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ABSTRACT

Drug recommendation is an important task of Al for healthcare. To
recommend proper drugs, existing methods rely on various clinical
records (e.g., diagnosis and procedures), which are commonly found
in data such as electronic health records (EHRs). However, detailed
records as such are often not available and the inputs might merely
include a set of symptoms provided by doctors. Moreover, existing
drug recommender systems usually treat drugs as individual items,
ignoring the unique requirements that drug recommendation has
to be done on a set of items (drugs), which should be as small as
possible and safe without harmful drug-drug interactions (DDIs).
To deal with the challenges above, in this paper, we propose
a novel framework of Symptom-based Set-to-set Small and Safe
drug recommendation (4SDrug). To enable set-to-set comparison,
we design set-oriented representation and similarity measurement
for both symptoms and drugs. Further, towards the symptom sets,
we devise importance-based set aggregation to enhance the ac-
curacy of symptom set representation; towards the drug sets, we
devise intersection-based set augmentation to ensure smaller drug
sets, and apply knowledge-based and data-driven penalties to en-
sure safer drug sets. Extensive experiments on two real-world EHR
datasets, i.e., the public benchmark one of MIMIC-III and the in-
dustrial large-scale one of NELL, show drastic performance gains
brought by 4SDrug, which outperforms all baselines in most effec-
tiveness measures, while yielding the smallest sets of recommended
drugs and 26.83% DDI rate reduction from the ground-truth data.
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1 INTRODUCTION

Today abundant healthcare data such as electronic health records
(EHRs) enable researchers and doctors to build better predictive
models for clinical decision making [30, 47]. Among them, drug
recommendation is an important task, which provides candidate
drug sets for doctors to work from with improved prescription effi-
ciency [30, 47, 52]. Instead of replacing the effort of doctors, many
industrial platforms have successfully assisted doctors with drug
recommendation (e.g., Medical Brain of Baidu!, Waston-health of
IBM?, and Medical Al of Tencent® ). To recommend proper drugs,
existing methods rely on various clinical records from actual hos-
pital visits (e.g., diagnoses [2, 10, 29, 51], lab tests [52], and proce-
dures [9, 30, 40, 43, 47]). Moreover, to provide more personalized
drug recommendations, some methods also require historical health
records [9, 30, 40, 43, 47]. Such reliance on complicated clinical
records and personal information largely limits the use cases of
existing drug recommendation methods.

In this work, we consider a simple yet realistic scenario of
symptom-based drug recommendation, which provides efficient

!https://ai.baidu.com/industry/healthcare
Zhttps://www.ibm.com/watson-health
3https://healthcare.tencent.com/
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Figure 1: A toy example of the symptom-based set-to-set drug
recommendation.

references for doctors during the actual diagnoses. Instead of us-
ing complicated historical clinical records, we propose to only
require a set of symptoms, which can be actively entered by the
doctor (e.g., the NELL dataset*) or automatically extracted from
the medical records (e.g., the MIMIC-III dataset [15]). Since symp-
toms can reflect a patient’s physical status [16, 28, 36] without
exposing his/her personal information, the symptom-based drug
recommendation system is secure from privacy issues and can
be widely applied to assist doctors in prescribing proper drugs.
As shown in Figure 1, both Lisa and Jack who show the same
set of symptoms (i.e., {Chills, Cough, Fever, Headache}) are likely
to be diagnosed with the same disease by doctors (i.e., viral in-
fluenza), and thus be prescribed with the same set of drugs (i.e.,
{Oseltamivir, Ibupro fen, Ambroxol}).

Since not all doctors can always avoid prescription errors (e.g.,
prescribing drug sets that include harmful drug-drug interactions
(DDIs)) due to the limited expert experience and possible human
negligence [3, 5], such a symptom-based drug recommendation
system can be of great help. Specifically, the system can recom-
mend a small set of safe drugs given a set of symptoms, which
is convenient and accessible to doctors. However, this novel task
of set-to-set recommendation between symptoms and drugs (as
shown in Figure 1) poses several unique challenges for us.
Challenge I: How to effectively model the set-to-set relations among
symptoms and drugs? Different from general recommendation which
aims at modeling single users on one side and single items on the
other, we need to consider sets of symptoms on one side and sets
of drugs on the other. Since the sets have multiple elements and
variable sizes, how to properly represent the sets and effectively
optimize their relations is unknown.

Challenge II: How to enhance the accuracy of symptom set repre-
sentation? To accurately represent a symptom set, it is practical to
consider the varying importance of individual symptoms. For ex-
ample, as shown in Figure 1, although Headache appears frequently
in different sets, Fever plays a much more important role than
Headache in the symptom set of Lisa, since it dominantly leads to
the diagnosis of viral influenza. Without specific consideration of
the importance of Fever, the model may fail to provide an accurate
symptom representation towards effective drug recommendation.
Challenge III: How to properly recommend small and safe sets of
drugs? Unlike general recommendation, the output of drug recom-
mendation is a set of drugs. Firstly, the set needs to be small because
too many drugs will increase the patient’s financial burden and

4https://www.nursing.emory.edu/pages/project-nell
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reluctancy of taking all of them. Moreover, the set of drugs needs to
be safe, which should not include harmful drug-drug interactions
(DDIs). Some existing studies model DDIs based on the external
drug knowledge base, but this is not always applicable.

To address these challenges, we propose Symptom-based Set-to-
set Small and Safe drug recommendation (4SDrug), which consists
of three pivotal technical modules: (i) a set-to-set comparison mod-
ule, which is introduced to effectively model the relations among
symptom sets and drug sets; (ii) a symptom set module, which is
presented to enhance the accuracy of symptom set representation
by considering the importance of individual symptoms; and (iii) a
drug set module, which recommends sets of drugs by ensuring the
small and safe drug set principles.

Our overall contributions in this work are summarized as follows:

o Formulation of symptom-based set-to-set drug recommendation.
4SDrug is the first drug recommendation framework solely based
on symptoms, which can provide convenient assistance to doc-
tors while protecting the privacy of the patients. (Section 3.1).

o Effective model designs. In the set-to-set comparison module, we in-
troduce set-oriented representation and similarity measurement
to effectively model the set-to-set relations among symptoms and
drugs (Section 3.2). In the symptom set module, importance-based
set aggregation is devised to enhance the accuracy of symptom
set representation (Section 3.3). In the drug set module, we de-
vise intersection-based set augmentation, knowledge-based, and
data-driven penalties to ensure small and safe drug sets recom-
mendations (Section 3.4).

o Extensive experiments on real EHR datasets. We conduct compre-
hensive experimental evaluations on drug recommendation tasks
against state-of-the-art approaches over both public benchmark
and industrial large-scale EHR datasets. Extensive experimental
results demonstrate the superiority of 4SDrug (Section 5).

2 RELATED WORK

General Recommendation. Recently, matrix factorization (MF)
has become the de facto method, which uses inner products to model
the similarity of the user-item relations [21, 27]. To model complex
relations in real-world applications, recently, metric learning for
recommendations [12, 35, 48] and graph learning for recommenda-
tions [33, 41, 42, 44-46] have attracted significant research attention.
However, the above methods aim at modeling single users on one
side and single items on the other, which fail to recommend sets of
drugs in drug recommendation scenario.

Drug Set Recommendation. In the setting of drug set recom-
mendation, many existing works model patient representations
as sequences of hospital visits, where each visit consists of diag-
noses [2, 10, 29, 34, 51], lab tests [52], and procedures [9, 30, 40,
43, 47]. For example, RETAIN [9] employed an attention model
to identify the most meaningful historical visit, so as to make the
model interpretable. [2] modeled a sequence of ICD-9 [1, 7, 26]
codes based on GRU. However, these methods fail to model patients
whose historical visits are not available.

To alleviate the reliance on the historical records, existing ap-
proaches recommend drugs based on clinical information of pa-
tients’ current visits. For example, G-BERT [29] pretrained the
records of patients with a single hospital visit. LEAP [51] extracted
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Figure 2: Overview of our proposed Symptom-based Set-to-set Small and Safe Drug Recommendation (4SDrug) framework.

information only from patients’ current visit. However, these mod-
els still require access to patients’ various personal information
beyond symptoms, which may lead to severe privacy concerns.
Furthermore, considering drug-drug interactions (DDIs) [20, 38]
is necessary in recommending drug sets, since the mixture of drugs
may undermine the therapeutic effect and cause side effects. Ex-
isting studies model DDIs implicitly either via knowledge graphs
(KGs) [10, 40], reinforcement post-processing [51], or acquiring
probability distributions of safe drug sets from raw EHR records for
adversarial regularization [43]. However, such additional data like
KGs are not always applicable. There are also studies that model
DDIs explicitly with a controllable loss function [30, 47]. Although
these works have considered DDIs, they fail to control the num-
ber of recommended drugs, which may increase patient’s financial
burden and make patient reluctant of taking all of them.
Deep Learning with Sets. Since there are many domains where
the data can be treated as unordered sets, recent years have wit-
nessed a growth of interest in utilizing neural networks to learn
set representations. Specifically, learning set representations has
been widely studied in computer vision (CV) [13, 31, 49], natural
language processing (NLP) [17], information retrieval [24], and
product bundle recommendation [4]. For example, PointNet [25]
applied multi-layer perceptron (MLP) and feature transformations
on the elements in the set and used max-pooling to aggregate infor-
mation. [32] measured the similarity between the input set and each
one of the hidden sets by bipartite matching. However, the above
set-oriented representation methods do not consider the unique
properties of symptoms and drugs, and thus cannot be directly
applied to our setting.

3 THE 4SDRUG FRAMEWORK

3.1 Problem Statement and 4SDrug Overview

Our task of symptom-to-drug recommendation aims to generate
a drug set as the treatment to a specific symptom set as shown in
Figure 1. Let S = {s1,s2,...,spm} and D = {d;,da, ..., hn} denote
all symptoms and drugs, respectively. Each query consists of a
symptom set and a drug set, e.g., SO = {s1,s5,...} and DD =

{d1,d>, ...
drug set. Given a symptom set S an N-dimensional probability
vector is computed, where the value of dimension k represents
the probability that drug k can treat some symptoms inside SO,
This is achieved by a learned set-oriented similarity measurement

}. We denote hg) for i-th symptom set and h(zg) for i-th

g{hg), d;} between the representation of symptom set hg) and
drug d;, which also represents the probability of recommending
drug d; to treat S () The input and output are defined as follows:

e Input: Symptom sets (SM, 8@, . 8@} and the drug sets
{Z)(l), 2@, . D@ } that treat {S(l), S@, . 8@ }, where
Q denote the total number of queries.

e Output: A learned set-oriented similarity measurement function
g{hg), dj}, which generates the probability vector for all drugs
from D given the symptom set S (),

We summarize the main modules of the 4SDrug framework in
Figure 2 to provide an overview. 4SDrug takes symptom sets S )
and drug sets D (1) a5 inputs, and performs symptom-to-drug recom-
mendation with the help of three technical modules. In the set-to-set
comparison module, we use hg) and h(zl)) to represent S® and D
via the proposed set-oriented representation method, and measure
the relations between S and D! via the set-oriented similarity
measurement g{-, -}. In the symptom set module, 4SDrug reformu-
late hfsi) via importance-based set aggregation. Finally, in the drug
set module, we recommend proper sets of drugs by intersection-
based set augmentation as well as a hybrid DDI penalty mechanism
to ensure the principles of small and safe drug set.

3.2 Set-to-set Comparison Module

Different from general recommendation which aims at modeling
the relations between single users on one side and single items on
the other, in drug recommendation, we need to consider sets of
symptoms and sets of drugs. To model such set-to-set relations, a
straightforward way is to represent symptom sets and drug sets by
one-hot encoding. This is obviously inappropriate because there are
many possible sets which appear for very small numbers of times.
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Table 1: The occurrence times of symptom sets on MIMIC-III.

# of set occurrence 1 2 3 4 5 6 7 28
# of set 23106 27 10 2 3 1 2 9

As shown in Table 1, over 99% cold-start sets only appear once on
MIMIC-III. A model that ignores the intersections of similar sets can
easily fail to properly model such cold-start sets. To address this, in
this section, we first devise a set-oriented representation method for
both symptoms and drugs, and then present set-oriented similarity
measurement between symptom sets and drug sets.

3.2.1 Set-oriented Representation. To leverage the information of
symptoms and drugs in sets and alleviate the cold-start problem
brought by the set-oriented data, we represent a set based on its
elements. Different from the data formats like sequences and lists, a
set has two main properties: 1) Permutation invariance: a set keeps
same no matter how its elements are permutated; 2) Variable cardi-
nality: the set can have different sizes (shown in Figure 3a). These
properties pose challenges in set representation, which invalidates
existing methods using sequence models for drug sets [18, 40].

To satisfy these properties of sets, we use average pooling for the
representation of symptom sets and drug sets, which is guaranteed
to be permutation invariant and can handle variable cardinality.
Let hg) be the embedding for the symptom set S (@ and h(zl)) be the

embedding for drug set DD, we have the representation as:

() 1 (@) 1
'Y = Z — sy, W= Z —dy, (1)
S ' D >
SilES(i) |S(l)| dy eD |D(l)|
where both s;» and d;s are the learnable embeddings of symptom
si» and drug dy.

3.2.2 Set-oriented Similarity Measurement. To conduct symptom-
based set-to-set recommendation, we need to ensure that the repre-
sentation of the symptom set S () is more similar to the drugs in
D@ than the drugs in O - D@, which can be formulated as:

sim {hg),h%)} > sim {hg),h%} , @)
where > g between sets denotes that the similarity of the former
one is higher than that of the latter one. hg) R h(l) ,and hgl;) are

the representations of the symptom set S () the drug set D that
treats S(), and the drugs that are in D — D@, respectively.

Note that, during training, all symptom sets and drug sets are
given, but during testing, only symptom sets are given. To make
the training phase and testing phase consistent, we should first
generate drug sets, which are subsets of the drugs D with varying
sizes. However, it is impossible to traverse 2N candidate drug sets
for such set-oriented drug recommendation.

To capture the latent relations between symptoms and drugs
effectively and efficiently, we take one step back and devise a set-
oriented similarity measurement g between symptom sets and indi-
vidual drugs, to optimize the probability of recommending a drug
based on a set of symptoms. Note that, modeling all elements indi-
vidually is a common practice to approximate the modeling of the
set as a whole to avoid the combinatorial complexity with approxi-
mation guarantee [6, 19], and we will revisit the set properties of
drugs in Section 3.4. The measurement is:

g{hg),dj} :a(hg) @dj), (3)
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Figure 3: Typical data analysis on MIMIC-III.

where o is a sigmoid function to scale the output to a probability
measure between 0 and 1. © represents the element-wise product.
In this way, by summing up the similarity between S and each
drug d; in the training phase, we can approximately calculate the

similarity between symptom sets and drug sets as:

! ]
sim {hg),h%)} = W Zl g {hg),dj}. (4)
=

Following abundant recent studies on drug set recommenda-
tion [30, 47, 51], we formulate the drug set recommendation as a
multi-label binary classification task. Towards the recommended

drug, we have g{hg), d;} — 1; towards the other drugs, we have

g{hg) ,dj} — 0. Thereby, the objective function of set-to-set drug
recommendation is:

Lﬁ?cz Z logg{hg),dj}+ Z

djeD® d;je(D-DW)

1og(1—g{hg),dj}),

©)
where D) is the drug set for treating symptom set S @,

3.3 Symptom Set Module

Although the pooling strategy in Eq. 1 can be applied to convert
a set of symptom embeddings to one unified set representation,
it cannot capture the different importance of symptoms, which
should be considered carefully when doctors perform diagnosis.
For example, as shown in Figure 1, Fever is more important than
other symptoms (e.g., Chills) of Lisa since it directly leads to the
diagnosis of viral influenza. Moreover, since symptoms have differ-
ent frequencies (shown in Figure 3b), the averaging strategy that is
prone to the ignorance of unusual symptoms will lead to the failure
of disease detection. For example, Dark neck skin is a rare symptom
of diabetes, which deserves more attention when representing a
symptom set so as to recommend diabetes-oriented drugs.

To capture the aforementioned different importance of symptoms
in a symptom set, we design an importance-based set aggregation
mechanism, which is inspired by the attention mechanism in neural

networks [17]. Specifically, we rewrite hg) in Eq. 1 to explicitly
take the importance of symptoms into consideration as follows:

i o
by = s, ©

Sy’ eS® ZSZESU) ©z
where wy is a learnable weight of symptom sy and sy denotes
the embedding of s;». Furthermore, we add L normalization on the
weights to eliminate the impact of varied sizes of different symptom

sets (as shown in Figure 3a).
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3.4 Drug Set Module

In Section 3.2, for the efficiency of testing phase, we reduce the
modeling of drug sets into individual drugs as a multi-label binary
classification task. However, this does not take the unique require-
ments of recommending drug sets into consideration. Moreover,
unlike set recommendation in E-commerce, where irrelevant items
have little impact on customers and items in the set do not interact,
extra drugs can be harmful and drugs can interact. Specifically, rec-
ommending more drugs than necessary can increase the patient’s
financial burden and reluctancy of taking all of them, and more
drugs can also lead to more potential side effects and harmful drug-
drug interactions (DDIs). Therefore, it is important to produce sets
of drugs that are small and safe, besides high accuracy.

In light of this, we propose a small drug set principle and a safe
drug set principle, which explicitly stress the effective drugs and
model DDIs based on the set-oriented data.

3.4.1  Small Drug Set Principle. The small set principle aims to treat
symptoms as much as possible by recommending as small number
of drugs as possible. However, directly limiting the recommended
number of drugs may sacrifice the treatment towards really severe
and complicated diseases. With the only knowledge about symptom
sets S0 and drug sets D itis challenging to reduce the size of
recommended drug sets while still ensuring the effectiveness.

Inspired by the way how experienced doctors prescribe drugs [28]
and the popular voting mechanism [11] that regards the overlaps
of decisions as more confident, we propose intersection-based set
augmentation by paying attention to the overlapping symptoms
and overlapping drugs. For example, as shown in Figure 1, the
symptom sets of ;1 and u3 overlap on Headache while the drug sets
of them overlap on Ibuprofen, so Ibuprofen is more likely effective
for Headache, and we augment a new positive relation between
this pair of symptoms and drugs.

To efficiently augment the data, we aim to find pairs of symptom
sets with more overlapping elements. Specifically, given a symptom
set S we first rank all other symptom sets based on their Jaccard
coefficients with S (i), and select the candidate SV with the
largest score, which is formulated as:

N; = argmax |SD n SN | /18D y SN, (7)
Then, the intersection of the two symptom sets (i.e., S () and SNy

and the intersection of the two drug sets (i.e., D and Z)(Ni)) are
obtained as follows:

Srf]i’Ni) =8 SN, Dgi’M) =D AN (g)

According to the representation of symptom set in Eq. 6, we obtain

the representation for the intersection symptom set Séi’M):
i,N; [
hg " = s, ©

: 2 (iN;) @
sy €SN $2€5, ‘
Finally, to highlight the effective relations between symptom
sets and drug sets, we add a new objective function based on the
intersection as follows:
i _ (LN7) 4.
inter — Z logg {hSﬁ > d]}

dj ED(giYNi)

'

dje(D-D ")

. (10)
log(1 —g{hg’m’vﬂ,d,—}).
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In this case, we encourage the drugs in Dgl’M) to be recommended

while decreasing the probability of recommending the drugs in

D - Déi’Ni), so as to keep the effective drugs only and reduce the
number of recommended drugs.

3.4.2 Safe Drug Set Principle. The safe drug set principle aims
to recommend a set of drugs that can avoid the drug-drug inter-
actions (DDIs). Existing works model DDIs via soft or indirect
constraints, like knowledge graphs (KGs) [22, 39] and reinforce-
ment post-processing [51]. However, the implicit handling of DDIs
results in non-controllable rates in the final recommendation or
sub-optimal recommendation accuracy.

To address these limitations, the existing studies leverage the
drug knowledge base (DKB) [37] to explicitly model DDIs, which
is not always applicable. Specifically, they are only applicable to
datasets whose drug codes can be converted to ATC Third Level [30]
(e.g., MIMIC-III). For other datasets, such as the industrial one of
NELL, such external DKB cannot be leveraged since the drugs are
encoded with American Hospital Formulary System (AHFS) drug
encoding [8, 23] and cannot be converted to ATC Third Level.

To prevent DDIs on all kinds of datasets, we introduce a hy-
brid penalty mechanism, which includes: 1) the knowledge-based
penalty, and 2) the data-driven penalty, where the data-driven one
provide side signals as completments of the ground-truth DDIs.

Firstly, on datasets whose drug encodings can be converted to
ATC Third Level, we are able to leverage the ground-truth DDIs
from the DKB. Specifically, we design a knowledge-based penalty

‘51((1)— ppr on the predicted similarity based on external DDI adja-

cency matrix A4, which is computed from TWOSIDES dataset [37]
via the ATC Third Level drug codes. For the representations of
two durgs di and d;, if the combination of drug dj and drug d
induce a DDI, then Agl = 1. Intuitively, we want the probability
of recommending a pair of drugs to be penalized if the two drugs

induce DDI, which we enforce with the following objective:

£ o= > Al g bl by, an
dreD dieD

where - is the product between scalars. g{hg), di}- g{hfsl), d;} de-
notes a pair-wise probability of recommending dj and dj together.
Secondly, on top of the knowledge-based penalty, and in cases
where the knowledge-based penalty cannot be applied, we design
a data-driven penalty as side signals for the safe drug set principle.
Since we stress the relations between the intersections of symp-
tom sets and drug sets in Eq. 10, the drugs in the difference set
of two similar drug sets are seldom used together and may have
DDIs. For example, {Compound Liquorice Tablets, Ibuprofen} and
{Azithromycin, Ibuprofen} can be used to treat cough with headache.
However, taking Compound Liquorice Tablets with Azithromycin
may lead to cardiac arrhythmia. Compound Liquorice Tablets and
Azithromycin do not appear in the ground-truth DDI table but show
up in the difference set of two drug sets for similar symptoms for
more than 150K times in the dataset. Base(d ){()I)l this intuition, we
LN
n

propose to punish the relations between S and the difference

sets of the two drug sets, where the relative complement of D)
in DN and that of DM in D@ are calculated as:

DO =) PN pN) = M) _ p(END (1)
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Table 2: Statistics of the datasets used in our experiments.

Items MIMIC-IIT  NELL
# of visits 27,869 278,388
# symptom 1,113 17,898
# drugs 131 230
avg # of symptoms per symptom set 31.81 11.02
avg # of drugs per drug set 14.36 7.62
total # of DDI pairs 448 -

With such infrequently recommended pairs, we enforce an addi-
tional data-driven penalty objective by yielding large .E(Dl)_ ppr if
dy appear in DY and d; appear in D M) ), respectively:

‘E(Di)—DDI = Z Z (g {hg,ryi)’dk} 9 {hfsi’rivi)’dl}) :
dreDD g e 9™ w5

Finally, we apply weighted sum strategy over the loss for training
the final proposed objective as follows:

L =Lrec + aLinter + (Lk-pDI + LD-DDI); (14)
where a controls the weight of the loss Linter from intersection-
based set augmentation and f controls the weight of the hybrid
DDI loss, respectively.

4 INSIGHTS AND DISCUSSIONS

Our development and experiments of 4SDrug have led to several
unique insights. (1) Modeling sets as sets instead of sequences is im-
portant: in this way, we can get rid of the irrelevant signals from the
orders of the elements by ensuring permutation-invariant set repre-
sentation; (2) differentiating the importance of elements in a set is
important: by discovering and highlighting rare but significant ele-
ments, the overall representations of sets can be largely improved,;
(3) combining external knowledge and data-driven knowledge is
important: they compliment each other and allow us to achieve
drug sets with more controllable sizes and less harmful drug-drug
interactions.

This work intends to study and develop a comprehensive and
automatic drug recommendation pipeline, to help doctors quickly
locate possible drugs and avoid harmful drug-drug interactions. The
set-up of 4SDrug is designed so that it can be easily implemented
into a deployable system for the real-world application of drug rec-
ommendation: 4SDrug focuses on the input of general symptoms
without other patient-specific information, allowing the model to
be efficient for large-scale real-time drug recommendation, and at
the same time, secure from compromising patients’ privacy. Note
that, the goal of 4SDrug is to provide complementary assistance to
doctors for efficient and safe drug prescription, and its recommen-
dations should be further considered by the doctors given the more
complicated and private information of individual patients. It is
not suggested to be directly used by individuals without necessary
medical expertise at its current stage.

5 EXPERIMENT

In this section, we evaluate our proposed 4SDrug framework focus-

ing on the following four research questions:

¢ RQ1: How does 4SDrug perform in comparison to state-of-the-
art recommendation methods?

Yanchao Tan et al.

o RQ2: What are the effects of different model components?

e RQ3: How do the hyperparameters affect the recommendation
performance and how to choose optimal values?

e RQ4: What real drugs are recommended by 4SDrug and how
are they accurate, small, and safe?

5.1 Experimental Setup

5.1.1 Datasets and Evaluation Protocols. We use two real-world
EHR datasets to verify the effectiveness of compared methods, i.e.,
the public benchmark one of MIMIC-III [15] and the industrial
large-scale one of NELL. NELL is provided by the Nell Hodgson
Woodruff School of Nursing at Emory University. Both datasets are
fully anonymized and carefully sanitized before our access. The
statistics are summarized in Table 2.

The symptoms here are extracted differently on two datasets.
Specifically, the “query” field in NELL directly describes the symp-
toms of patients while MIMIC-III does not have this. Therefore, we
adopt the symptom extraction from the clinical texts following [50]
in MIMIC-III. Recall that the DKB from the TWOSIDES dataset [37]
is applicable to datasets whose drug codes can be converted to ATC
Third Level [30]. We apply the knowledge-based penalty for DDI
on MIMIC-III, and skip it on NELL, whose drugs are encoded with
AHEFS [8, 23]. This actually emphasizes the value of our novel data-
driven penalty for DDIs. Following [30, 47], we use two standard
effectiveness metrics (i.e., Jaccard coefficient and F1 score) and two
specific drug-set metrics (i.e., Avg # of drug and DDI Rate) to evalu-
ate the results of drug recommendation. The detailed evaluation
protocols can be found in Appendix. A.

5.1.2  Baselines. We compare 4SDrug with the following base-
lines from two perspectives: 1) traditional set-oriented models:
K-freq [40], K-near [30], ECC [47], and MLP [40]; 2) existing drug
recommendation methods: LEAP [51], RETAIN [9], GAMENet [30],
and SafeDrug [47]. Following the recent works in drug recommen-
dation [30, 47], we do not compare with general recommendation
methods because they cannot provide drug set recommendations.
The details of the compared baselines can be referred in Appendix B.

5.1.3 Implementation Details. The full code for our 4SDrug is
available®. Implementations of the compared baselines are from
GAMENet® and SafeDrug’. We follow the same setting as [30, 47]
and split the dataset into training, validation, and testing with a
ratio of 4:1:1. We tune all hyperparameters on the validation set
through grid search, in particular, « in « in {0, 0.25, 0.50, 0.75, 1.00},
B in {0, 0.25,0.50,0.75, 1.00, 1.25}. We use 64 as the embedding size
for all compared methods on both MIMIC-III and NELL. The batch
size is set to 50. We also carefully tune the hyperparameters of
baselines on the validation set as suggested in the original papers
to achieve their best performance.

5.2 Overall Performance Comparison (RQ1)

We compare the recommendation results of the proposed 45SDrug
framework to those of the baseline models. Table 3 shows the
Jaccard, F1, Avg # of drug, and DDI Rate on MIMIC-IIL Since the

Shttps://github.com/Melinda315/4SDrug
®https://github.com/sjy1203/GAMENet
"https://github.com/ycq091044/SafeDrug
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Table 3: Experimental results on MIMIC-IIL. Ground-truth Avg # Drug is 14.3600. Ground-truth DDI Rate is 0.0850.

Method Jaccard F1 Avg # of Drug DDI Rate |A] Avg # of Drug A% DDI Rate
K-freq 0.4048 + 0.0011 0.5681 + 0.0013  18.7622 + 0.0584  0.0659 + 0.0003 4.4022 -19.63%
K-near 0.4041 + 0.0030  0.5593 + 0.0030  19.2018 + 0.1569  0.0815 =+ 0.0007 4.8418 -0.61%
ECC 0.4499 + 0.0030  0.5977 + 0.0030 17.9707 £+ 0.1125  0.0808 + 0.0008 3.6107 -1.46%
MLP 0.4788 + 0.0011 0.6317 + 0.0011  18.0724 + 0.0853  0.0821 + 0.0005 3.7124 +0.12%
LEAP 0.4677 +£ 0.0011  0.6081 + 0.0013  18.5374 + 0.0646  0.0645 + 0.0001 4.1774 -21.34%
RETAIN 0.4717 £ 0.0024  0.6290 + 0.0023  18.9957 + 0.0391  0.0817 £ 0.0003 4.6357 -0.36%
GAMENet | 0.4848 +0.0022 0.6393 + 0.0021 26.3139 + 0.0668  0.0975 + 0.0003 11.9539 +18.90%
SafeDrug | 0.4894 + 0.0020 0.6454 + 0.0018 19.7909 + 0.0531  0.0649 =+ 0.0002 5.4309 -20.85%
4SDrug 0.5041 + 0.0016  0.6581 + 0.0016  17.5040 + 0.0533  0.0600 + 0.0004 3.1440 -26.83%
Table 4: Ablation analysis of our proposed 4SDrug on MIMIC-III.
Submodels Jaccard  F1 Avg # of Drug DDIRate A Avg# of Drug A DDI Rate
MLP with one-hot set encodings 0.4788  0.6317 18.0724 0.0821 3.7124 +0.12%
+ set-to-set comparison module (1SDrug) 0.4873  0.6427 18.1452 0.0827 3.7852 +0.85%
+ symptom set module (2SDrug) 0.5071  0.6608 19.7129 0.0787 5.3529 -4.02%
+ small drug set principle (3SDrug) 0.5078  0.6614 18.3079 0.0770 3.9479 -6.10%
+ safe drug set principle (4SDrug) | 0.5041  0.6581 17.5040 0.0600 3.1440 -26.83%

Table 5: Experimental results on NELL. Ground-truth Avg #
Drug is 7.6200.

Table 6: Model Complexity Comparison.

Method Jaccard F1 Avg # of Drug
K-freq 0.1495 + 0.0009 0.2435 + 0.0014 9.1854 + 0.0284
K-near 0.1423 + 0.0017  0.2362 + 0.0020  9.2026 + 0.0894
ECC 0.1985 + 0.0024 0.2770 + 0.0013  9.5066 + 0.1005
MLP 0.2371 £ 0.0015 0.3040 + 0.0012  9.6521 + 0.0498
LEAP 0.2359 + 0.0010  0.2980 + 0.0011  9.6191 £ 0.0250
RETAIN 0.2441 £ 0.0013  0.3098 + 0.0023  9.8006 + 0.0198
4SDrug  0.2618 + 0.0015 0.3485 + 0.0016  9.1380 + 0.0278

Dataset | Model # of Param. Training(s) Testing(s)

— LEAP 252,675 243.79 18.65
(:.-) RETAIN 255,947 100.23 15.64
E GAMENet 365,258 150.47 18.03
E SafeDrug 285,612 134.68 18.49

4SDrug 79,681 18.00 14.93
- LEAP 252,675 859.65 69.12
d RETAIN 255,947 438.76 47.97
“ 4SDrug 79,681 17.43 45.26

DKB is not applicable to NELL, we only verify the performance on
NELL with the first three metrics except DDI Rate in Table 5.

In general, 4SDrug outperforms all baselines across all evalua-
tion metrics on both datasets. This answers RQ1, showing that our
proposed symptom-based set-to-set recommendation framework
is capable of effective drug set recommendation. Note that, lim-
ited by the deep reliance on DDI knowledge, some baselines (e.g.,
GAMENet and SafeDrug) are not available on NELL, and the second
best performance scattered among different models like SafeDrug
and RETAIN. Compared with the second best performance, the
performance gains of 4SDrug in terms of Jaccard and F1 range from
reasonably large (1.79% achieved with F1 on the MIMIC-III dataset)
to significantly large (12.49% achieved with F1 on the NELL dataset).

Moreover, the proposed 4SDrug method can achieve best Jaccard
and F1 scores with the smallest number of recommended drugs
on both MIMIC-IIT and NELL, which is particularly evident for its
effectiveness towards the small drug set principle. Note that, real
drug records usually contain high DDI Rate, e.g., around 0.0850
on MIMIC-III. Although GAMENet already consider DDI based
on DKG, it does not consider the number of recommended drug
and outputs undesirable DDI Rate, which is consistent with the
results in the recent work [47]. The proposed 4SDrug framework
can achieve the lowest value on DDI Rate (i.e., 0.0600 on MIMIC-III).

Table 6 shows the runtimes of 4SDrug and four baselines for
drug recommendation, where 4SDrug is more efficient with lower
space and time complexity than others. Specifically, our set-to-set
recommendation does not involve complex neural architectures and
is trivially compatible with efficient mini-batch training. Among
the four compared methods, LEAP adopts sequential modeling and
recommend drugs one by one, and thus is the most time-consuming.
GAMENet stores a large memory bank, and thus requires the largest
space. By comparison, we conclude that 4SDrug is efficient and
flexible, friendly towards real industrial deployment.

5.3 Model Ablation Study (RQ2)

To better understand 4 “S” in 4SDrug, we closely study our frame-
work by adding the components one by one, i.e., set-to-to compari-
son module (1SDrug), symptom sets module (2SDrug), small drug
set principle (3SDrug), and safe drug set principle (4SDrug). From
Table 4, we have the following observations:

o 1SDrug outperforms MLP not only on the effectiveness metrics
by achieving 3.24% improvement in Jaccard and 2.18% improve-
ment in F1, but also on the drug-set metrics by achieving a 1.15
decrease in drug number and a 0.97% DDI Rate reduction. Such
results are consistent with those in Table 3 and Table 5, showing
the effectiveness of mining complex relations among sets.
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Table 7: Example recommended drug set for a given symptom set on MIMIC-IIL. Here “FN” refers to the drugs that are in the
ground-truth drug sets but are not predicted, while “FP” indicates the drugs predicted but are not in ground-truth drug sets.
The drug pairs denoted by the same non-black colors have harmful DDIs. Best viewed in color.

Method Recommended Drug Set
Ground-Truth 7 TP (Antithrombotic Agents; Other Mineral Supplements; Anesthetics, General; Irrigating Solutions; Stomatological
Num:7 Preparations; Vitamin B1, Plain and in Combination with Vitamin B6 and B12; Vitamin B12 and Folic Acid)
6 TP (Antithrombotic Agents; Other Mineral Supplements; Anesthetics, General; Irrigating Solutions; Stomatological
GAMENet Preparations; Vitamin B1, Plain and in Combination with Vitamin B6 and B12)
Num: 19 1 FN (Vitamin B12 and Folic Acid)
Re.Cffdl:()/ 7 13 FP (Antiepileptics; Potassium; Other Abesics and Antipyretics; Drugs for Constipation; Drugs for Peptic Ulcer
Precision=6/19 and Gastro-Oesophageal Reflux Disease (GORD); Beta Blocking Agents; Adrenergics, Inhalants; Calcium; ;
Quinolone Antibacterials; Arteriolar Smooth Muscle, Agents Acting on; Anxiolytics; )
SafeDrug 3 TP (Antithrombotic Agents; Other Mineral Supplements; Vitamin B12 and Folic Acid)
Num: 5 4 FN (Anesthetics, General; Irrigating Solutions; Stomatological Preparation; Vitamin B1, Plain and in Combination
Recall=3/7 with Vitamin B6 and B12)
Precision=3/5 2 FP (Drugs for Peptic Ulcer and Gastro-Oesophageal Reflux Disease (GORD); Calcium)
4SDrug 6 TP (Antithrombotic Agents; Other Mineral Supplements; Anesthetics, General; Irrigating Solutions; Stomatological
Num: 8 Preparations; Vitamin B1, Plain and in Combination with Vitamin B6 and B12)
Recall=6/7 1 FN (Vitamin B12 and Folic Acid)

Precision=3/4

2 FP (Other Analgesics and Antipyretics; Drugs for Constipation)

N
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(b) Varying
Figure 4: Performance for varying the weight of Lz, (i-e., @)
and the weight of (Lx_ppr + Lp-ppr) (i-e., f) on MIMIC-IIL

(a) Varying o

e Compared with 1SDrug, 2SDrug achieves performance gains on
the effectiveness metrics by achieving 2.59% improvement in
Jaccard and 2.37% improvement in F1. In the drug-set metrics,
2SDrug bring about 3.2% DDI Rate reduction and 1.57 increase
in drug number, since 2SDrug does not consider the unique
requirements of drug sets.

e Moreover, the performance gain of 3SDrug over 25Drug includes
both effectiveness metrics and drug-set metrics, where 3SDrug
can achieve 1.41 decrease in drug number and 2.16% DDI Rate
reduction based on 2SDrug. These results show the effectiveness
of applying our novel intersection-based set augmentation.

e 4SDrug can achieve the smallest number of drugs and the lowest
DDI Rate with significant 20.73% improvement over the DDI
of 3SDrug. Although 4SDrug brings a slight decrease on the
effectiveness metrics, it can finally achieve a satisfactory trade-
off among the multiple objectives of drug recommendation.

5.4 Major Hyperparameter Study (RQ3)

Our proposed 4SDrug framework mainly introduces two hyperpa-
rameters, i.e., &, and f3, which control the weight of the loss Linser
from intersection-based set augmentation and the hybrid DDI loss,
respectively. Here we show how these two hyperparameters impact
the performance and clarify how to set them.

Firstly, we show the model performance with varying Linzer-
The loss Linter can control the number of drug. If « is too small,
the interactions between the intersection symptom set and drugs
will likely be weakened. However, too large a will likely cause the
model to overfit. The results are shown in Figure 4a. We found that
the optimal & values on MIMIC-III to be about 0.5. Note that, when

€ [0, 1], 4SDrug is always better than the best baseline. In the
range of [0,1], the optimal & can be obtained by slight tuning.

Secondly, for hyperparameter f, the optimal f on MIMIC-III
is 1.0, as shown in Figure 4b. In particular, we observe the effec-
tiveness of Lx_ppr and Lp_ppr as increasing f always leads to
the reduction of drug number. However, further increasing it be-
yond the optimal value makes the accuracy performance worse. In
practice, f = 1.0 seems to be the rule-of-thumb.

5.5 Case Studies (RQ4)

To demonstrate the advantages of 4SDrug over the two drug recom-
mendation baselines methods, we demonstrate the recommended
drugs learned by GAMENet, SafeDrug, and the proposed 4SDrug
on MIMIC-III. Some example results are presented in Table 7 and
more results can be found in Table C.1 in Appendix C. According
to the listed metrics, we have the following observations.

In general, 4SDrug achieves the highest value on Recall and Pre-
cision under the given symptom set {Sputum, Ulcer, Cool, Cough,
Bleed, ...}. The only one FN drug of 45Drug is Vitamin B12 and
Folic Acid, and by checking DKB, we find the reason of not recom-
mending this drug as to avoid the harmful DDIs between Vitamin
B12 and Folic Acid and Stomatological Preparations. Note that, com-
pared with GAMENet that recommend too many drugs with many
DDIs, 4SDrug can automatically avoid DDIs, which is consistent
with its overall advantageous performance in Table 3.

Since different doctors might give different drug sets for a certain
symptom set [14], and thus no gold-standard ground truth exists. In
this case, 4SDrug, which provides small and safe drug sets learned
from various doctors actual prescriptions, may even serve as a
better option than the provided ground-truth drug sets.
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CONCLUSION

In this paper, we propose a symptom set-based drug recommen-
dation framework, towards the prescription assistance for doctors
and privacy protection for patients. Specifically, we propose a novel
framework of Symptom-based Set-to-set Small and Safe drug rec-
ommendation (4SDrug), including a set-to-set comparison module,
a symptom set module, and a drug set module. Extensive quantita-
tive experiments demonstrate the clear advantages of our 4SDrug
over the state-of-the-art baselines towards the recommendation of
accurate, small and safe drug sets, which is further consolidated
with our real case study results.
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APPENDIX
A EVALUATION PROTOCOLS DETAILS

For a particular symptom set S () and the recommended drug set is
DD . D s the ground truth drug set prescribed by doctors. The
mean jaccard coefficient is defined as the size of the intersection
divided by the size of the union of predicted drugs and ground truth
drugs. Recall measures the completeness of predicted drugs and
Precision measures the correctness of predicted drugs. F1 score is
the harmonic mean of Precision and Recall, and is often used as a
comprehensive evaluation metric of prediction models:

Q ‘D(i) nD» 9 W DM
d=l —Recallle—
Jeeeard =9 20w o po| Q24 [p0]
e |D(i> N ﬁ(i)‘

o4 0

Precision =

F1=

1 Q 2 % Precision; * Recall;
o
where i is a query index in the test set.

To measure drug safety, we define DDI Rate as the percentage
of drug recommendation that contain DDIs.

Precision; + Recall;

Q
DDI Rate = ézl: H(da, dy) € DV & (dg,dy) € 8ddi}|/aZJ; 1

where the set will count each drug pair (dg, dp,) in recommendation

set DD if the pair belongs to drug knowledge base (DKB) in &44;.

B BASELINE DETAILS

o K-freq [40]. K-frequent predicts drugs by counting the the top K
most frequently occurring drugs of each symptom. We tried K
from 1 to 8 and finally set K to 5 according to the validation.

Yanchao Tan et al.

e K-near [30]. To prescribe drugs for a symptom set S;, K-nearest
selects the drugs prescribed for patient S; that has the most
similar symptom set embedding with S;. Similarity between two
sets is measured by Jaccard measurement. Here, we set K to 1.

e Ensemble Classifier Chain (ECC) [47]. Classifier chain (CC) is a
popular multi-label classification approach, which feeds previous
classification results into the latter classifiers. We implement a
10-member ensemble of CCs also by scikit-learn, where each CC
consists of a dependent series of logistic regression classifiers.

e Multi-layer Perceptron (MLP) [40]. MLPs are conventional meth-
ods to solve multi-label classification problem, where we use
a three-layer perceptron and sigmoid as activation function to
predict the probability of each drug.

e LEAP [51] treats drug recommendation as a sentence generation
task and recommend drugs one at a time.

e RETAIN [9] is a temporal based method. It utilizes a two-level
RNN with reverse time attention to model the symptom infor-
mation.

o GAMENet [30]. GAMENet adopts memory augmented neural
networks and stores historical drug memory records as refer-
ences for future prediction.

o SafeDrug [47]. SafeDrug propose dual molecular encoders to
capture global and local molecule patterns and explicitly design
DDI controllable loss function.

C FULL CASE STUDIES

Given a symptom set { Poor mental status, Mental Status Change,
Secretions, sputum, ulcer,Cool, Productive Cough, Cough, Apnea,
Bleed}, the recommended drugs learned by the compared methods
are listed in Table C.1.
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Table C.1: Example recommended drug set for a given symptom set on MIMIC-IIL. Here “FN” refers to the drugs that are in the
ground-truth drug sets but are not predicted, while “FP” indicates the drugs predicted but are not in ground-truth drug sets.
The drug pairs denoted by the same non-black colors have harmful DDIs. Best viewed in color.

Method Recommended Drug Set
Ground Truth 7 TP (Antithrombotic Agents; Other Mineral Supplements; Anesthetics, General; Irrigating Solutions; Stomatological
Preparations; Vitamin B1, Plain and in Combination with Vitamin B6 and B12; Vitamin B12 and Folic Acid)
4 TP (Antithrombotic Agents; Other Mineral Supplements; Irrigating Solutions; Stomatological Preparations)
K-frequent 3 FN (Anesthetics, General; Vitamin B1, Plain and in Combination with Vitamin B6 and B12; Vitamin B12 and Folic Acid)
Num: 21 17 FP (Antimalarials; Potassium; Other Analgesics and Antipyretics; Drugs for Constipation; Drugs for Peptic Ulcer and
Recall=4/7  Gastro-Oesophageal Reflux Disease (GORD); Intestinal Antiinfectives; Direct Acting Antivirals; Immunosuppressants; Beta

Precision=4/21

Blocking Agents; Adrenergics, Inhalants; High-Ceiling Diuretics; Calcium; Opioids; Beta-Lactam Antibacterials, Penicillins;
Quinolone Antibacterials; Blood Glucose Lowering Drugs, excl. Insulins; Antivaricose Therapy)

K-nearest
Num: 17
Recall=6/7
Precision=3/17

6 TP ( ; Other Mineral Supplements; Anesthetics, General; Stomatological Preparations; Vitamin B1,
Plain and in Combination with Vitamin B6 and B12; Vitamin B12 and Folic Acid)
1 FN (Irrigating Solutions)
11 FP (Potassium; Other Analgesics and Antipyretics; Drugs for Constipation; Drugs for Peptic Ulcer and Gastro-Oesophageal
Reflux Disease (GORD); Adrenergics, Inhalants; Quinolone Antibacterials; Anxiolytics;

; Hypnotics and Sedatives; Drugs Used in Addictive Disorders; Expectorants, excl. Combinations
with Cough Suppressants)

ECC
Num: 3
Recall=2/7
Precision=2/3

2 TP (Antithrombotic Agents; Other Mineral Supplements)

5 FN (Anesthetics, General; Irrigating Solutions; Stomatological Preparations; Vitamin B1, Plain and in Combination with
Vitamin B6 and B12; Vitamin B12 and Folic Acid)

1 FP (Drugs for peptic ulcer and gastroesophageal reflux disease (GORD))

MLP
Num: 7
Recall=4/7
Precision=4/7

4 TP (Antithrombotic Agents; Other Mineral Supplements; Irrigating Solutions; Anesthetics, General)

3 FN (Stomatological Preparation; Vitamin B1, Plain and in Combination with Vitamin B6 and B12; Vitamin B12 and Folic
Acid)

3 FP (Drugs for Constipation; Drugs for Peptic Ulcer and Gastro-Oesophageal Reflux Disease (GORD); Anxiolytics; Hypnotics
and Sedatives)

LEAP
Num: 4
Recall=1/7
Precision=1/4

1 TP (Antithrombotic Agents)

6 TN (Other Mineral Supplements; NO1A; Irrigating Solutions; Stomatological Preparation; Vitamin B1, Plain and in
Combination with Vitamin B6 and B12; Vitamin B12 and Folic Acid)

3 FP (Intestinal Antiinfectives; Anxiolytics; Beta Blocking Agents)

RETAIN
Num: 2
Recall=2/7
Precision=1

2 TP (Antithrombotic Agents; Other Mineral Supplements)

5 FN (Anesthetics, General; Irrigating Solutions; Stomatological Preparation; Vitamin B1, Plain and in Combination with
Vitamin B6 and B12; Vitamin B12 and Folic Acid)

0 FP (None)

6 TP (Antithrombotic Agents; Other Mineral Supplements; Anesthetics, General; Irrigating Solutions; Stomatological

GAMENet Preparations; Vitamin B1, Plain and in Combination with Vitamin B6 and B12)
Num: 19 1 FN (Vitamin B12 and Folic Acid)
Recall=6/7 13 FP (Antiepileptics; Potassium; Other Analgesics and Antipyretics; Drugs for Constipation; Drugs for Peptic Ulcer and
Precision=6/19 Gastro-Oesophageal Reflux Disease (GORD); Beta Blocking Agents; Adrenergics, Inhalants; Calcium; ; Quinolone
Antibacterials; Arteriolar Smooth Muscle, Agents Acting on; Anxiolytics; )
SafeDrug 3 TP (Antithrombotic Agents; Other Mineral Supplements; Vitamin B12 and Folic Acid)
Num: 5 4 FN (Anesthetics, General; Irrigating Solutions; Stomatological Preparation; Vitamin B1, Plain and in Combination with
Recall=3/7  Vitamin B6 and B12)
Precision=3/5 2 pp (Drugs for Peptic Ulcer and Gastro-Oesophageal Reflux Disease (GORD); Calcium)
4SDrug 6 TP (Antithrombotic Agents; Other Mineral Supplements; Anesthetics, General; Irrigating Solutions; Stomatological
Num: 8 Preparations; Vitamin B1, Plain and in Combination with Vitamin B6 and B12)
Recall=6/7 1 FN (Vitamin B12 and Folic Acid)

Precision=3/4

2 FP (Other Analgesics and Antipyretics; Drugs for Constipation)
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