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Abstract

Language Models (LMs) have advanced diagno-
sis prediction by leveraging the semantic under-
standing of medical concepts in Electronic Health
Records (EHRs). Despite these advancements,
existing LM-based methods often fail to capture
the structures of medical concepts (e.g., hierar-
chy structure from domain knowledge). In this
paper, we propose BoxLM, a novel framework
that unifies the structures and semantics of med-
ical concepts for diagnosis prediction. Specif-
ically, we propose a structure-semantic fusion
mechanism via box embeddings, which integrates
both ontology-driven and EHR-driven hierarchi-
cal structures with LM-based semantic embed-
dings, enabling interpretable medical concept rep-
resentations. Furthermore, in the box-aware diag-
nosis prediction module, an evolve-and-memorize
patient box learning mechanism is proposed to
model the temporal dynamics of patient visits,
and a volume-based similarity measurement is
proposed to enable accurate diagnosis predic-
tion. Extensive experiments demonstrate that
BoxLM consistently outperforms state-of-the-
art baselines, especially achieving strong perfor-
mance in few-shot learning scenarios, showcasing
its practical utility in real-world clinical settings.
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Figure 1. Exploring semantics and structures in healthcare.
(a) modeling semantical similarity with vector embeddings. (b) en-
coding structural relationships with vector embeddings. (c) inte-
grating semantic and structural dimensions with box embeddings.

1. Introduction
Accurate diagnosis prediction based on Electronic Health
Records (EHRs) has emerged as a pivotal task in modern
healthcare, enabling personalized treatment planning and
improved patient outcomes. However, the widespread appli-
cation of EHR-based systems is hindered by concerns over
data privacy and limited accessibility to patient-specific
datasets, resulting in the few-shot learning problem (Xu
et al., 2024). This problem necessitates innovative ap-
proaches with limited patient EHR data while maintain-
ing predictive performance. Recent advancements in Lan-
guage Models (LMs) have demonstrated their potential to
address the few-shot learning problem by incorporating
the semantic understanding of medical concepts. LMs,
such as BioBERT (Lee et al., 2020) and PubmedBERT (Gu
et al., 2021), introduce pre-trained biomedical embeddings.
Moreover, cutting-edge models like MedBench (Cai et al.,
2024) and BioMistral (Labrak et al., 2024) further refine this
approach through large-scale training on medical corpora,
achieving notable improvements in semantic representation
and contextual understanding of limited medical concepts.

Despite these advancements, existing LM-based methods
often fail to capture the structures of medical concepts, such
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as the hierarchy of medical ontologies and the hierarchy of
EHR-driven visit patterns. These structures are crucial for
accurate diagnosis prediction (Luo et al., 2020; Lv et al.,
2024). For instance, consider a patient with a history of
common cold and chronic sinusitis. Based solely on se-
mantics, LM-based models might predict the next diagnosis
as common cold due to symptom similarity and its higher
frequency in the training data. By unifying semantics with
structures, the model can leverage hierarchical relationships
to improve accuracy. In the ontology hierarchy, allergic
rhinitis and chronic sinusitis are both classified under other
diseases of the upper respiratory tract. Moreover, chronic
sinusitis is often a downstream complication of poorly man-
aged allergic rhinitis in the EHR hierarchy. Recognizing
these relationships, the model can more accurately predict
allergic rhinitis as the next diagnosis, illustrating the impor-
tance of incorporating structural knowledge.

However, effectively modeling these complex structures
within the framework of LM-based diagnosis prediction
remains a significant challenge. Standard embedding tech-
niques, as shown in Figure 1(a) and Figure 1(b), represent
concepts as single points in a vector space. These vector
embeddings, while effective at capturing similarity relation-
ships, fail to encode complex relationships such as inclusion
relations inherent in the hierarchy. For instance, vector em-
beddings can model the similarity between hypertension
and cardiovascular diseases by encoding semantic mean-
ing. Whereas, they do not explicitly capture the hierarchical
relationship where cardiovascular diseases encompasses
hypertension. Inspired by the success of box embeddings
across various domains (Vilnis et al., 2018; Huang et al.,
2023; Lv et al., 2024; Lin et al., 2024), we find that they
offer a promising solution by representing entities as high-
dimensional hyperrectangles, where two boxes can clearly
“enclose” or “intersect” each other. As shown in Figure
1(c), box embeddings are well-suited to capturing complex
relationships, including hierarchical inclusion and set-based
intersections, making them an ideal choice for unifying
structures and semantics in medical concepts.

In this paper, we propose BoxLM, a novel Box-aware
Language Model for diagnosis prediction. BoxLM lever-
ages the expressive power of box embeddings to seamlessly
unify structural and semantic representations of medical con-
cepts, enabling precise diagnosis prediction. Specifically,
our framework consists of two key modules: (1) a structure-
semantic fusion module that integrates both ontology-driven
and EHR-driven hierarchical structures with semantic em-
beddings from Pre-trained Language Models (PLMs), and
(2) a box-aware diagnosis prediction module that quantifies
the similarity between patient visits and Clinical Classifica-
tions Software (CCS) codes using the intersection volume
of their boxes. By modeling medical concepts as high-
dimensional hyperrectangles, BoxLM significantly enhances

prediction accuracy, outperforming state-of-the-art models.

In summary, we make the following contributions:

• Unified BoxLM framework. We propose a novel frame-
work that unifies structures and semantics of medical
concepts via box embeddings, capturing the complex
relationships among diagnoses, CCS codes, and patient
visits at the conceptual level.

• Effective model designs. We introduce a structure-
semantic fusion mechanism to jointly integrate
ontology-driven and EHR-driven hierarchical struc-
tures with PLM-based semantic embeddings for medi-
cal concept representation. Furthermore, we propose
an evolve-and-memorize patient box learning mech-
anism and a volume-based diagnosis prediction, to
quantify complex relationships between the patient
and CCS codes.

• Extensive experiments on real EHR datasets. We con-
duct extensive experiments on real-world EHR datasets,
demonstrating that BoxLM outperforms state-of-the-
art models in both visit-level and code-level diagnosis
prediction. Particularly, BoxLM achieves strong perfor-
mance in few-shot learning scenarios, highlighting its
practical applicability in real-world clinical settings.

2. The BoxLM Framework
2.1. Problem Definition and BoxLM Overview

Given a patient’s EHR data, which consists of a sequence of
visits, each associated with a set of medical concepts (e.g.,
diagnoses and CCS codes), the goal is to predict the relevant
CCS codes for the patient’s next visit. Notably, CCS is a
classification system that groups diagnoses into clinically
meaningful categories for analytical purposes, whereas a
diagnosis refers to the identification of a specific disease or
condition in a patient’s visit.

Let a patient p’s EHR data be represented as a sequence
of visits {v1, v2, . . . , vt}, where each visit vt is associated
with a set of medical concepts, including diagnoses d ∈ Md

and CCS codes c ∈ Mc. The hierarchical relationships
among these concepts are derived from two sources: (1)
Ontology-driven hierarchy graph Gm = (Vm, Em), where
Vm denotes the set of medical concepts (i.e., diagnoses and
CCS codes) and Em represents the parent-child relationships.
With Gm, we obtain diagnosis box bd and CCS code box
bc. (2) EHR-driven hierarchy graph Gv = (Vv, Ev), where
Vv includes all visits and their associated medical concepts,
and Ev captures the relationships between visits and their
constituent concepts. With Gv , we obtain visit box bvt .

The patient’s overall representation is then modeled as a
box embedding bp by aggregating the sequence of visits.
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Figure 2. The overall framework of our proposed BoxLM.

The prediction is based on the intersection volume-based
similarity score ŷp,c between the patient box bp and the
boxes of candidate CCS codes bc.

We summarize the main modules of the BoxLM framework
in Figure 2 to provide an overview. BoxLM consists of two
components. The first component, Structure-Semantic Fu-
sion via Box Embeddings, integrates semantic embeddings
from PLMs with structural relationships derived from both
ontology and EHR data. The second component, Box-aware
Diagnosis Prediction, models the temporal progression of
patient visits and predicts future CCS codes based on the
intersection volume between patient and CCS code boxes.

2.2. Structure-Semantic Fusion via Box Embeddings

To effectively capture both semantic and structural rela-
tionships in medical concepts, we introduce a box-aware
language model that models entities as high-dimensional hy-
perrectangles. This method integrates semantic embeddings
from PLMs with structural relationships, directly producing
interpretable box representations at the conceptual level. We
now proceed to describe how BoxLM is designed to capture
hierarchical structures from both ontology and EHR data.

2.2.1. ONTOLOGY-DRIVEN HIERARCHY MODELING

Box embeddings model medical concepts as high-
dimensional hyperrectangles, where the center and offset
of each box explicitly represent the semantic meaning and
hierarchical relationships of these concepts, respectively. In
this part, we detail how these box embeddings are computed

during fusion and used to encode hierarchical structures.

Definition 1 (Box Embedding). A box is defined as:
bi = (bCen

i ,bOff
i ), where bCen

i ∈ Rdim and bOff
i ∈ Rdim

+

represent the center and offset of the box, respectively.

To preserve the semantic information and adapt it for clinical
tasks, we compute the box center using PLM-based seman-
tic embeddings (shown in Figure 2(a)). Specifically, we re-
trieve the ed and ec embeddings for medical concepts from
BioBERT (Lee et al., 2020) by using their clinical names
(e.g., disease names and CCS names) as indices. These em-
beddings are then passed through a learnable Multi-Layer
Perceptron (MLP) to reduce dimensionality and obtain the
box center bCen

{d,c} as follows:

bCen
d = MLP(ed), bCen

c = MLP(ec). (1)

While PLMs effectively capture the semantic meaning of
medical concepts through box centers, they do not inher-
ently encode the parent-child relationships found in medical
ontologies. To address this, we propose to leverage clinical
knowledge to calculate offset, so as to represent the relative
position of concepts within a hierarchy. For instance, the
offset for a parent concept, such as cardiovascular disease,
should be larger than that of its child concept, such as hyper-
tension, reflecting the broader nature of the parent concept.
This approach ensures that hierarchical relationships are
explicitly captured within the box embedding.

To encode hierarchical relationships into offset embeddings,
we propose a directed graph-based convolution mechanism
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operating over a hierarchical graph. Specifically, in the
ontology-driven hierarchy graph Gm = (Vm, Em), each
medical concept m ∈ Vm (e.g., cardiovascular disease or a
CCS code) is initialized with their center embedding bCen

{d,c},
and we adopt relation-aware graph convolutional networks
to compute their offset embedding bOff

{d,c}, which jointly
embeds both nodes and relations in a directed graph. The
offset embedding is computed as:

bOff
d = AGG

(
{ϕ(bCen

n ,W r) | (n, r) ∈ N (d)}
)
,

bOff
c = AGG

(
{ϕ(bCen

d ,W r) | (d, r) ∈ N (c)}
)
,

(2)

where AGG(·) is an aggregation function (e.g., summation
or mean) that combines the information from neighboring
concepts. N (d) represents the set of neighboring concepts
of diagnosis d, and N (c) denotes the set of diagnosis con-
cepts associated with the CCS code c. ϕ(·,W r) is a compo-
sition function that combines neighboring concept with the
relation r, W r ∈ Rdim×dim is the learnable weight, and
r encompasses two types of directed edges (i.e., parent-to-
child and child-to-parent relationships).

2.2.2. EHR-DRIVEN HIERARCHY MODELING

In EHR data, each patient visit is represented as a set of med-
ical concepts, including diagnoses and CCS codes. The ag-
gregation of diagnoses and CCS codes into a visit naturally
forms a hierarchical structure Gv , where the visit serves as a
parent node encompassing its associated diagnoses and CCS
codes as child nodes. Unlike ontology-driven hierarchies,
which are predefined by medical ontologies, EHR-driven
hierarchies emerge from the clinical context of patient visits.

To model this structure, we represent each visit vt as a box
embedding bvt = (bCen

vt ,bOff
vt ), where the center bCen

vt cap-
tures the semantic meaning of the visit, and the offset bOff

vt
reflects the variability introduced by the diversity of its asso-
ciated medical concepts (shown in Figure 2(b)). The center
of the visit’s box embedding is computed as a weighted
aggregation of the box centers of its associated diagnoses
and CCS codes:

bCen
vt =

∑
i∈Mvt

αi · bCen
i , (3)

where bCen
i represents the center of the box for each diag-

nosis or CCS code i ∈ Mvt , and αi is the attention score
that captures the relevance of each medical concept to the
visit. The attention score is computed as:

αi =
exp

(
MLPE(b

Cen
i )

)∑
j∈Mvt

exp
(
MLPE(bCen

j )
) . (4)

The offset of the visit’s box embedding, bOff
vt , represents

the range of the visit’s representation, which is influenced

by the diversity of its associated medical concepts. A visit
with a narrow range of diagnoses and CCS codes will have
a smaller offset, while a visit with diverse or conflicting
medical concepts will have a larger offset. The offset is
computed as the maximum of the offsets of its associated
medical concepts:

bOff
vt = max({bOff

i | i ∈ Mvt}), (5)

where bOff
i is the offset for each medical concept i associ-

ated with the visit vt and max(·) is an element-wise maxi-
mum operation.

2.3. Box-aware Diagnosis Prediction

In clinical practice, a patient’s medical history is repre-
sented as a sequence of visits over time, where each visit
contains multiple medical concepts such as diagnoses and
CCS codes. As a patient’s condition evolves, visits often
exhibit overlaps in medical concepts, reflecting recurring
conditions or related diagnoses. Capturing these overlaps
while maintaining an awareness of the temporal progression
is essential for accurate diagnosis prediction. Traditional
point-based embeddings struggle to model such complex re-
lationships effectively, as they fail to represent the inherent
hierarchical structure and semantic relationships of medi-
cal concepts. This motivates the use of box embeddings,
which naturally model overlaps, hierarchies, and seman-
tic relationships through high-dimensional hyperrectangles,
providing a more expressive and interpretable representation
for diagnosis prediction.

2.3.1. EVOLVE-AND-MEMORIZE PATIENT MODELING

To effectively model the dynamic nature of patient vis-
its while preserving structural and semantic relationships
among medical concepts, we propose an evolve-and-
memorize patient box learning mechanism (shown in Fig-
ure 2(c)). This mechanism leverages the geometric proper-
ties of boxes, where the center evolves over time to capture
the temporal progression of patient visits Hp, and the offset
memorizes the structural and semantic boundaries of the pa-
tient’s medical history. Specifically, the evolve component
dynamically updates the patient representation by weighting
historical visits based on their time intervals, while the mem-
orize component aggregates information from all historical
visits to preserve hierarchical and semantic relationships.
By integrating these two perspectives, our BoxLM achieves
a robust and interpretable understanding of patient data:

bCen
p =

∑
vq∈Hp

Tvq
· bCen

vq ,

bOff
p = max({bOff

vq | vq ∈ Hp}),
(6)
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where the influence of historical visits Tvq is calculated as:

Tvq =
exp (MLPT (∆Tq))∑|Hp|

j=1 exp (MLPT (∆Tj))
, (7)

where ∆Tq is the time interval between visit vq and vt.

2.3.2. VOLUME-BASED DIAGNOSIS PREDICTION

Given the high-dimensional and structural nature of box
embeddings, we propose to leverage the intersection vol-
ume between the patient box and CCS code boxes as a
measure of their similarity (shown in Figure 2(d)). By quan-
tifying the overlap between boxes, our method provides
intuitive insights into the relationships between medical con-
cepts, thereby improving the accuracy and interpretability
of model predictions.

Definition 2 (Box Minimum/Maximum Corner). The
minimum and maximum corners of the box bi are given by
bmin
i = bCen

i − bOff
i and bmax

i = bCen
i + bOff

i .

Definition 3 (Box Volume). The volume of box bi is calcu-
lated by Vol(bi) =

∏dim
k=1 max(bmax

i,k − bmin
i,k , 0), where k

is the indicator of dimension.

Definition 4 (Box Intersection). If there is an overlap be-
tween boxes bi and bj , their intersection box is denoted as
bi∩j = bi∩bj , where the minimum and maximum corners
of the intersection box are bmin

i∩j = max(bmin
i ,bmin

j ) and
bmax
i∩j = min(bmax

i ,bmax
j ).

Despite the advantages of using box volume-based sim-
ilarity, a common challenge is the potential for gradient
vanishing when the boxes do not overlap (Lin et al., 2024;
Liang et al., 2023; Jiang et al., 2023). To address this is-
sue, we draw inspiration from GumbelBox (Dasgupta et al.,
2020) and introduce an effective approach that integrates the
Gumbel distribution g(x;µ, β) = 1

β exp
(
−x−µ

β e−
x−µ
β

)
to

calculate the intersection box volume, ensuring non-zero
gradients and stable optimization.

Specifically, the minimum and maximum corners of the
intersection box between the patient box and CCS code
boxes are derived using Gumbel distributions as follows:

bmin
p∩c = max(bmin

p ,bmin
c ) ∼ MaxGumbel(µmin

p∩c, β),

bmax
p∩c = min(bmax

p ,bmax
c ) ∼ MinGumbel(µmax

p∩c , β),

µmin
p∩c = β ln

(
expb

min
p /β +expb

min
c /β

)
,

µmax
p∩c = −β ln

(
exp−bmax

p /β +exp−bmax
c /β

)
,

(8)
where MaxGumbel/MinGumbel are the max/min stable
Gumbel distribution with location µ and scale β.

The intersection box expected volume is computed by con-
sidering each dimension k independently, as the volume of

Table 1. Statistics of the datasets used in our experiments.

Dataset MIMIC-III MIMIC-IV
# of patients 5,449 79,393
# of visits 14,141 408,990
Avg. # visits per patient 2.60 5.15
Max # visits per patient 29 170
# of unique diagnoses 3,874 37,917
# of CCS codes 285 842

a high-dimensional box is the product of its side lengths
along each dimension. This allows us to approximate the
volume as follows:

Vol(bp∩c) =

dim∏
k=1

2βK0

(
2 exp−(µ

max
p∩c,k−µmin

p∩c,k)/2β
)
,

≈
dim∏
k=1

β log
(
1 + exp−(µ

max
p∩c,k−µmin

p∩c,k)/β−2γ
)
,

(9)
where K0 is the modified Bessel function of the second
kind of order zero and γ is the Euler-Mascheroni constant.
This formulation leverages noise ensembles over a large
collection of boxes, enabling the model to escape plateaus,
alleviate gradient vanishing, and stabilize the optimization
process (Huang et al., 2023). The detailed proof of this
formulation is provided in Appendix B.

The box volume-based similarity score for the patient box
bp and CCS code box bc is computed as:

ŷp,c = log(Vol(bp∩c)), (10)

where the logarithm function log further prevents the gradi-
ent vanishing issue.

To model the multi-label nature of diagnosis prediction, we
adopt Binary Cross-Entropy Loss, ensuring robust training
by providing a probabilistic interpretation of the similarity
scores. The objective function is defined as follows:

L = −
|Mc|∑
c=1

yp,c log(ŷp,c)+(1−yp,c) log(1−ŷp,c), (11)

where yp,c is the ground truth label, and ŷp,c is the predicted
probability for patient p and CCS code c, which are normal-
ized using the softmax function to ensure they represent
valid probabilities for multi-label classification.

3. Experiments
3.1. Experimental Setup

Datasets and Evaluation Protocols. We use two real-world
EHR datasets to verify the effectiveness of compared meth-
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Table 2. Experimental results for diagnosis prediction (%) on the MIMIC-III and MIMIC-IV datasets with 5% training data. The best
performances are highlighted in boldface and the second runners are underlined. Improv. denotes the relative improvements of our
proposed BoxLM over the second runners.

Dataset MIMIC-III MIMIC-IV

Metric Visit-Level Code-Level Visit-Level Code-Level
P@10 P@20 Acc@10 Acc@20 P@10 P@20 Acc@10 Acc@20

DoctorAI 35.72±0.16 43.70±0.20 26.31±0.19 42.64±0.21 30.65±0.05 37.29±0.07 22.69±0.06 34.83±0.05

RETAIN 34.73±0.18 43.10±0.18 25.73±0.17 42.00±0.19 33.47±0.04 40.56±0.05 24.52±0.03 37.54±0.06

StageNet 36.02±0.19 43.91±0.21 26.47±0.16 42.74±0.13 31.46±0.07 38.02±0.08 22.94±0.06 34.84±0.07

TRANS 36.64±0.22 44.85±0.23 26.96±0.19 43.35±0.22 28.70±0.05 35.36±0.05 21.64±0.06 33.31±0.04

KAME 35.01±0.17 43.17±0.20 25.95±0.21 42.16±0.18 30.54±0.08 37.16±0.11 22.29±0.09 34.10±0.08

CGL 35.54±0.22 43.78±0.25 26.15±0.19 42.49±0.20 31.72±0.13 38.51±0.09 23.14±0.11 35.76±0.12

HiTANet 36.23±0.15 44.32±0.19 26.56±0.17 43.02±0.16 28.83±0.09 35.40±0.12 21.75±0.12 33.39±0.10

BoxCare 38.21±0.17 45.31±0.16 28.12±0.19 43.84±0.21 35.13±0.07 41.94±0.10 25.58±0.09 38.80±0.09

BERT 21.77±0.22 32.19±0.23 16.14±0.22 31.88±0.19 12.92±0.12 20.24±0.13 10.16±0.12 19.27±0.11

BERT∗ 23.81±0.19 32.26±0.24 17.84±0.25 32.15±0.25 13.16±0.10 20.85±0.12 10.95±0.11 19.59±0.14

BioBERT 34.17±0.21 43.31±0.26 25.35±0.19 42.06±0.20 18.81±0.09 27.37±0.12 15.32±0.10 25.35±0.12

BioBERT∗ 34.42±0.25 43.44±0.29 25.49±0.18 42.27±0.21 18.95±0.11 28.08±0.14 15.44±0.13 25.61±0.13

VecoCare 35.27±0.20 43.54±0.19 25.98±0.21 42.30±0.23 29.17±0.10 35.84±0.12 22.06±0.09 33.89±0.12

BoxLM 43.88±0.23 51.62±0.25 31.74±0.21 48.74±0.19 42.04±0.04 49.65±0.08 29.94±0.06 44.52±0.08

Improv. 14.84% 13.93% 12.87% 11.18% 19.67% 18.38% 17.04% 14.74%

ods, i.e., MIMIC-III (Johnson et al., 2016) and MIMIC-
IV (Johnson et al., 2018). Following (Ma et al., 2018;
Chen et al., 2024), we chose patients who made at least
two visits for both datasets and predicted the CCS codes
for the next visit of patients. The statistics are summa-
rized in Table 1. For evaluation metrics, we use visit-level
Precision@k (P@k) and code-level Accuracy@k (Acc@k)
from coarse-grained and fine-grained perspectives, which
are consistent with (Ma et al., 2018; Zhang et al., 2020;
Wang et al., 2023; Chen et al., 2024). As suggested in (Choi
et al., 2016a; Lu et al., 2021; Lv et al., 2024), we also report
Recall@k (see Appendix G) for more comprehensive evalu-
ation of diagnosis prediction. Details on evaluation metrics
are provided in Appendix E.

Baselines. To comprehensively evaluate our proposed
BoxLM, we adopt 13 representative state-of-the-art meth-
ods as baselines for comparison from three main perspec-
tives: (1) temporal-aware methods: DoctorAI (Choi et al.,
2016a), RETAIN (Choi et al., 2016b), StageNet (Gao et al.,
2020), and TRANS (Chen et al., 2024); (2) hierarchy-
aware methods: KAME (Ma et al., 2018), CGL (Lu et al.,
2021), HiTANet (Luo et al., 2020), and BoxCare (Lv et al.,
2024); (3) semantic-aware methods: BERT (Kenton &
Toutanova, 2019), BERT∗, BioBERT (Lee et al., 2020),
BioBERT∗, and VecoCare (Xu et al., 2023b). Here, the
superscript ∗ indicates methods that incorporate patients’
historical visits during training. Additional details about
these baselines are provided in Appendix F.

Implementation Details. Both datasets are split into train-
ing, validation, and test sets at a ratio of 7:1:2, with pa-

tients as the unit of segmentation, consistent with (Lv et al.,
2024). We optimize the compared baselines with the stan-
dard Adam optimizer and carefully tune their hyperparame-
ters as suggested in the original papers. In particular, we set
the embedding dimension dim as 16 and the scale of Gum-
bel distribution β as 0.2. We evaluate each model with the
5-fold cross-validation strategy. Both the mean and standard
deviation of test performance are reported. All experiments
are conducted using two NVIDIA GTX 3090 Ti GPUs. The
full code for this work is available1.

3.2. Overall Diagnosis Prediction Results

In this section, we assess the effectiveness of our BoxLM for
diagnosis prediction under the few-shot and varying ratios
of training data scenarios, respectively.

3.2.1. FEW-SHOT DIAGNOSIS PREDICTION

To comprehensively evaluate the performance of our pro-
posed BoxLM, we compare it against 13 state-of-the-art
baselines from three main perspectives: temporal-aware,
hierarchy-aware, and semantic-aware methods. The results,
as shown in Table 2, demonstrate that BoxLM consistently
outperforms all baselines across both the MIMIC-III and
MIMIC-IV datasets.

Comparison with hierarchy-aware models. Among the
baselines, BoxCare stands out as a strong hierarchy-aware
method that leverages box embeddings to model structural
relationships among diagnoses. BoxCare primarily focuses

1https://github.com/Melinda315/BoxLM
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Figure 3. Experimental results for diagnosis prediction on the MIMIC-III dataset with varying ratios of training data.

on ontology-driven hierarchies (e.g., ICD codes), which cap-
ture standardized relationships between medical concepts.
However, it does not fully incorporate EHR-driven hier-
archies, which reflect real-world patient visit patterns and
medical concept co-occurrences. In contrast, BoxLM explic-
itly integrates knowledge from pre-trained language models
with both ontology-driven and EHR-driven hierarchies. As
a result, BoxLM outperforms BoxCare by an average of
16.70% at the visit level and 13.96% at the code level across
both datasets, demonstrating its superior ability to unify
structural and semantic information of medical concepts for
accurate diagnosis prediction.

Comparison with temporal-aware models. One repre-
sentative baseline is RETAIN, which employs RNNs with
reverse time attention mechanisms to model the temporal
dynamics of patient visits in EHRs. Another notable base-
line is TRANS, a temporal graphic method, that leverages
transformer-based architectures to model the sequential na-
ture of patient visits. Compared with RETAIN and TRANS,
BoxLM combines temporal modeling with a rich represen-
tation of medical concepts derived from both EHR data
and ontological sources through our structure-semantic fu-
sion mechanism. This integration is particularly evident in
BoxLM’s superior performance on the MIMIC-IV dataset
with more medical entities (shown in Table 1), surpassing
TRANS by up to 46.48% in P@10 on MIMIC-IV.

Comparison with semantic-aware models. Semantic-
aware methods, such as VecoCare and BioBERT, primar-
ily rely on vector-based representations to encode medical
concepts. These methods focus on capturing the semantic
meaning of individual concepts. For example, BioBERT
enhances semantic understanding through domain-specific
pre-training, while VecoCare uses PLM embeddings to rep-
resent medical concepts. However, their vector-based design
inherently limits their ability to model complex hierarchical
relationships. In contrast, BoxLM models medical concepts
as high-dimensional geometric structures (hyperrectangles)
to unify structural and semantic information. This enables
BoxLM to achieve an average improvement of 28.76% over
semantic-aware methods on both datasets.

3.2.2. VARYING RATIOS OF TRAINING DATA

To investigate the impact of training data size on model
performance, we conduct experiments on the MIMIC-III
dataset with varying ratios of training data, e.g., 1%, 5%,
10%, 15%, 50%, and 100% (shown in Figure 3).

In general, BoxLM significantly outperforms all baselines
across all data ratios, demonstrating its ability to general-
ize even with limited training data. At both the visit and
code levels (Figure 3(a) and Figure 3(b)), baselines show
improvements as the training data ratio increases, but their
performance gains are modest compared to BoxLM. For in-
stance, BoxCare, the second-best method, improves a P@10
at the visit level from 34.78% to 38.21%, as the training data
increases from 1% to 5%. However, even with 100% train-
ing data, BoxCare’s performance in P@10 remains slightly
below BoxLM’s performance with only 15% training data.

Additionally, the runtime analysis (Figure 3(c)) further
highlights the efficiency of BoxLM. Notably, RETAIN and
TRANS exhibit significantly longer training times, where
RETAIN is based on the reverse time attention mechanisms
and TRANS relies on temporal graphical representations. In
contrast, BoxLM achieves superior efficiency by leveraging
box embeddings to unify structural and semantic represen-
tations in a compact and interpretable manner. This design
not only reduces computational overhead but also enables
faster convergence during training. Compared to BoxCare,
which also utilizes box embeddings, BoxLM introduces the
structure-semantic fusion mechanism and the evolve-and-
memorize patient box learning mechanism. These innova-
tions employ external semantic knowledge from PLM to
further enhance efficiency. Moreover, they allow BoxLM to
model temporal dynamics and hierarchical relationships
effectively with an average 36.57% lower runtime. More ex-
perimental results and analyses on MIMIC-IV can be found
in Appendix H.

3.3. Analysis of Our Framework

Ablation Studies. To better understand our proposed tech-
niques, i.e., Ontology-based hierarchy modeling (Onto),
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Figure 4. An illustrative example of diagnosis prediction for patient p on MIMIC-III generated by BoxCare and BoxLM, respectively.

Table 3. Ablation results (%) of our BoxLM on two EHR datasets.

Metric Visit-Level Code-Level
P@10 P@20 Acc@10 Acc@20

MIMIC-III
Base 34.42±0.25 43.44±0.29 25.49±0.18 42.27±0.21

+ Onto 37.07±0.10 44.69±0.15 26.83±0.13 43.18±0.18

+ EHR 41.40±0.24 48.74±0.22 30.05±0.13 46.37±0.10

BoxLM 43.88±0.23 51.62±0.25 31.74±0.21 48.74±0.19

MIMIC-IV
Base 18.95±0.11 28.08±0.14 15.44±0.13 25.61±0.13

+ Onto 32.14±0.03 38.63±0.06 23.29±0.03 34.71±0.04

+ EHR 40.28±0.05 47.94±0.04 28.73±0.04 43.09±0.07

BoxLM 42.04±0.04 49.65±0.08 29.94±0.06 44.52±0.08

EHR-based hierarchy modeling (EHR), and evolve-and-
memorize patient modeling, we study BoxLM on two EHR
datasets as follows:

(1) Base model leverages BioBERT embeddings for medical
concepts without any structure modeling, where visits are
represented as single points; (2) “+ Onto” introduces box
embeddings for CCS codes and diagnoses with our ontology-
based hierarchy modeling (cf., Section 2.2.1). Visit represen-
tations are constructed by summing the centers and offsets
of associated CCS code and diagnosis boxes, followed by
concatenation rather than using box representations; (3)
“+ EHR” extends to visit-level box embeddings with our
EHR-based hierarchy modeling (cf., Section 2.2.2). Patient
are vector embeddings similar to the visit embeddings in
the “+ Onto” setup; (4) BoxLM models diagnoses, CCS
codes, visits, and patients as box embeddings, and employs
volume-based similarity for diagnosis prediction.

From Table 3, we have the following observations:

Incorporating box embeddings for hierarchical modeling
achieves 7.70% gains with P@10 on MIMIC-III, with even
more significant gains on MIMIC-IV (i.e., 69.60%). Such
results highlight that datasets with more medical entities
(e.g., MIMIC-IV) benefit greatly from modeling ontology-
driven hierarchy structures, as they effectively address the

complexity of overlapping and related medical concepts.

Rather than representing visits as single points, modeling
visits as box embeddings by capturing EHR-driven hier-
archy achieves further improvement, with up to 25.33%
gains in P@10 on MIMIC-IV. By capturing the relation-
ships between visits and their associated medical concepts
(e.g., diagnoses), BoxLM provides a more robust and in-
terpretable framework, especially in datasets with a larger
number of visits and medical entities.

By extending box embeddings to patient-level representa-
tions, we are able to effectively measure the overlap and
complex relationships (e.g., structure, semantic, and tem-
poral relations) among medical entities, leading to more
precise diagnosis predictions. These results also affirm that
our evolve-and-memorize patient box learning mechanism
captures the evolving nature of patient visits.

Hyperparameter Studies. We evaluate how three hyperpa-
rameters (i.e., the box embedding dimension dim, the Gum-
bel distribution scale β, and the box volume calculation)
impact the performance and clarify how to set them. The de-
tailed results are shown in Appendix I. For box embedding
dimension dim, the results show that increasing dim slowly
enhances model performance for both datasets. For a fair
comparison with baselines, we set dim = 16. For the Gum-
bel distribution scale β, a larger β makes the distribution
closer to uniform, while a smaller β causes its probability
density function to approach a hinge function, leading the
random variable to degenerate into a constant (Lin et al.,
2024). In this paper, we set β = 0.2, balancing model ac-
curacy with the distinctiveness among boxes. For the box
volume calculation, we compare the soft volume calcula-
tion (Li et al., 2019) with our used Bessel volume calculation
(cf., Eq. (9)). They both effectively mitigate the training
difficulties that arise when disjoint boxes should overlap.

Case Studies. To highlight the advantages of BoxLM in
diagnosis prediction, we provide a real case study from the
MIMIC-III dataset. Figure 4 contrasts the predictive results
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of visit 3 for patient p from BoxCare and BoxLM.

For patient p’s diagnosed with essential hypertension dur-
ing the first two visits (i.e., v1 and v2), BoxCare relies on
ontology-driven hierarchy for diagnosis boxes and models
patients using vector embeddings. Consequently, it can-
not capture the co-occurrence patterns present in EHR data,
leading to inaccurate diagnosis predictions. In contrast,
our proposed BoxLM make full use of ontology-driven and
EHR-driven hierarchy by designing the structure-semantic
fusion mechanism and evolve-and-memorize patient box
learning mechanism, empowering the model to uncover fine-
grained, interpretable associations among medical entities.
Therefore, BoxLM accurately forecasts the possibility of de-
veloping coronary atherosclerosis and other heart diseases
(with CCS code 101) by calculating the overlap between the
accurate patient and CCS boxes—consistent with clinical
knowledge that hypertension increases the heart’s workload
on arteries (Dzau, 1990; Libby et al., 2009), thereby ele-
vating the risk of atherosclerosis. Additionally, we provide
a quantitative metric Consistency@k metric to verify the
interpretability of BoxLM (see Appendix J).

4. Related work
Diagnosis Prediction. Diagnosis prediction has been exten-
sively studied due to its pivotal role in healthcare (Hendrik-
sen et al., 2013; Yang et al., 2023). A significant category
of deep learning-based methods focuses on modeling con-
textual dependencies within patient visit sequences using
architectures like Recurrent Neural Networks (RNNs) and
transformers, such as DoctorAI (Choi et al., 2016a), RE-
TAIN (Choi et al., 2016b), Dipole (Ma et al., 2017), and
TRANS (Chen et al., 2024). Another prominent direction in-
volves integrating external knowledge to enhance represen-
tation learning (Choi et al., 2017; Ye et al., 2021; Xu et al.,
2023a). For example, hierarchy-aware methods (Lu et al.,
2021; Wang et al., 2023; Lv et al., 2024) have demonstrated
strong performance by explicitly encoding disease domain
knowledge. However, these methods often neglect the rich
semantic information among medical concepts, which is
valuable for diagnosis prediction modeling the contextual
relationships and similarities between medical terms.

Clinical Language Model. LMs have significantly ad-
vanced clinical tasks by incorporating rich semantic infor-
mation (Kenton & Toutanova, 2019; Yan & Pei, 2022).
For example, BioBERT (Lee et al., 2020) and PubMed-
BERT (Gu et al., 2021) utilized biomedical text corpora for
pre-training, enabling improved representation of domain-
specific medical terminology. VecoCare (Xu et al., 2023b)
aggregated semantic information from patients through a
dual-channel retrieval mechanism. In recent years, medical-
specific LLMs have leveraged large-scale medical datasets
to further enhance the contextual understanding of clinical

concepts (Kwon et al., 2024; Kim et al., 2024). However,
existing LM-based models face challenges in effectively
encoding and interpreting hierarchical structures latent in
language, which can be helpful for diagnosis prediction.

Box Embedding. Box embeddings have emerged as a pow-
erful geometric representation approach for capturing com-
plex hierarchical and relational information. Unlike tradi-
tional vector embeddings, box embeddings model entities
as high-dimensional hyperrectangles, enabling the repre-
sentation of inclusion, exclusion, and intersection relation-
ships (Mei et al., 2022). Motivated by the box embed-
dings, which can clearly capture the complex structural rela-
tions, real-world applications such as logical query answer-
ing (Ren et al., 2020), knowledge base completion (Huang
et al., 2023), taxonomy expansion (Jiang et al., 2023),
recommendation (Lin et al., 2024), and diagnosis predic-
tion (Lv et al., 2024) have been proposed. As closest to us,
BoxCare (Lv et al., 2024) applied box embeddings to repre-
sent disease hierarchies for clinical predictions. However,
BoxCare primarily focused on ontology hierarchies without
fully integrating the rich semantics and temporal structures
inherent in EHRs. For a more comprehensive discussion of
related work, please refer to Appendix A.

5. Conclusion
In this paper, we propose BoxLM, a novel framework
that unifies structural and semantic representations of
medical concepts for diagnosis prediction. BoxLM in-
cludes a structure-semantic fusion mechanism that inte-
grates ontology-driven and EHR-driven hierarchies with
LM-based semantic embeddings, and a box-aware diagnosis
prediction module that models temporal dynamics and quan-
tifies relationships between patient and medical concepts.
Extensive experiments demonstrate that BoxLM consistently
outperforms state-of-the-art baselines, particularly in few-
shot learning scenarios, showcasing its practical utility in
real-world clinical settings.

For future work, we aim to explore the application of
BoxLM to other medical tasks (e.g., medication recommen-
dation, medical report generation, and medical image seg-
mentation) and investigate its integration with multimodal
data sources (e.g., clinical notes, X-rays, and sensor records)
to further enhance its capabilities and application value.

Disclosure of Generative AI
We acknowledge the use of ChatGPT (OpenAI2) to assist in
proofreading and improving the structure of this essay. The
prompts we used include: “Please check the grammar and
suggest improvements for clarity.”

2https://chat.openai.com/
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A. Detailed Related Work
Traditional Diagnosis Prediction. Early diagnosis prediction methods primarily relied on traditional machine learning
approaches, such as logistic regression and random forest, which struggled to effectively handle the high-dimensional and
sparse nature of EHR data (Hendriksen et al., 2013). The advent of deep learning has significantly advanced predictive
modeling in diagnosis (Bai et al., 2018; Li et al., 2020). For example, RETAIN (Choi et al., 2016b) employed a two-level
attention-based RNN. Dipole (Ma et al., 2017) proposed a bidirectional RNN architecture with three attention mechanisms.
TRANS (Chen et al., 2024) modeled the patient’s EHR as a temporal heterogeneous graph and utilized time-aware visit
nodes to capture patient health status changes. Timeline (Bai et al., 2018) utilized time-aware attention mechanisms in
RNNs for health event predictions. Chet (Lu et al., 2022) designed a context-aware dynamic graph learning method to
learn disease combinations and disease development schemes. Another prominent direction involves integrating external
knowledge graphs to enhance representation learning, such as GRAM (Choi et al., 2017), MedPath (Ye et al., 2021), and
SeqCare (Xu et al., 2023a).

Structure-aware Diagnosis Prediction. Existing structure-aware models mainly use the hierarchy of medical ontolo-
gies(e.g., ICD-9) for diagnosis prediction. For example, HiTANet (Luo et al., 2020) adopted the time-aware Transformer and
attention mechanism to capture correlations between visits from local and global views. KAME (Ma et al., 2018) proposed
a graph-based attention model to obtain good performance with insufficient data. CGL (Lu et al., 2021) captured structural
features of both patients and diseases, integrating attentive text features into a sequential learning process.

Medical Large Language Models. With the advent of LLMs, medical artificial intelligence has undergone significant
technological advancements and paradigm shifts, demonstrating the potential of LLMs to enhance healthcare delivery
and improve patient outcomes (Liu et al., 2024). Starting with BioBERT(Lee et al., 2020) in 2019, the field has seen
the development of specialized models for various medical tasks. Key milestones include BioMegatron(Shin et al.,
2020) and PubMedBERT(Gu et al., 2021), followed by the introduction of models like ChatDoctor(Li et al., 2023) and
ClinicalBERT(Yan & Pei, 2022). The field continues to evolve with advanced models such as MedAgents (Tang et al., 2024),
MedREQAL (Vladika et al., 2024), PubMedBERT(Saab et al., 2024), and Health-LLM (Kim et al., 2024), underscoring the
ongoing innovation in leveraging LLMs for diverse healthcare applications.

Geometric Embedding. Geometric embedding models have attracted significant attention for their ability to preserve the
intrinsic geometric structure of data (Lin et al., 2024; Chen et al., 2022). Among them, box embeddings represent entities
as high-dimensional hyperrectangles. This makes them particularly effective for tasks involving hierarchical (Onoe et al.,
2021), transitive relations (Subramanian & Chakrabarti, 2018), entailments (Li et al., 2019), and uncertainty (Vilnis &
McCallum, 2015), thereby inferring missing or incomplete hierarchical links in data. Motivated by the box embeddings,
various real-world applications have been proposed, such as taxonomy expansion (Jiang et al., 2023), knowledge base
completion (Huang et al., 2023; Abboud et al., 2020), taxonomy expansion (Jiang et al., 2023), recommendation (Lin
et al., 2024; Wu et al., 2024), and diagnosis prediction (Lv et al., 2024). Additionally, recent advances extend this idea to
more expressive geometric forms such as polygons and hypercubes (Pavlović & Sallinger, 2023; Chen et al., 2022), further
enhancing performance in domains like knowledge graphs and recommender systems.

B. Proof of Intersection Box Expected Volume Formulation
The detailed derivation of µmin

p∩c and µmax
p∩c is provided in (Dasgupta et al., 2020). According to Definition 3 in Section 2.3.2,

we obtain the intersection box expected volume by calculating the expected length for each dimension as follows:

Vol(bp∩c) = E[max(bmax
p∩c − bmin

p∩c, 0)] =

dim∏
k=1

2βK0

(
2 exp−(µ

max
p∩c,k−µmin

p∩c,k)/2β
)
, (12)

where dim is the dimension of embeddings and K0 is the modified Bessel function of the second kind of order zero. The
proof of this formulation is detailed in (Dasgupta et al., 2020).

Next, we define f(x) = 2βK0

(
2 expx/2β

)
. Obviously, the function f(x) is essentially exponential as x increases. The

volume function approaches a hinge function as β → 0, which leads to numerical stability concerns (Dasgupta et al., 2020).
Consequently, we employ the softplus function to approximate f(x):

f(x) ≈ β log
(
1 + expx/β−2γ

)
, (13)
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where γ is the Euler-Mascheroni constant. Based on this approximation, the formulation of the intersection box expected
volume can be derived as follows:

Vol(bp∩c) ≈
dim∏
k=1

β log
(
1 + exp−(µ

max
p∩c,k−µmin

p∩c,k)/β−2γ
)
. (14)

C. Complexity Analysis of BoxLM
We analyze the time complexity of the BoxLM framework by four major components: Ontology-driven Hierarchy Modeling,
EHR-driven Hierarchy Modeling, Evolve-and-Memorize Patient Modeling, and Volume-based Diagnosis Prediction.

(1) Ontology-driven Hierarchy Modeling: In the ontology-driven hierarchy graph Gm = (Vm, Em), the offset embeddings
of medical concepts (i.e., diagnoses and CCS codes) are computed through relation-aware graph convolution networks. The
complexity per layer is O

(
|Em| × dim2 + |Rm| × dim2

)
, where |Em| is the number of edges in Gm, |Rm| is the number

of relation types (e.g., parent-child relationship), and dim is the embedding dimension.

(2) EHR-driven Hierarchy Modeling: In the EHR-driven hierarchy graph, each visit vt is associated with a set of medical
concepts. We represent the visit’s box embedding via an attention-weighted aggregation and a maximum operation. The
complexity is O(|Mvt | × dim), where |Mvt | is the number of medical concepts associated with visit vt.

(3) Evolve-and-Memorize Patient Modeling: The patient box aggregates information from all historical visits Hp via
temporal weighting and the complexity is O(|Hp| × dim), where |Hp| is the number of the patient’s historical visits.

(4) Volume-based Diagnosis Prediction: In the diagnosis prediction phase, each patient box is compared to |Mc| candidate
CCS boxes via the Gumbel-approximated intersection volume. For Np patients, the time complexity is O(Np×|Mc|×dim),
which grows linearly with the embedding dim and is similar to traditional vector-based approaches.

D. Notations and Corresponding Description
As shown in Table 4, we summarize the key notations used in our BoxLM and their corresponding descriptions.

Table 4. Notations
Notation Description

d, c, v The medical concepts, including diagnosis d, CCS code c, and visit v.
ed, ec The embedding of medical concepts d, c derived from PLM.
bi = (bCen

i ,bOff
i ) The box embedding of concept i, where bCen

i and bOff
i are the center and offset of the box.

bmin
i The minimum corner of the box bi.

bmax
i The maximum corner of the box bi.

Vol(bi) The volume of the box bi.
bi∩j The intersection box between boxes bi and bj .
MinGumbel(µ, β) The min stable Gumbel distribution.
MaxGumbel(µ, β) The max stable Gumbel distribution.
µ The location vector of the Gumbel distribution.
β The scale parameter of the Gumbel distribution.
N (d),N (c) The set of neighboring concepts of diagnosis d and CCS code c.
Md,Mc The set of medical concepts d, c.
Mvt The set of associated medical concepts of visit vt.
Hp The temporal progression of patient visits.

E. Details of Evaluation Metrics
Following previous studies (Ma et al., 2018; Chen et al., 2024; Choi et al., 2016a; Lu et al., 2021; Lv et al., 2024), three
evaluation metrics are adopted for diagnosis prediction: Visit-level Precision@k (P@k) measures prediction effectiveness
by counting accurate medical code predictions within the top k ranked results, normalized by the minimum of k and the
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actual number of categories present in a patient visit. Code-level Accuracy@k (Acc@k) quantifies prediction reliability as
the proportion of correct diagnoses among all predicted medical codes at the individual code level. Recall@k measures
the ratio of true medical codes in the top k predictions by the total number of ground-truth medical codes, reflecting the
model’s ability to retrieve relevant diagnoses. The value of k ranges from 10 to 20 across both metrics, with higher values
indicating better model effectiveness, where visit-level precision evaluates broader performance and code-level accuracy
reflects more detailed correctness. Recall mimics the clinical process of differential diagnosis, where physicians identify the
most probable conditions for evaluation. The calculation formulas are detailed in (Chen et al., 2024; Choi et al., 2016a).

F. Details of Compared Baselines
We compare 13 representative state-of-the-art methods as baselines for comparison from three main perspectives:

(1) Temporal-aware methods concentrate on modeling temporal dynamics and sequences in patient data. DoctorAI (Choi
et al., 2016a) encodes visits into vector representations and then processes them with GRUs to predict diagnoses in future
visits. RETAIN (Choi et al., 2016b) employs RNNs that integrate a reverse time attention mechanism to predict patient
diagnoses. StageNet (Gao et al., 2020) proposes a stage-aware LSTM module and a stage-adaptive convolutional module for
diagnosis prediction. TRANS (Chen et al., 2024) constructs a temporal heterogeneous graph to jointly capture temporal
dynamics and structural relationships in EHR data.

(2) Hierarchy-aware methods emphasize capturing hierarchical structures within medical data. KAME (Ma et al., 2018)
focuses on predicting patients’ future health information by incorporating medical ontology knowledge of ICD codes into
the sequence model. HiTANet (Luo et al., 2020) proposes a hierarchical time-aware transformer for risk prediction based
on EHRs. CGL (Lu et al., 2021) designs a collaborative graph learning model to explore patient-disease interactions and
external medical knowledge. BoxCare (Lv et al., 2024) employs box embeddings to model both inclusive and exclusive
relations among diseases and ICD-9 codes in EHR data.

(3) Semantic-aware methods primarily focus on leveraging semantic understanding for medical concepts through PLMs.
BERT (Kenton & Toutanova, 2019) and BERT∗ pre-train the bidirectional encoder representations from transformers on
large-scale unlabeled text data to understand the context of words by training on data bidirectionally. BioBERT (Lee
et al., 2020) and BioBERT∗ utilize biomedical text corpora for pre-training BERT, enabling improved representation of
medical-specific terminology. For each visit, we first use these PLMs to encode a textual sequence formed by the names of
all associated medical concepts. Then, we separately train a Multi-Layer Perceptron (MLP) based on the obtained visit
embeddings for diagnosis prediction. Here, the superscript ∗ indicates methods that incorporate patients’ historical visits
during training. VecoCare (Xu et al., 2023b) combines structured EHR data and clinical notes through the dual-channel
retrieval mechanism to reduce heterogeneous semantic biases.

For a fair comparison, all baselines use the same EHR data without clinical notes, medications, and procedures, relying
solely on the diagnostic information of patients.

G. Experimental Results and Analyses with Top-k Recall Metric
To comprehensively evaluate the performance of the proposed BoxLM, we compare it with four representative state-of-the-art
baselines in Recall@k (k=10, 20). As shown in Table 5, BoxLM consistently outperforms all baselines across both the
MIMIC-III and MIMIC-IV datasets. These results are consistent with the observations reported in Section 3.2, further
demonstrating the effectiveness of BoxLM.

H. Experimental Results and Analyses on MIMIC-IV with Varying Ratio of Training Data
To investigate the impact of training data size on model performance, we conduct experiments on the MIMIC-IV dataset
with varying ratios of training data, e.g., 1%, 5%, 10%, and 15% (shown in Figure 5).

In general, BoxLM significantly outperforms all baselines across all data ratios, demonstrating its ability to generalize even
with limited training data. At both the visit and code levels (Figure 5(a) and Figure 5(b)), baselines show improvements as
the training data ratio increases, but their performance gains are modest compared to BoxLM. For instance, BoxCare, the
second-best method, improves a P@10 at the visit level from 30.60% to 35.13%, as the training data increases from 1% to
5%. However, even with 15% training data, BoxCare’s performance in P@10 remains slightly below BoxLM’s performance
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with only 1% training data.

Additionally, the runtime analysis (Figure 5(c)) further highlights the efficiency of BoxLM. Notably, RETAIN and TRANS
exhibit significantly longer training times, where RETAIN is based on the reverse time attention mechanism and TRANS
relies on temporal graphical representations. In contrast, BoxLM achieves superior efficiency by leveraging box embeddings
to unify structural and semantic representations in a compact and interpretable manner. This design not only reduces
computational overhead but also enables faster convergence during training. Compared to BoxCare, which also utilizes box
embeddings, BoxLM introduces the structure-semantic fusion mechanism and the evolve-and-memorize patient box learning
mechanism. These innovations employ external semantic knowledge from PLM to further enhance efficiency. Moreover,
they allow BoxLM to model temporal dynamics and hierarchical relationships with an average 33.48% lower runtime.

Table 5. Recall@k results for diagnosis prediction (%) on the MIMIC-III and MIMIC-IV datasets with 5% training data. The best
performances are highlighted in boldface and the second runners are underlined. Improv. denotes the relative improvements of our
proposed BoxLM over the second runners.

Dataset MIMIC-III MIMIC-IV

Metric Recall@10 Recall@20 Recall@10 Recall@20

DoctorAI 27.36 43.06 24.84 37.09
RETAIN 26.68 42.52 27.22 39.95
TRANS 27.97 43.82 23.38 34.84
BoxCare 28.61 44.63 29.76 42.33
BoxLM 34.49 50.71 34.85 48.65
Improv. 20.55% 13.62% 17.10% 14.93%
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Figure 5. Experimental results for diagnosis prediction on the MIMIC-IV dataset with 1%, 5%, 10%, and 15% training data.

I. Experimental Results and Analyses of Hyperparameter Studies
As shown in Table 6, we evaluate the impacts of the box embedding dimension dim, the Gumbel distribution scale β, and
the box volume calculation. For box embedding dimension dim, the results show that increasing dim slowly enhances
model performance for both datasets. For a fair comparison with baselines, we set dim = 16. For the Gumbel distribution
scale β, a larger β makes the distribution closer to uniform, while a smaller β causes its probability density function to
approach a hinge function, leading the random variable to degenerate into a constant (Lin et al., 2024). In this paper, we set
β = 0.2, balancing model accuracy with the distinctiveness among boxes. For the box volume calculation, we compare
the soft volume calculation (Li et al., 2019) with our used Bessel volume calculation (cf., Eq. (9)). They both effectively
mitigate the training difficulties that arise when disjoint boxes should overlap.

J. Experimental Results and Analyses with Top-k Consistency Metric
In our study, CCS (Clinical Classification Software) codes from the MIMIC-IV dataset can be grouped into 22 distinct body
systems3, serving as hierarchical classification labels for the predicted CCS codes. To better assess the interpretability of

3https://hcup-us.ahrq.gov/toolssoftware/ccsr/ccs refined.jsp
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BoxLM, we introduce the Consistency@k metric (k=10, 20) (Patel et al., 2022; Xiong et al., 2022), which quantifies the
alignment between model predictions and the underlying hierarchical structure. The metric can be computed as:

Consistency@k =
1

min(k, |Hv|)

k∑
i=1

I(ĥi = hi), (15)

where |Hv| is the number of ground-truth hierarchical labels associated with the CCS codes in visit v, and the numerator
counts the number of correct hierarchical predictions in the top-k. We compare our proposed BoxLMwith three representative
state-of-the-art baselines. Table 7 demonstrates that BoxLM effectively preserves consistency on hierarchy, highlighting its
strong interpretability and predictive capabilities.

Table 6. Hyperparameter study results (%) on the MIMIC-III and MIMIC-IV datasets with 5% training data.
Dataset MIMIC-III MIMIC-IV

Metric Visit-Level Code-Level Recall@10 Recall@20 Visit-Level Code-Level Recall@10 Recall@20P@10 P@20 Acc@10 Acc@20 P@10 P@20 Acc@10 Acc@20

dim = 4 40.33 47.48 29.53 46.05 31.08 46.80 36.14 43.53 26.24 40.17 29.37 42.86
dim = 8 41.88 49.35 30.57 47.17 32.39 48.68 41.00 48.55 29.36 43.83 33.62 47.82
dim = 16 43.88 51.62 31.74 48.74 34.49 50.71 42.04 49.65 29.94 44.52 34.85 48.65
dim = 32 44.84 51.68 32.52 48.99 34.88 50.99 50.72 57.48 35.74 51.01 42.31 56.71

β = 0.1 42.91 50.12 31.05 47.47 33.50 49.48 41.10 48.92 29.18 43.43 34.27 47.98
β = 0.2 43.88 51.62 31.74 48.74 34.49 50.71 42.04 49.65 29.94 44.52 34.85 48.65
β = 0.3 45.39 52.37 32.81 49.55 35.56 51.69 41.71 49.35 29.78 44.30 34.79 48.60
β = 0.4 45.55 52.73 33.00 49.80 35.68 52.05 41.96 49.64 29.89 44.41 34.50 48.34
β = 0.6 45.81 52.84 33.25 50.05 35.66 52.14 40.70 48.06 29.14 43.23 33.63 47.08

Bessel Volume 43.88 51.62 31.74 48.74 34.49 50.71 42.04 49.65 29.94 44.52 34.85 48.65
Soft Volume 43.91 51.05 31.79 48.22 34.31 50.39 42.23 49.76 30.10 44.62 34.93 48.74

Table 7. Consistency@k results for diagnosis prediction (%) on the MIMIC-IV datasets with 5% training data. The best performances are
highlighted in boldface and the second runners are underlined. Improv. denotes the relative improvements of our proposed BoxLM over
the second runners.

Dataset MIMIC-IV

Metric Consistency@10 Consistency@20

RETAIN 41.81 46.55
TRANS 35.13 38.43
BoxCare 47.36 52.06
BoxLM 56.53 62.44
Improv. 19.36% 19.94%
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