57

DA-Word Sub 64.26 51.20 57.53 35.60 31.60 35.41 32.29 55.30 55.72 61.42
DA-Back Trans 65.52 51.43 58.21 34.45 30.50 33.78 32.21 56.40 54.38 60.00
DA-Mixup 64.10 50.91 57.03 34.23 30.78 33.79 31.42 58.50 54.80 58.57
DA-Transformer 68.97 51.05 56.79 38.46 31.40 31.72 30.50 58.10 58.60 60.00

ZeroGen 67.26 60.74 62.42 42.50 33.30 39.74 38.90 72.69 57.75 74.28
DemoGen 69.22 62.97 64.55 44.50 36.80 40.72 40.57 74.37 61.50 68.57
ProGen 67.82 60.98 63.15 44.15 36.37 41.42 40.89 74.90 59.40 67.14
S3 67.98 63.15 64.10 43.72 35.67 39.80 39.78 73.20 61.20 71.42

CLINGEN w/ KG 79.92 63.59 69.19 50.20 41.26 47.03 43.64 75.40 68.60 79.28
CLINGEN w/ LLM 77.36 64.69 69.46 52.96 43.31 46.05 44.12 76.20 66.80 80.00

CLINGEN w/ KG+LLM 80.77 63.30 70.56 51.98 41.61 47.44 44.25 71.90 67.40 79.28

Table 8: Performance on sentence-pair tasks evaluated by PubMedBERTBase and PubMedBERTLarge.



BC5CDR-Disease BC5CDR-Chemical NCBI-Disease CHEMDNER CASI

P R F1 P R F1 P R F1 P R F1 P R F1

PubMedBERTBase

Supervised-Full (SOTA) — — 86.10 — — 93.33 — — 88.76 — — 92.35 — — —
Supervised-Full 83.84 87.92 85.83 92.22 91.74 91.98 87.54 89.92 88.71 91.84 92.45 92.14 — — —
Supervised-Few 24.86 39.47 30.51 63.73 46.07 53.48 36.16 39.47 37.74 48.00 28.70 35.92 38.11 43.82 40.77

DA-Word Sub 35.34 39.54 37.32 63.13 52.52 57.34 53.40 36.70 43.50 47.45 33.15 39.03 40.25 47.65 43.64
DA-Mixup 36.13 42.90 39.23 66.43 50.54 57.41 56.57 26.48 36.07 52.40 27.53 36.10 42.37 48.96 45.43
LightNER 39.80 33.20 36.20 — — — 43.70 41.90 42.78 — — — — — —
DA-MELM 34.20 41.30 37.42 47.23 72.81 57.29 36.90 48.50 41.91 39.33 45.95 42.38 37.82 44.28 40.80
KGPC 50.80 51.30 51.05 — — — 52.20 52.10 52.15 — — — — — —

ZeroGen 55.60 39.10 45.91 73.20 82.85 77.73 56.25 45.98 50.60 54.34 52.93 53.63 52.80 49.53 51.11
DemoGen 63.10 48.44 54.81 76.40 81.65 78.94 57.65 49.08 53.02 54.00 53.77 53.88 58.15 56.84 57.49
ProGen 61.60 50.50 55.50 77.10 82.02 79.48 56.01 53.50 54.73 51.55 53.00 52.26 57.76 58.57 58.16
S3 58.26 55.96 57.08 77.28 80.80 79.00 56.39 49.34 52.62 48.53 57.79 52.75 56.21 63.60 59.68

CLINGEN w/ KG 58.64 63.02 60.75 74.96 85.45 79.86 62.62 56.62 59.47 48.33 69.28 56.94 71.75 65.20 68.32
CLINGEN w/ LLM 63.41 58.83 61.03 77.68 84.33 80.87 62.58 50.59 55.95 51.40 58.77 54.84 68.19 66.79 67.48

CLINGEN w/ KG+LLM 60.57 66.21 63.26 73.66 87.30 79.90 58.01 65.37 59.17 52.07 63.62 57.27 72.57 70.48 71.51

PubMedBERTLarge

Supervised-Full (SOTA) — — 86.39 — — 94.04 — — 89.18 — — 92.72 — — —
Supervised-Full 86.77 85.92 86.34 92.80 92.94 92.87 87.97 90.09 89.02 92.23 92.48 92.35 — — —
Supervised-Few 25.52 45.85 32.79 61.40 54.41 57.69 44.86 40.12 42.35 43.40 34.60 38.50 41.30 45.02 43.08

DA-Word Sub 38.54 38.85 38.69 64.85 53.96 58.91 52.59 45.35 48.70 44.85 36.69 40.36 46.77 43.52 45.09
DA-Mixup 36.27 46.67 40.82 67.63 54.15 60.14 55.64 38.06 45.20 45.51 36.66 40.61 41.25 52.09 46.04
LightNER — — — — — — — — — — — — — — —
DA-MELM 33.40 41.61 37.06 53.80 66.71 59.56 44.20 57.40 49.94 36.40 47.41 41.18 43.36 45.78 44.54
KGPC — — — — — — — — — — — — — — —

ZeroGen 57.40 39.21 46.59 78.08 80.97 79.49 54.52 49.00 51.61 48.56 59.44 53.45 54.04 51.40 52.69
DemoGen 57.34 49.48 53.12 78.27 83.90 80.99 59.43 56.83 58.10 48.03 60.39 53.51 62.67 61.02 61.83
ProGen 60.34 54.13 57.07 78.42 82.94 80.62 60.02 55.28 57.55 50.40 59.64 54.63 57.21 63.70 60.28
S3 65.46 51.86 57.87 77.89 84.31 80.97 56.00 53.49 54.72 54.80 53.88 54.33 63.07 62.72 62.89

CLINGEN w/ KG 54.28 70.14 61.21 77.88 86.32 81.88 62.46 64.08 63.26 47.03 67.86 55.56 70.96 69.66 70.30
CLINGEN w/ LLM 61.05 65.40 63.15 78.08 86.98 82.29 61.12 60.16 60.64 50.92 60.67 55.37 71.61 66.86 69.15

CLINGEN w/ KG+LLM 65.67 66.22 65.94 75.89 87.61 81.33 65.70 59.22 62.31 52.49 65.07 58.11 73.21 69.30 71.20

Table 9: Performance on token-classification tasks evaluated by PubMedBERTBase and PubMedBERTLarge.
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Figure 11: Different proportion of data at Base.

HOC CDR MEDIQA-RQE NCBI-Disease

Best Baseline CLINGEN-KG CLINGEN-LLM Best Baseline CLINGEN-KG CLINGEN-LLM Best Baseline CLINGEN-KG CLINGEN-LLM Best Baseline CLINGEN-KG CLINGEN-LLM

1 70.04 74.30 77.30 61.52 61.66 63.34 68.30 76.85 74.50 56.12 60.22 54.51
2 75.30 79.73 73.63 60.69 63.77 64.66 64.20 71.80 71.19 54.19 60.64 57.81
3 71.41 74.81 78.33 57.82 59.79 62.02 67.18 75.90 71.51 53.85 57.52 55.50

Table 10: Performance with Different Random Seeds using PubMedBERTBase.
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Figure 12: The t-SNE plots of datasets generated by CLINGEN, ZeroGen and DemoGen compared with the ground
truth.
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Figure 13: The regularized entity frequencies of datasets generated by CLINGEN, ZeroGen and DemoGen compared
with the ground truth in log scale.



G Additional Ablation and Parameter
Studies

Figure 10 and 11 show the effect of different gen-
erators and the effect of the proportion of data
on two additional datasets, respectively. Overall,
our method generally outperform the best base-
line. One interesting finding for the NCBI-Disease
dataset is that CLINGEN performs worse than the
best on one variant. We hypothesize that it is be-
cause this task involves more complex input and
output, potentially posing a challenge for moderate-
size LLMs to follow the instructions.

Besides, as few-shot sample selection is impor-
tant for the final performance, we show the perfor-
mance of different 3 random seeds in Table 10 (with
different seed examples/training process), and ob-
serve that our method CLINGEN generally outper-
forms the baselines with non-negligible margins,
which indicates the robustness of CLINGEN as it
does not rely on a specific subset of few-shot train-
ing examples to perform well.

H Additional Quality Analysis

We present additional quality analysis of the syn-
thetic dataset with t-SNE plots in Figure 12 and the
regularized entity frequencies in Figure 13.

I Comparison with different prompt
designs

I.1 Model Performance

We carry out an additional analysis with two recent
and representative prompt optimization techniques,
namely Reframe (Mishra et al., 2022), APE (Zhou
et al., 2023) and PromptAgent (Wang et al., 2024).

In our setting, Reframe incorporates several prin-
ciples (e.g. using low-level patterns, itemizing in-
structions, etc.) to produce high-quality prompts to
enhance text generation, whereas APE and Promp-
tAgent leverage the LLM to optimize the prompts
based on the target task information. We demon-
strate their performance on various clinical tasks
in Table 11. The results indicate that our proposed
CLINGEN consistently outperforms both baselines.
This performance gain is attributed to the fact that
the prompts generated by these baselines do not
adequately address the unique challenges for the
clinical data generation, i.e. distribution shift and
lack of diversity. As a result, although they tend
to include some generic task-specific information
for guiding LLMs to generate training data, the

performance gains brought by these advanced tech-
niques are limited. One important avenue of future
work is to design effective approach to combine
these automatic prompt optimization approaches
with our extracted clinical-related concepts.

I.2 Prompt Templates
We provide the detailed prompt templates we use
for Reframe (Mishra et al., 2022), APE (Zhou et al.,
2023) and PromptAgent (Wang et al., 2024) in the
followings.

Natural Language Inference tasks:

Listing 14: Prompt Format for generating sentences in
NLI tasks with Reframe.

Generate a pair of sentences for
the [domain] task. Follow these
guidelines:
1. Formulate a medical premise in
the first sentence , such as a

clinical observation or a patient
's medical history.
2. Craft a medical hypothesis or
claim related to the premise in
the second sentence.
3. Ensure that the hypothesis
logically follows from the
premise.
4. Avoid introducing any
unrelated or contradictory
information in either sentence.
5. The length should be in 50
words.

Listing 15: Prompt Format for generating sentences in
NLI tasks with APE.

Generate a pair of sentences for
the [domain] task. The first
sentence should be a medical
premise , such as a clinical
observation or a patient 's
medical history. The second
sentence should be a medical
hypothesis or claim , related to
the premise. The goal is to
determine whether the hypothesis
logically follows from the
premise , and you can use various
medical scenarios , conditions , or
treatments for creating these

sentence pairs.



LitCovid CDR MEDIQA-RQE MQP CHEMDNER BC5CDR-Disease Average

F1 F1 ACC ACC F1 F1 –

PubMedBERTBase

Reframe (Mishra et al., 2022) 56.74 57.27 61.92 67.60 54.61 59.17 59.55
APE (Zhou et al., 2023) 56.24 61.12 66.55 68.00 52.10 58.79 60.47
PromptAgent (Wang et al., 2024) 56.62 48.44 63.64 61.00 54.47 59.98 57.36
CLINGEN w/ KG 58.01 61.75 74.85 72.20 56.94 60.75 64.08
CLINGEN w/ LLM 59.22 63.34 72.40 73.30 54.84 61.03 64.02

PubMedBERTLarge

Reframe (Mishra et al., 2022) 54.06 58.78 66.57 71.30 55.05 60.41 61.03
APE (Zhou et al., 2023) 53.54 61.65 69.20 71.00 53.03 59.87 61.38
PromptAgent (Wang et al., 2024) 54.54 50.10 65.56 64.20 55.91 62.17 58.75
CLINGEN w/ KG 55.81 62.66 79.92 75.40 55.56 61.21 65.16
CLINGEN w/ LLM 57.07 64.99 77.36 76.20 55.37 63.15 65.69

Table 11: Comparison between existing prompting optimization methods and CLINGEN.

Listing 16: Prompt Format for generating sentences in
NLI tasks with PromptAgent.

You 've been assigned the task of
creating a dataset for
determining the [domain] in
medical text pairs. Ensure that
you do not include any irrelevant
information. Keep in mind that

the content may involve medical
conditions , treatments , and
observations in various formats.
Your goal is to accurately label
the relationships for each
medical text pair based on their
logical connections.

[domain]: “Question Entailment" for
MEDIQA-RQE.

Sentence similarity tasks:

Listing 17: Prompt Format for generating sentences in
sentence similarity tasks with Reframe.

Suppose you need to generate two
sentences for the [domain] task.
Your task is to give a pair of
sentences with the following
instructions:
(1) Generate two sentences that
exhibit a clear similarity or
dissimilarity in meaning without
using complex or specialized
terms.
(2) express attributes
affirmatively.
(3) Ensure that both sentences
have a common attribute for

comparison.
(4) The length should be in 50
words.

Listing 18: Prompt Format for generating sentences in
sentence similarity tasks with APE.

Suppose you need to generate two
sentences for the [domain] task.
The goal is to assess how close
or similar the meaning of two
sentences is, including '
equivalent ' or 'not equivalent '.

Listing 19: Prompt Format for generating sentences in
sentence similarity tasks with PromptAgent.

You 've been assigned the job of
creating a dataset for [domain].
Make sure not to include any
extraneous details. Keep in mind
that sentences can vary in
structure and wording while
conveying similar meanings. Your
task is to calculate the
similarity score accurately for
each sentence pair.

[domain]: “Sentence Similarity Calculation" for
MQP.

Text classification tasks:

Listing 20: Prompt Format for generating sentences in
text classification tasks with Reframe.

Suppose you are a writer for
[domain]. Your task is to give a
synthetic [domain] about



[class_name] with the following
instructions:
(1) Illustrate points with
everyday scenarios related to the
[class_name].

(2) about 50 - 100 words.

Listing 21: Prompt Format for generating sentences in
text classification tasks with APE.

Suppose you are a writer for
[domain]. Generate a clinical
article discussing the latest
advancements in [domain] with a
focus on [class_name]. Please
include information on recent
clinical trials , emerging
research findings , and potential
implications for healthcare
practitioners and patients.

Listing 22: Prompt Format for generating sentences in
text classification tasks with PromptAgent.

You 've been assigned the
responsibility of creating a
dataset for classifying text
related to [domain]. Ensure that
you do not include any irrelevant
information. Keep in mind that

references to COVID -19 may appear
in various forms , including

abbreviations and synonyms. Your
objective is to accurately
identify and classify text that
is relevant to [domain].

[domain]: “COVID-19 Literature" for Lit-
Covid.
[class_name]: the label name for this gener-

ated sample.
Relation extraction tasks:

Listing 23: Prompt Format for generating sentences in
relation extraction tasks with Reframe.

Suppose you need to generate a
dataset for the biomedical
[domain] task where the
relationships between entities in
biomedical texts need to be

identified. Your task is to give
a synthetic example about
[class_name] relation with the
following instructions:

(1) Provide the sentence or text
snippet where the relationship is
mentioned.

(2) The length should be in 50
words.

Listing 24: Prompt Format for relation extraction tasks
with APE.

Generate a sentence that
describes a [class_name] [domain]
between [entity0] and [entity1]. The
sentence should provide

information about how these terms
are related , such as its

potential therapeutic use , side
effects , or any relevant research
findings.

Listing 25: Prompt Format for relation extraction tasks
with PromptAgent.

You 've been assigned the task of
creating a [class_name] [domain]
dataset for identifying
relationships between [entity0]
and [entity1] from the provided
text. Be sure to exclude any
extraneous information. Keep in
mind that chemicals and diseases
may be referred to using various
names , abbreviations , or synonyms
. Your goal is to recognize and
extract these associations
accurately.

[domain]: “Chemical Disease Relation" for CDR.
[entity0] and [entity1]: “chemical" and

“disease: for CDR.
[class_name]: the label name for this gener-

ated sample.
Named entity recognition tasks:

Listing 26: Prompt Format for generating sentences in
NER tasks with Reframe.

Suppose you need to create a
dataset for [domain] recognition.
Your task is to generate a
sentence about [domain] and also
output the [domain] name with the
following instructions:
(1) Generate a sentence that
contains a named entity. The
named entity should be a



recognizable entity type within
the sentence.
(2) The named entity must be
contextually relevant and
correctly labeled with its type.
(3) The length should be in 50
words.

Listing 27: Prompt Format for NER tasks with APE.

Suppose you need to create a
dataset for [domain] recognition.
Generate a sentence or short text
passage where you mention a

[domain] entity within a context.
The named entity should be
clearly identifiable within the
text.

Listing 28: Prompt Format for NER tasks with Promp-
tAgent.

You 're tasked with generating a
dataset for recognizing [domain]
from the given sentence. Remember
to avoid incorporating any

associated elements. Consider
both specific diseases and
broader categories , and remember
diseases and conditions can also
appear as common abbreviations
or variations.

[domain]: “disease" for BC5CDR-Disease;
“chemical" for CHEMDNER.

J Using Medical LLMs as Data
Generator

In this work, we mainly evaluate CLINGEN using
GPT-family models as the LLM. However, we are
aware that many LLMs have been fine-tuned on
additional clinical contexts as well as instructions
and achieved superior performance on clinical NLP
benchmarks. We select MedAlpaca-13b (Han et al.,
2023) as one representative clinical LLM and study
the effect of CLINGEN using a medical LLM as the
data generator. Many other medical LLMs, such as
Med-PALM8, are not open-sourced, thus we cannot
run them in our experiments.

From the results shown in Table 12, we observe
that using medical LLM as the clinical text data

8https://sites.research.google/med-palm/

generator exhibits lower downstream performance.
This could be attributed to the medical LLMs hav-
ing fewer parameters than ChatGPT, which results
in limited instruction-following capabilities.

LitCovid CHEMDNER

PubMedBERTBase

CLINGEN w/ KG 58.01 56.94
CLINGEN w/ LLM (ChatGPT) 59.22 54.84
CLINGEN w/ LLM (MedAlpaca) 55.45 52.15

PubMedBERTLarge

CLINGEN w/ KG 55.81 55.56
CLINGEN w/ LLM (ChatGPT) 57.07 55.37
CLINGEN w/ LLM (MedAlpaca) 53.90 52.67

Table 12: The performance of CLINGEN with the medi-
cal LLM MedAlpaca as data generator.

K Effect of Data Mixing Ratio

In this work, we present KGs and LLMs as two
alternative and complementary sources for obtain-
ing topics. However, we also consider combining
topics from KGs and LLMs as a potential approach
to enhance performance. Thus, we conduct exper-
iments to demonstrate the impact of combining
topics from KGs and LLMs at various ratios. Note
that we still keep a total of 5000 generated syn-
thetic samples to maintain a fair comparison. The
experimental results in Table 13 indicate that com-
bining knowledge from KGs and LLMs can yield a
performance improvement, though not a substantial
one. However, note that in practice, it is challeng-
ing to tune the ratio in the few-shot setting due to
the limited volume of validation labels (Perez et al.,
2021), and thus we only include the 1:1 results in
Tables 7, 8, 9 in Appendix F for all the datasets.

KG : LLM
LitCovid CDR MEDIQA-RQE BC5CDR-Disease Average

F1 F1 ACC F1 –

PubMedBERTBase

1:0 58.01 61.75 74.85 60.75 63.84
2:1 56.18 62.89 73.50 60.53 63.28
1:1 56.76 63.86 74.01 63.26 64.47
1:2 55.49 64.33 75.10 61.62 64.14
0:1 59.22 63.34 72.40 61.03 64.00

PubMedBERTLarge

1:0 55.81 62.66 79.92 61.21 64.90
2:1 54.21 64.22 76.15 62.40 64.25
1:1 56.80 65.90 79.12 65.94 66.94
1:2 54.41 64.68 80.77 64.55 66.10
0:1 57.07 64.99 77.36 63.15 65.64

Table 13: Effect of mixing topics generated from KG
and LLM in different ratio.

https://sites.research.google/med-palm/
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