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Summary

Selecting a suitable brain atlas for node definition is a critical yet
challenging step in functional connectome analysis. A mismatched atlas
can obscure subtle topographies and undermine the subsequent
analysis. In this work, we propose an Atlas-Free functional brain
CONnectome analysis (AFCON) that bypasses atlas selection by jointly
optimizing an adaptive parcellation module and a graph-based
connectome analysis module. Unlike classical methods reliant on fixed,
predefined atlases, AFCON adaptively generates task-specific,
individualized parcellations from fMRI data, which better aligns with
the prediction task and offers enhanced interpretability. Besides, we
introduce two neurobiologically-informed regularizers to ensure
plausible parcellations: a balanced distribution regularizer to mitigate
extreme parcel size imbalances and a spatial compactness regularizer to
promote anatomical coherence. Experiments on ADHD and ADNI
datasets demonstrate that AFCON outperforms atlas-based baselines in
predictive accuracy while identifying disease-relevant brain regions,
enhancing both interpretability and clinical relevance. Notably, this
work focuses on the cerebral cortex, serving as an initial step towards
potential whole brain connectivity analysis in the future for more robust
clinical utility.
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Figure: The overall framework of AFCON.

Adaptive Brain Parcellation. We apply a 3D U-Net to generate
voxel-wise soft assignments of cortical voxels into K ROIs. During
training, Gumbel-Softmax enables differentiable one-hot assignments;
during inference, Argmax is used for deterministic parcellation.

To enhance biological plausibility, we introduce two regularizers:
Balanced Distribution Regularizer: To prevent extreme imbalances of
ROIs sizes, we penalize deviation from a uniform volume distribution:
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∑
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where pn,k is the proportion of cortical voxels assigned to ROI k for
subject n.
Spatial Compactness Regularizer: Promotes geometric coherence of
voxels within each ROI by minimizing spatial variance around soft
centroids:
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Graph-based Connectome Analysis. From the parcellation, ROI-wise
time series are obtained by averaging voxel time courses. We compute
functional connectivity matrices Cn using Pearson correlation and retain
the top 10% positive connections to form sparse brain networks
An ∈ RK×K. We adopt a Graph Convolutional Network (GCN) to predict
target labels:

ŷn = GCN(An, Hn)

where Hn is the connection profile node feature matrix (i.e., rows of Cn).

Experiments

Datasets. Two rs-fMRI datasets: ADHD-200 (569 subjects; 43.2% ADHD;
64 timepoints) and ADNI (200 subjects balanced between AD and HC;
197 timepoints), both preprocessed using fMRIPrep.

Table: Overall Prediction performance (mean±std, %).

Model
ADHD ADNI

ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑
GCN 59.7±6.2 63.2±6.9 48.3±12.7 60.5±9.1 65.7±9.2 63.4±8.3

GAT 57.7±2.9 60.3±3.7 53.6±10.0 56.0±2.5 59.4±9.1 55.4±5.7

BrainGNN 53.2±3.8 55.2±3.7 50.3±7.0 51.0±5.4 52.3±6.3 53.2±5.5

BrainNetCNN 56.0±3.3 58.7±6.4 52.1±6.7 58.5±4.6 65.9±7.8 53.6±19.1

BrainGB 56.7±2.7 58.3±4.4 46.0±6.1 56.5±5.8 59.7±4.9 58.2±7.2

BrainNetTF 59.8±5.4 63.8±7.7 45.0±22.8 59.5±5.3 62.3±3.8 59.7±8.6

NeuroGraph 56.5±5.4 59.4±4.3 57.6±4.7 56.5±8.5 57.6±8.2 58.9±11.1

AFCON (K=48) 63.2±2.7 65.6±2.1 56.8±3.5 62.5±6.5 66.1±7.3 62.6±5.7

AFCON (K=90) 60.0±4.9 63.5±3.1 50.7±12.0 61.5±4.1 65.6±5.6 61.5±5.9

AFCON (K=200) 61.8±0.9 62.9±2.0 47.9±6.8 62.0±5.1 66.7±4.2 59.8±7.5

AFCON (K=360) 61.1±3.9 63.4±5.7 49.8±11.6 59.5±3.3 65.1±2.7 55.1±6.8

Figure: (a)-(c) Quantitative analysis of the learned parcellation. (d)-(i) highlight salient
ROIs for ADHD and AD. (j)-(k) Ablation Study of the proposed regularizers.

Discussion

1. Cortical focus. This study focuses on the cerebral cortex, but the
proposed AFCON framework is readily extensible to subcortical and
cerebellar regions for full-brain modeling.
2. Multimodal integration. Incorporating additional imaging
modalities (e.g., sMRI, DTI) may enrich parcellation quality and boost
predictive performance in downstream tasks.
3. Beyond connection profiles. While connection profiles are widely
used as node features, exploring alternative or hybrid features may
further enhance brain network representation.


