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Abstract— Different data augmentation techniques such as 
mixup have been applied to Graph Networks to reduce overfitting. 
Many graph mixup techniques have complicated implementations 
to deal with graph data’s non-Euclidian data structure. However, 
not many papers have explored applying traditional mixup 
techniques to brain data that has the unique capacity in that nodes 
are defined in place by their ROIs. Thus, this paper proposes 
BrainGMixup, applying previously proposed mixup techniques 
meant for 1-D feature vectors to 2-D graph node features and edge 
index matrices. The results and experiments in this paper 
demonstrate that applying this simple modified mixup increases a 
model like EdgeConv’ s ability to generalize on the training data 
and boosts its performance on a variety of metrics. 

I. INTRODUCTION  
The human brain is a complex made of 86 billion neurons- 

nearly the number of stars in the Milky Way- with an estimated 
quadrillion synapse. Even now, scientists are still analyzing 
these connections to map the function and mechanisms of the 
human brain all of which is critical to battling neurodegenerative 
disorders such as Alzheimer’s disease and gaining a new 
understanding of mental disorders such as attention deficit 
hyperactivity disorder (ADHD), schizophrenia, and autism 
spectrum disorder (ASD). 

Graph Neural Networks (GNNs) have been at the center of 
non-Euclidian data analysis with applications in molecule 
interaction prediction, social media recommenders, and drug 
discovery [1]. As of late, GNNs have been applied to brain 
connectome analysis which is key to advancing deep learning 
classification and identification of brain related 
conditions/disorders.  

Previous works have explored attention based GNNs, 
different methods of node feature extraction, pooling methods, 
etc. One area of particular interest is developing different 
methodologies to combat the issue of overfitting and network 
memorization over generalization as graph data is often noisy 
and low in quantity. Different data augmentation techniques to 
mitigate these issues involve neighborhood level feature 
generation [2], edge modification/removal [3], and consistency 
regularization [4]. However, many of these methods end up 
losing important node information by dropping them out or 
don’t fully engage with the uniqueness of brain connectome 

data. Insofar that brain connectome data doesn’t face issues of 
graph isomorphism as pre-determined regions of interest (ROIs) 
dictate the position of nodes, it is possible to explore previous 
data augmentation methods for Euclidean data-based models.  

The motivation of this paper is to explore the application of 
a modified version of mixup based on the Vicinal Risk 
Minimization principle [5] on an EdgeConv GNN for ASD 
classification. It is important to note that variations of mixup for 
Graph Neural Networks have been applied in previous papers 
[6], but they deal with graph datasets that have fluctuating 
numbers of nodes that come in different order that require far 
more complex implementations. The form of mixup proposed in 
this paper allows it to be utilized on 2-D node feature and edge 
index matrices rather than just 1-D feature vectors that are 
typical for image data types.  

II. RELATED WORKS 
Graph Mixup. Many Graph Mixup methods involve 

constructing new synthetic graphs from probability matrices to 
connect new sampled subgraphs to the original graph or to 
reorder/mixup the original graph. All these methods also seek to 
develop methods to combat graph data irregularity and keeping 
parts of original graph structure. G-Mixup [6] applies the 
principles of mixup to probability matrices with individual 
points representing the likelihood of an edge existing between 
two nodes. These graphons then allow for the creation of 
synthetic graphs that retain properties of the original graph and 
the new graphon. Graph Transplant [13] seeks to sample the top 
salient nodes in a graph to retain the original structure and then 
append a partial K-hop subgraph using node features to predict 
edge existence. 

However, brain data relies on preset ROI locations for all 
nodes with a fixed structure so sampling subgraphs from other 
regions of the brain and combining them with other sections 
becomes more complicated when considering that the node 
features are the correlation matrix measures between specific 
node connections. Additionally, brain graph data’s fixed nature 
allows it to become more malleable to typical image 
classification mixup techniques.  

 

 



 
 Fig 1. Graph Data Construction 

III. PROPOSED MODELS 

A. Graph Data Construction 
Preprocessed functional MRI (fMRI) ASD data is fetched 

from the ABIDE dataset using the nilearn pipeline [7] for 871 
subjects. Functional MRI data is obtained by measuring changes 
in blood flow over time in response to some kind of stimulation. 
This dataset includes time series data, multiple scans for every 
patient at different points of time, but this paper does not utilize 
them.  

The full graph data construction process is shown in Figure 
1. The MSDL atlas from nilearn was used to determine 39 ROIs 
for node placement. Each node had a correlation matrix and 
partial correlation matrix extracted with the partial correlation 
matrix representing the top 10 neighbors for a particular node 
with the top 10 neighborhoods being labeled with 1 and the 
others labeled with 0. The coefficient for the correlation between 
two ROIs goes from 1 to -1 with 1 indicating high correlation 
and -1 indicating inverse correlation. The correlation matrix 

being calculated as the average for the ROIs coefficients over a 
time series.  

The correlation matrix served as the node features with the 
edge indexes and weights being derived from the partial 
correlation matrix. ABIDE also contains graph wide information 
regarding the subject but individual nodes only have 
connectivity matrix information to work off of. Edge attributes 
were derived from the partial correlation matrix with all values 
of 1 replaced with their original correlation matrix values.   

A second dataset based in measuring the response of children 
from the ages of 3-12 and adults to a film for 155 subjects was 
also utilized with preprocessed T1W BOLD data [10].  Clinical 
data regarding gender, handedness, and age   was also provided. 
Subjects watched a short movie, Pixar’s Partly Cloudy, while 
fMRI scans were taken. No task was given. The classification 
task for the network was a binary age classification (child/adult) 
prediction. Graph data was generated in the same process that 
ABIDE was with 39 node features for every node.  This paper 
will refer to this dataset as the Movie Watching Development 
dataset (MWD).

 
Fig 2. Edge Conv Network



B. EdgeConv Network 
The full EdgeConv Network is displayed in Figure 2. In an 

EdgeConv layer, edge features as defined by                                          
𝑒"# = ℎ& 𝑥", 𝑥#  with ℎ&: ℝ+×ℝ+ → ℝ+.  functioning as the 
MLP for the model further defined by a non-linear function 
parametrized by a set of learnable parameters [8]. In this 
equation, 𝑥"	  represents the embedding of node i with 	𝑥#  
representing the embeddings of all of node i’s neighbors. The 
neighbors also include the node itself. In this case, a mean 
aggregation operation is performed for all the edge features to 
get the final embedding for the node’ and its neighbor’s edges 
represented by the following equation:             

      𝑥"
, : 𝑚𝑒𝑎𝑛
#3 ",# ∈5

ℎ& 𝑥"||𝑥# − 𝑥"                           (1)                        

This type of method allows for the extraction of 
neighborhood level features and grouping of different nodes 
based on nearest neighbor processing in data construction. Edge 
Conv also allows for different aggregation methods such as the 
mean across the embeddings of the node and its neighbors.  

For this model, three EdgeConv layer were applied with 
batch normalization being applied for each layer and ReLu 
applied for the first two. One embedding was created using a 
global mean pool for the entire batch with a linear layer then 
Softmax applied. This embedding is used to do classification for 
two classes for the network.  

The graph is also dynamically updated by calculating the 
pairwise distance matrix for the features and taking the closest k 
neighbors for every point. Different variations of k were used in 
this paper’s experiments to test the level of graph construction 
needed to obtain desirable results. 

C. MixUp 
 Remedying issues of overfitting caused by memorization in 
deep learning models has been a concern to all within the field. 
Issues of lack of viable data have made it difficult in the areas of 
brain analysis to gain proper results and proper methods of 
developing truly synthetic have yet to be standardized.  

 A method proposed utilizes a vicinal distribution labeled 
mixup principle during training which reduces the empirical 
vicinal risk rather than reducing empirical risk [5]. This method 
has been proven to increase a model’s generalization capability 
without generating computational stress by creating data within 
the vicinity of given data points. However, this method was 
initially created for 1-D feature input vectors which doesn’t 
match most Graph Network datasets that input 2-D node feature 
matrices.  

 Methods that have adapted mixup for Graph Networks have 
more complicated implementation than what is needed for brain 
connectome graph analysis as node placement is fixed in ROIs. 
To sidestep this issue, this paper proposes a modified version of 
mixup that applies the function across all rows for both the node 
feature matrix and edge index matrix:  

              𝑥 = 𝜆𝑥" + 1 − 𝜆 𝑥#		(2)  where i,j = 1, … , N, 𝑖 ≠ 𝑗                                                                            

              𝑒𝑖 = 𝜆𝑒𝑖" + 1 − 𝜆 𝑒𝑖# (3) where i,j = 1, … , N, 𝑖 ≠ 𝑗 

                       𝑦 = 𝜆𝑦" + 1 − 𝜆 𝑦#                                   (4) 

 𝑁 representing the number of rows in a 2-D, 𝑥 representing 
the node feature matrix, 𝑒𝑖 for the edge index matrix, and 𝑦 as 
the labels. 𝑥 , 	𝑦 , 𝑒𝚤 are post-mixup versions of their above 
matrices. Thus, all rows and all columns in a 2-D matrix have 
been modified. 

                        𝑙 = 𝜆 ⋅ 𝑐 𝑝, 𝑦I + 1 − 𝜆 ⋅ 𝑐 𝑝, 𝑦J                 (5) 

 The mixup loss criterion used from [5] uses the predicted 
value (𝑝), a defined criterion function (𝑐), and the mixup labels 
from the original mixup data function with 𝑦I  as the original 
label and 𝑦Jas the label from the data mixed in. Using a regular 
criterion function would fail to factor in the new mixed y labels 
and would thus muddle the training of the network. 

 Mixup as a data augmentation technique is relatively easy to 
implement and further encourages the model to behave in a more 
linear manner and adjust to many different scenarios rather than 
just the original training data. This also helps to prevent training 
accuracy and metrics from drastically increasing within a few 
epochs without the same effect in the test accuracy.

 

 
Fig 3. Graph Representation Learning and Prediction



IV. RESULTS/EXPERIMENTS 
 

Model Mixup 
Development Data 

Accuracy (%) Sensitivity Specificity Recall F1 

TransformerConv No 0.90 0.50 1.00 0.50 0.50 
 

GCNConv No 0.90 0.71 0.96 0.71 0.77 
 
 

EdgeConv No 0.90 0.83 0.92 0.83 0.77  
Yes 0.94 0.67 1.00 0.67 0.80  

TABLE 1.  MWD RESULTS        

 

Model Mixup 
ABIDE Data 

Accuracy (%) Sensitivity Specificity Recall F1 

TransformerConv No 0.63 0.63 0.62 0.68 0.63 
 

GCNConv No 0.54 0.60 0.45 0.60 0.59 
 
 

EdgeConv 
No 0.58 0.67 0.47 0.67 0.64  

Yes 0.68 0.85 0.48 0.92 0.85  
 

TABLE 2.  ABIDE RESULTS  

A. Comparative Models 
Figure 3 displays the comparative models and EdgeConv. 

The results of Edge Conv are compared with those of a 
Transformer Convolution Network (TransformerConv) [11] and 
a Graph Convolutional Networks (GCNConv) [12]. The 
TransformerConv network utilizes three attention heads across 
4 different layers with every layer having batch normalization 
applied. The final x representation from a global mean pool 
function goes through two cycles of ReLu on a linear layer with 
dropout before applying Softmax for the final output. The 
GCNConv network contains 3 layers with a convolution layer 
and ReLu and dropout applied. 

B. Performance comparison 
Starting off by focusing on all models that did not use mixup, 

EdgeConv without mixup is seen to be comparable to both 
GCNConv and TransformerConv accuracy wise with the 
highest sensitivity for both ABIDE and MWD data. Recall is 
also higher for EdgeConv without mixup regarding MWD and 
EdgeConv’ s F1 is the highest for ABIDE data. This seems to 
indicate that for MWD data all models perform relatively 
similarly which is not as surprising given the smaller data 
quantity. For ABIDE data, TransformerConv has all the highest 
metrics, except in sensitivity although not by much, which 
indicates that focusing on the most important nodes helps ease 
overfitting absent other data augmentation techniques. 

EdgeConv with mixup outperforms all models on nearly 
every metric. For MWD data, EdgeConv with mixup sees a 4% 
increase in accuracy over all other models with one of the 
highest specificities and f1 scores. For ABIDE data, it sees a 5% 
increase in accuracy compared to the second highest accuracy 
model, TransformerConv, with increase in sensitivity, f1, and 
especially recall. Regarding EdgeConv accuracy, MWD data 
saw a similar 4% increase and ABIDE data saw a 10% increase 
with mixup. All of these metrics point to mixup’s ability to 
increase generalization and number of correctly identified 
positive patients for models. 

V. CONCLUSION 
This work allows for the application of mixup on 2-D brain 

graph data, taking advantage of brain data fixed node structure 
and mixup’s simplistic implementation to boost a model’s 
generalization ability. This was shown through an increase in 
accuracy for both MWD and ABIDE data for EdgeConv that 
surpassed those of other models such as TransformerConv and 
GCNConv. A data augmentation technique tailored to brain 
graph data will provide a simple method to creating more robust 
models for further experimentation. This also leads into future 
exploration into creating more learnable brain mixup techniques 
that rely less on random values covering a wide breadth of 
vicinity graphs and more on selection based off of what 
previously had not been covered.  
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