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Abstract—Human brains, controlling behaviors and cognition,
are at the center of complex neurobiological systems. Recent
studies in neuroscience and neuroimaging analysis have reached
a consensus that interactions among brain regions of interest
(ROISs) are driving factors for neural development and disorders.
Graph neural networks (GNNs) as a powerful tool for analyzing
graph-structured data are naturally applied to the analysis of
brain networks. However, training of deep learning models in-
cluding GNNs often requires a significant amount of labeled data.
Due to the complicated data acquisition process and restrictions
on data sharing, brain network datasets are still small compared
to other types of graphs (e.g., social networks, molecules, pro-
teins). Moreover, real clinical tasks (e.g., mental disorder analysis)
are often conducted on local datasets with even smaller scales and
larger noises. To this end, we propose to leverage pre-training
to capture the intrinsic brain network structures regardless of
specific clinical outcomes, for obtaining GNN models that are
easily adaptable to downstream tasks. Specifically, (1) we design
brain-network-oriented unsupervised pre-training techniques to
utilize large-scale brain imaging studies without highly relevant
task labels; (2) we develop a data-driven parcellation atlas
mapping pipeline to facilitate effective knowledge transfer across
studies with different ROI systems. The proposed framework is
validated with various GNN models, with extensive empirical
results demonstrating consistent improvement in performance as
well as robustness.

Index Terms—Brain Network Analysis, Pre-training, GNN

I. INTRODUCTION

In recent years, the analysis of brain networks has attracted
considerable interest in neuroscience studies. Brain networks
are essentially graphs, where anatomical regions of interest
(ROIs) given a parcellation atlas are formed into nodes, and
the connectivities among ROIs are formed into edges. Based
on brain networks constructed from different modalities such
as Diffusion Tensor Imaging (DTI) and functional Magnetic
Resonance Imaging (fMRI), effective graph analysis plays
a pivotal role in understanding the biological structures and
functions of complex neural systems, which can be helpful
in the early diagnosis of neurological disorders and facilitate
neuroscience research [[1]].

Deep learning has replenished the fields of computer science
and beyond. Among various modern deep learning models, the
emerging graph neural networks (GNNs) have demonstrated
superior performance and even plausible interpretability on
a variety of network datasets, including social networks,
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recommender systems, knowledge graphs, protein and gene
networks, molecules, and so forth [2], 3], due to its pow-
erful representations and efficient computations of complex
graph structures towards specific downstream tasks. Such
achievements on other types of networked data propel studies
on GNNs for brain networks, especially models for graph-
level classification/regression [3] and important vertex/edge
identification [4f], towards tasks such as connectome-based
disease prediction and multi-level neural pattern discovery.
However, training powerful deep learning models including
GNN s often requires significant amounts of labeled data [J5].
For brain network analysis, there are limited big imaging
datasets from a few large-scale national neuroimaging studies
such as the ABCD [1_1 ADNI EL and PPMI El However, such
datasets are still rather small compared to graph datasets in
other domains (e.g., datasets with 41K to 452K graphs on
OGB E] and datasets with thousands to millions of graphs on
NetRepo El)

One solution toward data scarcity is transfer learning which
transfers models trained on large-scale brain network datasets
onto small-scale local studies while retaining favorable per-
formance. However, one limitation of transfer learning is its
reliance on the availability of similar tasks as supervision
during training in the source dataset. In reality, similar tasks
in the smaller local studies may not always be available
in the large-scale public studies. Pre-training has shown its
effectiveness in the fields of computer vision [6], natural lan-
guage processing [7]], as well as graph mining [8]. We explore
GNN pre-training on brain networks without supervision and
study its effectiveness in predicting specific clinical outcomes.
However, unique challenges impede the direct application of
existing GNN pre-training paradigms to brain networks. For
example, brain networks within one study usually share the
same node system, which is not properly exploited, whereas
different studies often use different node systems, which
hinders the transferability of pre-trained models.

Uhttps://abcdstudy.org/study-sites/
Zhttps://adni.loni.usc.edu/
3https://www.ppmi-info.org/
4https://ogb.stanford.edu/
Shttps://metworkrepository.com/.
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Fig. 1. Overview of our proposed framework. We first project the source data
features into a fixed dimensional representation through atlas transformation.
We then pre-train a GNN encoder under the proposed multi-dataset contrastive
learning. Finally, learned parameters are fine-tuned on a target task.

In this work, we first formulate our problem into a self-
supervised multi-dataset GNN pre-training objective. Specif-
ically, our goal of model pre-training is to obtain a general
parameter initialization that contains relevant knowledge of
brain network characteristics and can achieve efficient down-
stream adaptation on target datasets typically of smaller scales.
To this end, we adapt the popular data-efficient framework
of MAML [9] as our base pre-training architecture which
advantageously allows fast optimization of GNN models on
multiple data domains. Moreover, we illustrate a high-level
overview of our proposed pipeline workflow in Figure [I]

As the second and most important contribution, we leverage
the graph contrastive learning paradigm to shape a unified
pre-training objective and propose a novel brain-network-
oriented contrastive sampling strategy. In particular, since
brain networks within one dataset are defined by a fixed
node system that shares identical node orderings, we can
promote GNN to learn on shared substructure knowledge.
Hence, we can naturally extend to a multi-graph intra-dataset
setting when we are constructing the contrastive samples
with respect to given anchors. In addition, to facilitate an
intuitive understanding of our unique sampling considerations,
we propose to categorize the possible sample selections into
four different types. Furthermore, our categorization can also
be adapted to describe the objective formulations in various
state-of-the-art graph-based contrastive learning frameworks

[1O]-[14].

As the third contribution, different brain network datasets
are parcellated under different atlas systems, which leads to
varying dimensionalities and semantics of initial features, and
such misalignment can negatively affect downstream adapta-
tion. To this end, we develop a data-driven pre-processing
solution through linear autoencoders that project original fea-
tures into a lower dimensional space shared across all datasets.
To have the transformed features maximally preserve the
original structural information, our solution also presents three
carefully chosen regularizers to guide the optimizations of the
autoencoders. In addition, we also propose to apply variance-
based sorting to the projected features to achieve cross-dataset
alignment.

We conduct extensive experiments to evaluate the proposed
pipeline on downstream disease classification objectives. Com-
pared to a spectrum of chosen baselines adapted to our setting,
our framework reflects superior results across all metrics
including accuracy scores and area under the ROC curve.
We further the empirical analysis through in-depth ablation
studies and our findings validate the positive contributions
to the overall performance of each constituent component of
our framework. Besides, we also evaluate the pre-training and
fine-tuning efficiency of GNN models optimized under our
framework through visual comparisons, and our fully-loaded
framework demonstrates the fastest and most robust source
convergence as well as target adaptation.

REFERENCES

[1] M. A. Lindquist, “The statistical analysis of fmri data,” Stat Sci, vol. 23,
pp. 439-464, 2008.

[2] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[3] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in ICLR, 2019.

[4] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnex-
plainer: Generating explanations for graph neural networks,” in NeurIPS,
2019.

[5] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec,
“Strategies for pre-training graph neural networks,” in ICLR, 2020.

[6] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in CVPR, 2020.

[71 A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

[8] M. Sun, K. Zhou, X. He, Y. Wang, and X. Wang, “Gppt: Graph pre-
training and prompt tuning to generalize graph neural networks,” in
SIGKDD, 2022.

[9] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for

fast adaptation of deep networks,” in ICML, 2017.

P. Velickovic, W. Fedus, W. L. Hamilton, P. Lio, Y. Bengio, and R. D.

Hjelm, “Deep graph infomax.” ICLR, 2019.

J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang, and

J. Tang, “Gece: Graph contrastive coding for graph neural network pre-

training,” in SIGKDD, 2020.

J. Xia, L. Wu, G. Wang, J. Chen, and S. Z. Li, “Progcl: Rethinking hard

negative mining in graph contrastive learning,” in /CML, 2022.

F.-Y. Sun, J. Hoffman, V. Verma, and J. Tang, “Infograph: Unsupervised

and semi-supervised graph-level representation learning via mutual

information maximization,” in /CLR, 2019.

Q. Zhu, C. Yang, Y. Xu, H. Wang, C. Zhang, and J. Han, “Transfer learn-

ing of graph neural networks with ego-graph information maximization,”

in NeurIPS, 2021.

[10]

(11]

[12]

[13]

[14]



	Introduction
	References

