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Abstract— Recent advancements in functional Magnetic Res-
onance Imaging (fMRI) have highlighted the importance of cap-
turing the dynamic nature of brain activities, prompting a shift
from static Functional Connectivity (FC) to dynamic FC (DFC).
However, existing DFC approaches often struggle to balance
temporal granularity with interpretability, leading to challenges
in disentangling meaningful connectivity patterns. In this work,
we introduce the Brain Network State Transformer (BNST),
a novel framework that leverages State FC to enhance brain
network analysis. Our approach integrates three key steps:
(1) Deep Clustering to identify recurring brain states from
high-dimensional DFC matrices, (2) State-Based Rechunking
to reorganize BOLD time series according to these states, and
(3) a Transformer-Based Feature Extraction mechanism that
models intra-state and inter-state relationships for downstream
prediction tasks. We demonstrate the effectiveness of BNST on
two publicly available fMRI datasets—ABCD and HCP—across
both classification and regression tasks. By capturing structured
temporal dynamics, BNST not only boosts prediction perfor-
mance but also improves interpretability by identifying distinct
brain states and their functional significance, providing a
structured representation that aligns with meaningful cognitive
and neural processes.

I. INTRODUCTION

Brain network analysis has emerged as a pivotal field
for understanding the organization of the human brain,
facilitating the identification of neurological biomarkers and
the development of enhanced diagnostic and therapeutic
strategies [1]–[3]. Central to this endeavor are functional
brain networks, which are constructed from blood-oxygen-
level-dependent (BOLD) signals. In these networks, nodes
represent predefined regions of interest (ROIs), while edges
capture the correlations between ROIs’ signals [4], [5]. A
major focus in neuroimaging is using these brain networks
to predict clinical outcomes or classify individuals, which
has driven the development of deep learning approaches that
extract meaningful patterns from this complex data [6], [7].

A longstanding approach to constructing these networks
relies on static functional connectivity (FC), where corre-
lations between ROIs are calculated over the full duration
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of the scan, forming a single static FC per subject [8]. This
static representation has proven effective for many prediction
tasks due to its simplicity and stability. However, while this
time-averaged approach has been instrumental in advancing
our understanding of brain connectivity, collapsing the entire
time series into a single FC inherently overlooks transient
or evolving patterns that characterize the dynamic nature of
neural activity, leaving substantial room for improvement [9],
[10].

To capture this temporal information, DFC-based ap-
proaches have been developed more recently [11], [12]. A
common method involves using the sliding window tech-
nique [13], which divides the BOLD time series into fixed-
length segments and computes a separate connectivity ma-
trix for each segment. By producing a sequence of time-
resolved connectivity matrices, the sliding window technique
enables neuroscientists to capture the evolving patterns of
FC. However, the high dimensionality and sheer volume
of these temporal snapshots can introduce additional noise,
heighten computational complexity, and complicate interpre-
tation. [14], [15].

In this work, we propose a novel framework called Brain
Network State Transformer (BNST) that addresses the lim-
itations of both static and dynamic FC by leveraging the
concept of brain states [16]. Brain states are distinct and
recurring patterns of DFC that emerge as the brain transitions
through various modes of activity over time. Different states
reflect different stable configurations of interactions between
ROIs. [17]. These states are typically derived by clustering
DFC matrices, with each state characterized by a cluster
centroid that encapsulates a representative connectivity pat-
tern [18]. BNST utilizes brain states as a guiding mechanism
to reorganize the BOLD time series based on each segment’s
state correspondence. It begins with a deep clustering ap-
proach to identify recurring brain states from DFC matrices
generated by the sliding windows. Using these states, a state-
based rechunking mechanism reorganizes the BOLD time
series data by grouping time segments corresponding to the
same brain state. These time series segments belonging to
the same state are concatenated and converted into state-
specific FC matrices by calculating the correlation within the
concatenated BOLD time series for each state, providing a
structured representation of brain dynamics. These matrices
are then processed by Brain Network Transformer (BNT)
[19], a model that is chosen for its proven performance
and widespread adoption in the field, to extract meaningful
features as embeddings. The embeddings are fed into a multi-



layer perceptron (MLP) for downstream tasks like prediction
of gender and cognitive score.

Experiments on two large-scale neuroimaging datasets,
Adolescent Brain Cognitive Development (ABCD) [20] and
Human Connectome Project (HCP) [21], demonstrate that
BNST achieves significant improvements in predictive per-
formance compared to both static FC-based and DFC-based
approaches. These results highlight the strength of State FC,
which combines the stability of static FC with the adapt-
ability of DFC to enhance predictions by capturing long-
term stable interactions and transient changes in connectivity,
ensuring that the model emphasizes the most informative
aspects of brain connectivity while reducing noise. By iden-
tifying recurring and distinct patterns of connectivity, State
FC isolates stable configurations of brain activity that reflect
meaningful functional states. This structured representation
allows the model to leverage state-specific connectivity fea-
tures, which provide richer and more interpretable insights
into the temporal and spatial organization of brain networks.
Additionally, the brain states also offer valuable information
about how the brain shifts between functional modes, which
can be critical for understanding variability in cognitive or
clinical outcomes. As a result, this balanced and comprehen-
sive approach enables superior predictive performance and
enhanced interpretability into the brain’s functional organi-
zation.

II. THE PROPOSED APPROACH: BNST

A. Problem Definition

Given BOLD time-series data {Xi ∈ RT×N , yi}Si=1,
where T is the length of the time series, N is the number of
brain regions, S is the number of subjects, and yi represents
the label corresponding to the i-th subject such as gender,
cognitive scores, or neurological conditions, the goal is to
accurately predict these subject-level outcomes.

B. The Overall Framework

As illustrated in Figure 1, the BNST framework begins
by constructing DFC matrices using a sliding window ap-
proach applied to the BOLD time series. It then identifies
recurring brain states by clustering these DFC matrices,
grouping similar patterns into distinct states that reflect stable
configurations of brain network activity over time. These
recurring brain states form the foundation of the BNST
framework and guide subsequent stages of the pipeline.
Based on the identified brain states, the BOLD time series
is reorganized for each sample to produce state-specific FC
matrices, capturing structured temporal dynamics. Finally,
a BNT is used to analyze both intra-state and inter-state
relationships, generating embeddings that enable accurate
predictions for downstream tasks, such as classification or
regression.

C. Clusetering to obtain Brain States

Data Preprocessing. To discover recurring brain states
from BOLD time series, we designed a robust preprocessing
pipeline with the following steps:

Fig. 1. The overall architecture of the BNST framework, consisting of
five steps: (1) Sliding Window Method to generate DFCs, (2) Clustering to
obtain Brain States, (3) State-Based Rechunking, (4) feature extraction with
the BNT, and (5) MLP for downstream task prediction.

• Sliding Window Segmentation: To construct dynamic
brain networks, the BOLD signal for each sample is
segmented into a sequence of overlapping or non-
overlapping windows of size L, with a stride length of
D. For each sample i, the total number of DFC matrices
is

W =

⌊
T − L

D
+ 1

⌋
.

Each window produces a DFC matrix Fi,t ∈ RN×N ,
where t = 1, . . . ,W . These matrices provide snapshots
of the brain’s connectivity at different time points.
Pearson correlation is used to compute the connectivity
strength, such that F t

xy = Corr(Xt
x, X

t
y), where Xt

x and
Xt

y represent the BOLD signals for regions x and y
within the time window t.

• Fisher-z Normalization:To stabilize variance and im-
prove comparability across subjects, we applied Fisher-z
transformation [22] to all DFC matrices:

zxy =
1

2
ln

(
1 + Fxy

1− Fxy

)
,

• Vectorization: Each Fisher-z transformed FC matrix
Zi,t ∈ RN×N is vectorized by flattening its upper trian-
gular elements to form vi,t ∈ Rd, where d = N(N−1)

2 .
This process produces a feature matrix Vi ∈ RW×d for
each sample i, suitable for subsequent dimensionality
reduction and clustering.

Deep Clustering. As illustrated in Fig. 2, we employed
a deep clustering framework inspired by [18] to identify
brain states. Before clustering, a fully connected autoencoder
is trained to project the high-dimensional vectors vi,t into
a lower-dimensional space li,t ∈ Rq , where q ≪ d. The



Fig. 2. Deep clustering framework for identifying brain states from DFCs.
The autoencoder projects high-dimensional DFCs into a latent space, where
k-means clustering extracts recurring brain states.

architecture consists of an encoder, which is a series of
fully connected layers that compress vi,t into the latent
representation li,t, and a decoder, which is a symmetric set of
layers that reconstruct vi,t from li,t to ensure the compressed
representation retains critical features. The autoencoder is
trained to minimize the mean squared error (MSE) between
the input vi,t and the reconstructed output v̂i,t:

L =
1

S ·W

S∑
i=1

W∑
t=1

∥vi,t − v̂i,t∥2

As shown in Fig. 2, after the training process, the encoder
is employed to generate the latent representations {li,t}Wt=1

for each sample i, forming a lower-dimensional representa-
tion of the DFCs Li ∈ RW×q .

The latent representations Li from all samples are aggre-
gated into a single matrix L ∈ RS×W×q . This matrix is
then clustered into K states using the k-means algorithm
in the latent space, resulting in K clusters. Each cluster is
represented by its centroid µk in the latent space.

To interpret these clusters in the original feature space, the
centroids µk are projected back to the original space using
the decoder. The resulting vectors represent the centroids of
the clusters in the original feature space and are referred to
as the brain states ck.

D. State-Based Rechunking
Figure 3 summarizes the State-Based Rechunking process.

It reorganizes the BOLD time-series signals Xi based on
the clustering assignments of the DFC matrices. For each
sample i, let Si,k denote the set of BOLD time-series chunks
assigned to state k, and the process produces an ordered set
of State FC matrices {F(k)

i }Kk=1, where K is the total number
of states identified during clustering. The steps are as follows:

• State Assignment: Each DFC vector vi,t is assigned
to the state k with the closest brain states ck (from the
clustering stage) based on Euclidean distance:

ki,t = argmin
k

∥vi,t − ck∥,

Fig. 3. Each BOLD time-series segment is assigned to its closest brain
state, grouping similar patterns together. The reorganized time-series are
then concatenated to compute State FC matrices, capturing structured brain
dynamics.

For each sample i, the set of time-series chunks assigned
to state k is then defined as:

Si,k = {Xi,t | ki,t = k}.

• Chunk Extraction and Concatenation: For each state
k, the BOLD time-series segments corresponding to
Si,k are extracted from Xi. These segments are con-
catenated together to form a continuous, state-specific
time-series block:

X
(k)
i = Concat({Xi,t | t ∈ Si,k}),

where X
(k)
i ∈ RTi,k×N , and Ti,k is the total length of

time-series assigned to state k for sample i.
• State FC Computation: For each state k, if Si,k is non-

empty (Ti,k > 0), a State FC matrix F
(k)
i ∈ RN×N is

computed for the entire concatenated block X
(k)
i using

Pearson correlation:

F (k)
xy = Corr(X(k)

i [x],X
(k)
i [y]),

where X
(k)
i [x] represents the concatenated BOLD time-

series for ROI x in state k. If Si,k is empty (Ti,k = 0),
F

(k)
i is replaced by the brain state FC matrix for the

specific state k, which is the FC matrix reconstructed
from the brain state vector ck.

• Ordered State FC Representation: To ensure consis-
tency across samples, the resulting State FC matrices
{F(k)

i }Kk=1 are ordered based on state indices k, forming
a structured representation:

[F
(1)
i ,F

(2)
i , . . . ,F

(K)
i ].

This process aligns the State FC matrices across samples,
enabling the model to better capture population-level patterns
and inter-state relationships while preserving consistency
across individual samples.

E. Feature Extraction with the BNT

After rechunking, the State FC matrices {F(k)
i }Kk=1 for

each sample i are passed through the BNT [19].



For each State FC matrix F
(k)
i , the BNT generates a

corresponding embedding h
(k)
i for state k:

h
(k)
i = BNT(F(k)

i ),

where it captures state-level patterns in the connectivity. The
embeddings {h(k)

i }Kk=1, representing all states for sample i,
are concatenated to form a comprehensive representation:

Hi = Concat(h(1)
i ,h

(2)
i , . . . ,h

(K)
i ).

The final concatenated representation Hi is then input
to a MLP for downstream prediction tasks, such as gender
classification or cognitive score regression.

By leveraging embeddings from all state-specific FC ma-
trices, this process ensures that the model effectively captures
both the distinct connectivity patterns of individual brain
states and their inter-state relationships.

III. EXPERIMENTS

A. Datasets

We utilize two publicly available fMRI datasets: The first
is the ABCD [20] dataset, which provides fully anonymized
brain networks constructed using the HCP 360 ROI atlas
[23]. To ensure consistency across subjects, we truncated all
time series to 512 time points. Our analysis focuses on two
tasks: (1) a binary classification task for predicting gender,
including 7,901 subjects after quality control (50.1% female),
and (2) a regression task for predicting the Cognition Sum-
mary Score.

The second dataset is the HCP [21], which provides
resting-state fMRI data processed using the CONN toolbox
[24]. We use 982 samples with 132 ROI defined by the
Harvard-Oxford atlas [25]. The BOLD time series are band-
pass filtered (0.01–0.1 Hz) and truncated to 2400 time points.
Our analysis focuses on two tasks: (1) a binary classification
task for predicting gender, and (2) a regression task for
predicting fluid intelligence scores with a mean of 17.03 and
standard deviation of 4.70.

We divide our datasets such that 70% is utilized for
training, 10% for validation, and the remainder for testing.

B. Experimental Protocols

Baselines. We evaluate the performance of our proposed
BNST framework against several state-of-the-art models in
brain network analysis, as summarized in Table I. To ensure
a comprehensive comparison, the selected baselines include
methods designed for both static and dynamic brain net-
works.

For static FC methods, we include BrainGB [1] and BNT
[19]. BrainGB is specifically designed to work with static
brain networks. BNT, a transformer-based model, projects
static brain networks into embedding spaces and serves as
a benchmark for transformer architectures, which is also
utilized in our framework.

For DFC methods, we benchmark against STGCN [26]
and STAGIN [27]. STGCN models spatiotemporal graph
structures, incorporating not only current but also past and

future connectivity patterns in its analysis. STAGIN builds
on this approach by incorporating an attention mechanism,
enabling it to effectively capture and integrate temporal dy-
namics across sequences of dynamic brain networks without
relying on static representations.

Metrics. To assess the performance of the proposed
model, we employ standard evaluation metrics for both
classification and regression tasks. For classification, we
use Accuracy (ACC), Area Under the Curve (AUC), and
Sensitivity (SEN), which provide a comprehensive view of
model performance across various thresholds. For regression,
we use Mean Squared Error (MSE) to measure prediction
accuracy and the Pearson Correlation Coefficient (PC) to
quantify the linear correlation between predicted and actual
values. Higher values for ACC, AUC, SEN, and PC, along-
side lower values for MSE, reflect superior performance.

C. Implementation Details

For the clustering process, we configure the window size
and stride according to the properties of the datasets. Specif-
ically, for the ABCD dataset, we use a window size of 24
with a stride of 24 to ensure each window encapsulates a one-
minute BOLD signal, while for the HCP dataset, we use a
window size of 96 with a stride of 96. From each dataset, we
randomly select 500 samples to perform clustering, balancing
computational efficiency with representativeness [16]. Using
a deep clustering framework, we identify 4 clusters for the
ABCD dataset and 6 clusters for the HCP dataset, with the
centroids representing brain state patterns. The difference in
the number of clusters reflects the temporal variability and
length of the datasets: the shorter BOLD time series in the
ABCD dataset offers fewer distinct connectivity patterns,
while the longer HCP series captures greater variability,
justifying more clusters [17], [18].

BNT consisted of 2 layers, with the hidden dimension
matching the number of nodes v in the brain network and 4
attention heads per layer. The model was optimized using the
Adam optimizer with a learning rate of 10−4 and a weight
decay of 10−4. We trained the model for 100 epochs with a
batch size of 16. The epoch achieving the best performance
on the validation set was selected for the final evaluation. To
ensure reliability and reproducibility, all results are averaged
over 5 independent runs with different random seeds.

D. Results and Analysis

The overall performance of the proposed BNST model is
summarized in Table I. We can observe that BNST achieves
the best results compared to all baseline methods across both
classification and regression tasks. By leveraging state-based
FC, BNST demonstrates superior performance, achieving
significant improvements in accuracy, sensitivity, and other
key metrics across both datasets.

The results highlight the advantages of State FC in
capturing meaningful and discriminative patterns in brain
connectivity. Unlike static methods, which fail to incorporate
temporal variations, and purely dynamic methods, which
lack state-specific organization, BNST effectively encodes



TABLE I
COMPARISON OF PERFORMANCE METRICS FOR CLASSIFICATION AND REGRESSION TASKS ACROSS ABCD AND HCP DATASETS.

Method
ABCD HCP

Classification Regression Classification Regression
ACC ↑ AUC ↑ SEN ↑ MSE ↓ PC ↑ ACC ↑ AUC ↑ SEN ↑ MSE ↓ PC ↑

STAGIN 58.3 ± 2.4 61.5 ± 4.0 70.7 ± 2.2 90.5 ± 8.1 7.6 ± 3.0 55.6 ± 2.8 58.5 ± 4.3 68.1 ± 2.6 65.2 ± 6.6 7.1 ± 2.9
STGCN 60.4 ± 4.3 63.1 ± 4.9 74.1 ± 3.4 86.9 ± 7.6 9.7 ± 2.6 58.3 ± 4.1 60.8 ± 5.2 71.3 ± 3.8 61.1 ± 5.5 7.8 ± 3.2
BrainGB 79.7 ± 1.5 91.1 ± 0.3 79.9 ± 2.1 78.2 ± 4.4 34.3 ± 1.5 76.9 ± 1.8 88.7 ± 1.2 75.6 ± 2.4 45.2 ± 4.7 13.5 ± 3.9
BNT 86.2 ± 1.1 93.5 ± 0.5 86.5 ± 1.8 63.5 ± 0.8 44.1 ± 1.6 85.0 ± 2.4 93.2 ± 1.5 79.5 ± 2.1 28.0 ± 1.5 24.8 ± 6.1
BNST 87.6 ± 0.6 93.9 ± 0.2 88.4 ± 1.3 61.6 ± 1.4 45.4 ± 0.8 84.8 ± 3.3 93.8 ± 1.5 82.1 ± 3.0 23.3 ± 1.1 27.5 ± 3.4

both intra-state and inter-state dynamics. This enhanced
representation enables the model to achieve more precise
predictions across diverse tasks.

Additionally, the integration of State FC ensures a struc-
tured and consistent representation of brain connectivity
across samples, further enhancing the robustness of the
model. These findings validate the effectiveness of State
FC and the proposed BNST framework in advancing brain
network analysis.

E. Ablation Studies

We conducted a series of ablation studies to demonstrate
the effectiveness of the key components in the BNST frame-
work. The results, summarized in Tables II, III, and IV,
provide a holistic validation of the proposed methodologies.

TABLE II
PERFORMANCE COMPARISON OF DYNAMIC FC AND STATE FC ACROSS

DIFFERENT MODELS ON THE ABCD DATASET.

Base Model Method MSE ↓ PC ↑

BNST DFC 64.8 ± 1.7 43.2 ± 1.1
State FC 61.6 ± 1.4 45.4 ± 0.8

STGCN DFC 86.9 ± 7.6 9.7 ± 2.6
State FC 84.6 ± 6.8 11.1 ± 2.1

STAGIN DFC 90.5 ± 8.1 7.6 ± 3.0
State FC 88.9 ± 7.5 8.8 ± 2.6

TABLE III
COMPARISON OF K-MEANS AND DEEP K-MEANS CLUSTERING ACROSS

MODELS ON THE ABCD DATASET.

Base Model Method MSE ↓ PC ↑

BNST Kmeans 64.4 ± 3.4 41.1 ± 1.6
Deep Kmeans 61.6 ± 1.4 45.4 ± 0.8

STGCN Kmeans 86.1 ± 9.3 8.9 ± 3.3
Deep Kmeans 84.6 ± 6.8 11.1 ± 2.1

STAGIN Kmeans 92.3 ± 10.8 7.2 ± 3.9
Deep Kmeans 88.9 ± 7.5 8.8 ± 2.6

First, to evaluate the effectiveness of State FC, we con-
ducted a comparative study where both State FC and DFC
were used as input features for the same set of models.
Here, the models that directly utilize the raw sequence of
DFC matrices generated through the sliding window method
serve as the baseline. To compare, we also applied State
FC as input features to these models and compared their
performance. As shown in Table II, models using State FC

TABLE IV
PERFORMANCE COMPARISON OF AVERAGING AND STATE-GUIDED

RECHUNKING ACROSS MODELS ON THE ABCD DATASET.

Base Model Method MSE ↓ PC ↑

BNST Averaging 66.5 ± 2.8 39.8 ± 2.5
Rechunking 61.6 ± 1.4 45.4 ± 0.8

STGCN Averaging 91.4 ± 7.9 8.2 ± 3.6
Rechunking 84.6 ± 6.8 11.1 ± 2.1

STAGIN Averaging 96.0 ± 8.2 4.7 ± 4.2
Rechunking 88.9 ± 7.5 8.8 ± 2.6

consistently outperform those using DFC. By focusing on
state-specific connectivity patterns, State FC provides a more
interpretable and structured representation of brain dynamics,
enabling models like BNST to better capture meaningful
features of brain activity and achieve superior predictive
performance.

Next, a critical step in BNST is identifying meaningful
brain states through clustering. By comparing the perfor-
mance of several models utilizing State FC as input features,
Table III shows that Deep K-Means significantly outperforms
traditional K-Means in generating state representations. This
is primarily because Deep K-Means incorporates an autoen-
coder for dimensionality reduction, effectively addressing the
challenges of high-dimensional DFC data. The autoencoder
compresses the high-dimensional input into a compact la-
tent space while preserving salient features, ensuring that
noise and irrelevant variations are minimized. This enhanced
representation facilitates more robust clustering by enabling
the subsequent k-means step to yield high-quality brain
state representation, enabling BNST to accurately capture
structured variations in brain activity.

Finally, State-guided rechunking is also essential for struc-
turing BOLD time series data in a way that enhances state-
specific representation. Table IV compares rechunking with
a simpler averaging approach, where DFC matrices of the
same state are averaged into a single representative matrix.
While averaging simplifies the computational process, it
fails to retain the distinct connectivity patterns within states.
Rechunking addresses this limitation by reordering and con-
catenating BOLD time series segments assigned to the same
state, ensuring that state-specific connectivity patterns are
fully preserved. This allows BNST to model intra-state and
inter-state relationships with greater precision, leading to
substantial performance improvements.

Together, these components—robust state identification
with Deep K-Means, structured representation through State



Fig. 4. Visualization of state-based functional connectivity patterns. The top row shows the four distinct brain states from ABCD dataset. The bottom row
presents chord plots constructed from the top 0.2% of connections in terms of absolute value, highlighting the strongest functional interactions between
major brain networks with the color intensity reflects connection strength.

FC, and rechunking to enhance state-specific organiza-
tion—explain why BNST outperforms other approaches in
modeling dynamic brain networks.

F. Case Studies

To qualitatively assess the effectiveness of the proposed
BNST model and highlight its unique state-based inter-
pretability, we present and analyze four distinct brain states
identified through the clustering stage using the ABCD
dataset in Figure 4: Passive Monitoring State, Globally
Disengaged State, Self-Referential Introspective State, and
Visual Attention State. These states represent unique DFC
patterns that the BNST leverages for improved brain network
analysis.

a) Passive Monitoring State: This state is characterized
by connectivity across multiple brain networks, particularly
moderate interactions between the somatomotor (SM), de-
fault mode network (DMN), and visual (Vis) networks,
which together suggest a state of general environmental
awareness and low-level sensory processing [28], [29]. The
balanced connectivity pattern in this state may reflect an
optimal baseline mode, allowing for efficient shifts be-
tween internally and externally directed cognitive processes.
Smooth transitions to and from this state are indicative of
effective neural resource allocation, further linking this state
to the prediction of broader cognitive and behavioral traits.

b) Globally Disengaged State : This state reflects a
transient period of reduced functional connectivity across
large-scale brain networks, suggesting a disengagement from
both externally driven and internally focused cognitive pro-
cesses [28], [29]. Unlike other states that exhibit strong
intra-network organization or task-relevant connectivity, this
state is marked by a widespread weakening of network

interactions, particularly within the DMN and cognitive exec-
utive (CE) networks. The absence of dominant connectivity
suggests a transitional or low-engagement phase rather than
a stable resting state. Rather than serving as a classical
energy-conserving mode, this state may indicate a tempo-
rary lapse in coordinated neural processing or a resetting
phase between more functionally active brain states. The
duration and frequency of this state may provide insights into
cognitive flexibility, with individuals who transition out of
this state more quickly potentially exhibiting greater neural
responsiveness and adaptive processing efficiency.

c) Self-Referential Introspective State: This state is
characterized by heightened connectivity within the DMN,
particularly in its interactions with the CE network. This
pattern reflects engagement in self-referential thinking, mem-
ory retrieval, and introspective cognitive processes. This
state shows reduced cross-network connectivity with sensory
and motor systems, suggesting a shift away from external
stimuli toward internally focused cognition. The stability
and strength of DMN connectivity have been strongly linked
to individual differences in higher-order cognitive functions,
such as reasoning ability and abstract thinking [30]. Individu-
als with more pronounced activation of this state are likely to
demonstrate enhanced internal cognitive efficiency, making
it a critical feature for analyzing cognitive variability.

d) Visual Attention State: This state exhibits pro-
nounced connectivity within the visual cortex and fron-
toparietal networks, particularly strengthening interactions
between the Vis and dorsal stream (DS) networks. The
enhanced intra-network connectivity within visual processing
regions suggests heightened attentional engagement, while
increased frontoparietal connectivity reflects the integration
of visuospatial information with executive control processes.
Variations in the occurrence or intensity of this state are



linked to differences in attentional control and visuospatial
processing capabilities, which are known to exhibit both indi-
vidual and group-level differences [30]. Strong connectivity
in this state may reflect an individual’s ability to sustain focus
and efficiently process visual information, providing insights
into cognitive engagement and task performance.

The connectivity patterns and transition dynamics of these
states provide a structured and interpretable representation of
brain activity that enhances the predictive power of BNST.
Unlike static or unstructured dynamic FC methods, the state-
based segmentation isolates meaningful modes of the brain
that are directly tied to cognitive and behavioral traits. By
leveraging these state-specific features, BNST aligns neural
dynamics with measurable outcomes, offering both superior
predictive accuracy and neuroscientific interpretability.

IV. CONCLUSION

Our work introduced BNST, a novel framework leveraging
State FC for enhanced brain network analysis. By integrating
deep clustering for state identification, state-based rechunk-
ing of BOLD time series, and an advanced transformer
architecture, BNST achieved superior performance across
multiple tasks and datasets compared to baseline methods.
The proposed use of brain states and State FC as a guid-
ing principle in dynamic brain network analysis not only
improved prediction accuracy but also provided a structured
and interpretable representation of brain dynamics.
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