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ABSTRACT

We study the problem of answering queries through a target schema,
given a set of mappings between one or more source schemas and
this target schema, and given that the data is at the sources. The
schemas can be any combination of relational or XML schemas, and
can be independently designed. In addition to the source-to-target
mappings, we consider as part of the mapping scenario a set of tar-
get constraints specifying additional properties on the target schema.
This becomes particul arly important when integrating data from mul-
tiple data sources with overlapping data and when such constraints
can express data merging rules at the target. We define the semantics
of query answering in such an integration scenario, and design two
novel algorithms, basic query rewriteand query resolutionto imple-
ment the semantics. The basic query rewrite algorithm reformul ates
target queriesin terms of the source schemas, based on the mappings.
The query resolution algorithm generates additional rewritings that
merge related information from multiple sources and assemble a co-
herent view of the data, by incorporating target constraints. The algo-
rithms areimplemented and then eval uated using a comprehensive set
of experiments based on both synthetic and rea-life data integration
scenarios.

1. INTRODUCTION

The data inter-operability problem arises from the fact that data, even
within a single domain of application, is available at many differ-
ent sites, in many different schemas, and even in different data mod-
els (e.g., relational and XML). The integration and transformation
of such data has become increasingly important for many modern
applications that need to support their users with informed decision
making. As arough classification, there are two basic forms of data
inter-operability: data exchangend data integration Data exchange
(also known as data trandation) is the problem of moving and re-
structuring data from one (or more) source schema(s) into a target
schema. It appears in many tasks that require data to be transferred
between independent applications that do not necessarily agree on
a common data format. In contrast, data integration is the problem
of uniformly querying many different sources through one common
interface (target schema). There is no need to materialize a target
instance in this case. Instead, the emphasis is on answering queries
over the common schema [18, 20]. In both cases, of data exchange
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and data integration, relationships or mappingsmust first be estab-
lished between the source schemas and the target schema. Mappings
are often specified as high-level, declarative, assertions that state how
groups of related elements in a source schema correspond to groups
of related elementsin the target schema. Mappings can be given by a
human user or they can be derived semi-automatically [23, 26] based
on the outcome of schema matching algorithms[27]. Mappings have
been used for query rewriting in relational data integration systems,
in the form of GAV (global-as-view) [20], LAV (loca-as-view) [21]
or, more generaly, GLAV (global-and-local-as-view) assertions [16].
They have also been used to formally specify relational dataexchange
systems[14]. A more general form of GLAV that accountsfor XML-
like structures, and which we will use here as well, has been used to
give semantics for mappings between XML schemas and to gener-
ate the data transformation scripts (in SQL, XQuery or XSLT) that
implement the desired data exchange [26].

In this paper we study the data integration problem associated with
mappings. More concretely, we study the problem of efficient an-
swering of queries through a target schema, given a set of mappings
between the source schema(s) and the target schema, and given that
the data is at the source(s). While most of the preceding work has
been focused on the relational case, we consider queries and map-
pings over both relational and XML schemas. We aso consider, as
part of the mapping scenario, aset of constraints on thetarget schema.
The presence of such target constraints is an important requirement
for us: they can be used to express data mergingules that arise when
integrating data from multiple sources with overlapping information.
Data merging is notoriously hard for data integration and often not
dealt with. Integration of scientific data, however, offers many com-
plex scenarios where data merging isrequired. For example, proteins
(each with aunique protein id) are often stored in multiple biological
databases, each of which independently maintains different aspects
of the protein data (e.g., structures, biological functions, etc.). When
guerying on a given protein through a target schema, it is important
to merge al its relevant data (e.g., structures from one source, func-
tions from another) given the constraint that protein id identifies al
components of the protein.

When target constraints are present, it is not enough to consider only
the mappings for query answering. The target instance that a query
should “observe” must be defined by the interaction between al the
mappings from the sources and al the target constraints. This inter-
action can be quite complex when schemas and mappings are nested
and when the data merging rules can enable each other, possibly, in
a recursive way. Hence, one of the first problems that we study in
this paper is what it means, in a precise sense, to answer the target
queriesin the “best” way, given that the target instance is specified,
indirectly, viathe mappings and the target constraints. The rest of the
paper will then address how to compute the correct answers without
materializing the full target instance, via two novel agorithms that
rewrite the target query into a set of corresponding source queries.

Summary of results: Our main contributions are the following:



e semanticsof query answering: wedefinewhat it meansto answer
atarget query in the best way, given a set of mappings between the
source schemas and the target schema, and given a set of target
constraints. We define a canonical target instancéhat satisfies
al the requirements (mappings and target constraints) with respect
to the given source instances, and we take the semantics of query
answering to be the result of evaluating the query on this canon-
ical instance. While building on recent work on relational data
exchange [14], this semantics captures not only relational settings
but nested (XML) settings as well. It then becomes a requirement
that we impose on the subsequent basic query rewriting and query
resolution algorithms.

e basic query rewriting algorithm: this algorithm rewrites the tar-
get query into a set of source queries. Evaluating the union of
these queries on the data sources has essentially the same effect as
running the target query on the canonical target instance, provided
that there are no target constraints. This algorithm extends earlier
relational techniques for rewriting queries using views [13, 3, 17],
with novel techniques for XML query rewriting that are based on
XML mappings between XML schemas. Dealing with XML isa
significant extension over the previous work asit requires handling
of avariety of complex typesand queries aswell asthe hierarchical
structure that the relational model does not have. Furthermore, we
prove that the algorithm is completein the sense that the result-
ing rewritings retrieve all the answers, according to the semantics
given by the canonical target instance. To the best of our knowl-
edge, thisis the first complete algorithm to perform query rewrit-
ing based on mappings by operating directly on nested structures.
The class of queriesthat we consider is a considerable fragment of
XQuery [7] that includes nested subqueries.

e query resolution algorithm: this algorithm extends the above
one by taking into account target constraints to generate additional
source queries to produce merged results. Such merged results are
among those that would be obtained by running the target query
on the target canonical instance, which is constructed based on the
mappings and the target constraints. The constraints that we con-
sider are nested equality-generating dependencies (NEGHDd)
they includefunctional dependenciesin relational or nested schemas,
XML Schemakey constraints, and more general constraints stating
that certain tuples/elementsin the target must satisfy certain equal-
ities. To the best of our knowledge, the resolution techniques that
we givein this paper are entirely new.

Thetarget constraints are specified solely based on the target schema,
which isassumed to be designed independently of the source schemas.
In fact, the target constraints are often part of the target schema (e.g.,
key constraints in XML Schema). We do not deal in this paper with
the detection and resolution of conflicts that may arise due to target
constraints. A conflict is a case where two (or more) source values
are supposed to be equal due to atarget constraint but they are not.
The rewritings that we generate will include all such conflicting val-
ues, when they exist. Handling of conflictsis an additional problem
in dataintegration that we believe is complementary to the techniques
described in this paper and which we plan to addressin future work.

Related work: There has been considerable work on XML and semi-
structured query rewriting. [24] and [6] focus on query optimization
by rewriting semistructured queries in terms of materialized views.
MARS[10, 11] employs a powerful method for reformulating XML
queries in publishing scenarios that are based on mixed (i.e.,, XML
and relational) and redundant (i.e., cached views, indexes) storage.
XPeranto [28] and SilkRoute [15] address the problem of publishing
SQL datain XML by rewriting XML queries into SQL queries. In
fact, thereisavast amount of work on XML-to-SQL translation [19].
In most of the above cases, the source (materialized views, relational
store, etc.) to target (XML logical schema, XML view, etc.) mapping
islosslessit consists of statements (whether explicit or implicit) each
asserting that some portion of the XML datais equalto some portion
of the relational (store) data. Hence, query rewriting is equival ence-
preserving. In contrast, the query rewriting that we consider involves

lossyor incompletemappings, where each statement asserts that some
portion of asourceisasubsebf some portion of the target. Thus, the
data sources and their mappings offer an incomplete, partia, view
of the world. As a consequence of this incompleteness, the goa of
query rewriting is on obtaining containedrewritings (and, if possible,
maximally-contained rewritings[17]) instead of equival ent rewritings
(which may not exist). For the design of scalable dataintegration sys-
tems, having lossy mappingsisareal-life necessity [17, 20]. Usualy,
each source to target mapping is defined independently of other map-
pings or data sources and involves only a part of the target schema.
The advantage of this design is its modularity and scalability: new
mappings (and target constraints) can be easily added into the system
without affecting other mappings and constraints. It is the run-time
(i.e., the query answering system) that takes the responsibility of as-
sembling a coherent view of the world out of the many mappings and
constraints on the target. This modular design is also adopted by the
Agora[22] system. However, their query rewriting is performed viaa
trandlation first to ageneric relational schema, and by employing then
relational techniques for answering queries using views. The map-
pings themselves are required to be defined in terms of this generic
relational schemarather than in terms of the XML target. Because of
the tranglation, queries and mappings can be quite complex and hard
to understand/define by a human user. On the other hand, our tech-
niques operate directly at the XML level and form the basis for an
integrated solution for XML query rewriting in the presence of both
lossy mappings and target constraints.

Capturing target constraintsin XML dataintegration or query rewrit-
ing has been recently studied in [2, 5, 10, 11]. Trandlation of rela-
tional datainto XML with predefined type and key constraints is the
focus of [5]. It is an example of data exchange and hence orthog-
onal to the work that we describe here. The work in [10] and [11]
offers powerful techniques for query reformulation in the presence
of constraints. However, their techniques are equival ence-preserving
and we found them inapplicable for the scenarios that we consider.
An approach that is similar in spirit to ours is the one reported in
[2], addressing the problem of query rewriting in the presence of in-
complete (LAV-style) mappings and target constraints (keys), while
alowing for nested structures. Their work, however, deals with sim-
pler classes of mappings, queries and constraints, does not attempt
an analysis of the properties (e.g., completeness) of the algorithms
and does not contain an experimental validation of the approach. Fi-
nally, target constraintsin the context of query answering in relational
LAV dataintegration systems have been considered in [12]. Their al-
gorithm produces a recursive query plan that incorporates the target
constraints via a set of recursive rules in the spirit of logic program-
ming and chase. In contrast, our focus is on obtaining non-recursive
rewritings that can be efficiently optimized and executed by SQL or
XQuery engines.

The rest of the paper is organized asfollowing: Section 2 provides an
overview of our proposed solutions. Section 3 explains whatare the
query answering regquirements (semantics). Section 4 and 5 address
howthis semantics can be achieved through the basic query rewriting
and query resolution algorithms, respectively. Experimental evalua-
tion is provided in Section 6 and finally we conclude in Section 7.

2. OVERVIEW OF OUR SOLUTIONS

This section gives an overview of our solutions to the problem of
query answering over a virtual target. We start with an example of
mappingsbetween two relational source schemas and a nested tar-
get schema. We then give an example of a target queryand source
instances and show what the intuitive result to the query should be.
Next, we add constraintson the target to show how this impacts the
expected answer to the (same) query. Using the examples, we formu-
|ate what the semantics of query answering should be.

2.1 Schemasand Mappings
Consider the mapping scenario in Figure 1. It illustrates two source
relational schemas (sr ¢y and sr c3), atarget nested schema (t gt ),
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M, : foreach s in src;.students
exists s’ in tgt.students, ¢’ in s’.student.Cs,
e iﬂ tgt.evals
where c .courselnfo.E = ¢’.eval.E
with . s ' student.S=s5.S and s’.student.N = s.N and
¢ courselnfo.C = s.C and ¢’ .eval.G = s.G

Ms>: foreach s in srce.students, ¢ in srce.courseEvals
where s.K=cK
exists s’ in tgt.students, ¢’ in s’.student.Cs,
e’ in tgtevals
where ¢’.courselnfo.E = ¢’.eval.E
with s’ .student.S=s.S and s’.student.N = s.N and
c.course.C=c.C and ¢’.eval.F=c.F

Figure 1: Schemasand mappings.

and two mappings between them. The schemas are shown in anested
relational representation (described shortly) that is used as acommon
data model to represent both relational schemas and XML Schema.
Thesymbols S, N, C, G, F represent, respectively, “ student id”, “ stu-
dent name” “course” “grade" (only in srer), and “file evaluation” (a
written eval uation that a student receives for a course; only in srcs).
Information in the two sources may overlap: the same student may
appear in both sources. The attribute K in srcs is used to link stu-
dents with the courses they take. The target schema consists of aroot
element t gt containing two subelements: st udent s and eval s.
The first one contains zero or more st udent elements; we make
here use of the keyword SetOf to denotethat the value of st udent s
isasetof st udent elements. A student isacomplex element
containing atomic elements S, N, as well as a set element, C's, con-
taining course related entries (cour sel nf 0). A course entry con-
tains a course (C), while the grade (G) and file evaluation (F') for
that course are stored separately under eval s. Theelement E plays
a“linkage” role: itis, in XML Schematerms, akeyfor eval , and a
keyrefincour sel nf o.

Schemas and Types In general, a schemais a set of labels (called
roots), each with an associated typer, defined by:
7= String | Int | SetOf 7 | Red[ 11 : 71, .+, In = ]
| Choice[l1 : T1,. ., In @ Tnl.

Types Int and String are called atomic types, SetOf is a set type, and
Rcd and Choice are complex types. With respect to XML Schema,
we use SetOf to model repeatable elements (or repeatable groups of
elements)?, while Red and Choice are used to represent the “all”
and “choice” model-groupsWe do not consider order, SetOf repre-
sents unordered sets. “ Sequence” model-groups of XML Schemaare
also represented as (unordered) Red types. Although the mappings,
queries, and algorithmsthat we implemented all handle Choice types
we will ignore this aspect from now on, due to lack of space.

Two mappings have been defined, in Figure 1, from the two source
schemas to the target schema. Graphically, the mappings are de-
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2In Figure 1, only set elements are marked with their type. Com-
plex and atomic elements are represented implicitly as elements with
subelements and, respectively, as leaves.

scribed by the arrows that go between the “mapped” schema ele-
ments. However, the precise semantics of these mappings is embed-
ded in M, and M-, which are also called logical mappings. Each
of them is, essentially, a constraint of the form Q° ~» QT, where
Q% (the foreach clause and its associated where clause) is a query
over the sources and Q7 (the exists clause and its associated where
clause) is a query over the target. These mappings specify a con-
tainment assertion: for each tuple returned by Q°, there must exist a
corresponding tuplein Q7. The with clause makes explicit how the
source and the target elements relate to each other.

Mapping M specifies how student tuples in the first source relate
tost udent, cour sel nf 0, and eval elementsin thetarget. The
exists and the where clauses specify how the target elements them-
selves relate to each other (and to the root of the schema). For exam-
ple, the generator ¢’ in s’.student.Cs asserts that each cour sel nf o
element (denoted by the variable ¢’) must be an element of the set
s’.student.Cs. Also, thetarget join condition ¢’ .courselnfo.E=¢’.eval.E
specifies how acour sel nf o element relatesto an eval element.
Similarly, mapping M- specifies how student information in the sec-
ond source relate to st udent , cour sel nf o, and eval elements
in the target. The difference from the first mapping is that the student
and course information is split across two tables and a source join
condition must be used (s.K = ¢.K).

Mapplng language Let an expression be defined by the grammar

= S| z | el, where z is avariable, S is a schemaroot, [ is
a Iabel and e.l is record projection. Then a mapping is a statement
(constra| nt) of the form:

M :=foreach z1ingi,...,xn N g,
where B;
exists  y1ingi,...,ymingpn,
"~ where B2
with e} =e; and... and e, = ex

whereeach z; in g; (y; in g} ) iscalled ageneratorand each g; (g) is
an expression e with type SetOf 7; the variable z; (y;) bindsto indi-
vidual elements of the set e. The mapping is well-formed if the vari-
able (if any) usedin g; (g7) is defined by a previous generator within
the same clause. Any schema root used in the foreach or exists
clause must be a source or target schema root, respectively. The two
where clauses (B: and B;) are conjunctions of equalities between
EXpPressions over 1, ..., Tn, OF Y1, - .., Ym, respectively. They can
also include equalities with constants (i.e., selections). Finally, each
equality e; = e; inthewith clause involves atarget expression e; and
asource expression e;, of the same atomic type.

The mapping language allows for partial specifications. For example,
mapping M specifies a grade, but not a file evaluation, while for
M- the opposite is true. Also, the value of E is not specified by
either M, or M, athough this value plays an important correlation
role and it appears in the target where clause. The advantage of
such mappingsis that the system can be defined, incrementally, from
incomplete mappings that are independent of each other and that do
not attempt to (or cannot) fully specify the target. This becomes more
important when we add target constraints to mappings. We note that
when restricted to the relational model the above mapping language
coincides with the language of sound (but not necessarily compl ete)
GLAV assertions [16, 20]. Finaly, the above mapping language is
the one used to represent XML -Schema mappingsin Clio [26].

2.2 Queries

Queries use instancesas input and create valuesas output. Hence,
we first define instances and values. Given a schema, an instance
is defined as a set of values for the roots, with the requirement that
the types must be respected. A value of type Red[ly : 71,..., 0k :
7], called arecord value, is an unordered tuple of label-value pairs:
[A1 = a1,..., A = ai], where aq,. .., a; are of types 71, ...,
Tk, respectively. A value of type SetOf 7 is a specia value called
a SetlD Each such SetlDcan be associated with aset {v1,...,vn}



(q1) for s intgt.students, c in s.student.Cs, e in tgt.evals
where c.courselnfo.E = e.eval .E
return [ name = s.student.N, course = c.courselnfo.C,
grade = e.eva .G, file= e.eva .F ]
(¢g2) for s in tgt.students
return [ name = s.student.N,
results = for s’ in tgt.students, c in s’.student.Cs,
e’ in tgt.evals
where ¢’.courselnfo.E = ¢’.eval.E and
s’ .student.N = s.student.N
return [ result = [ grade = ¢’ .eval.G,
file=¢’.eva.F]]

Figure2: Target queries

of values of type 7 (these are the elements of the set, in the classical
sense). This representation of sets (using SetlDs) is consistent with
the graph or tree-based models of XML, where elements are identi-
fied by their node id rather than by contents. The association between
a SetlD S and its elements {v1, ..., v,} is denoted by factsof the
form: S(v1),...,S(vm). The following are two source instances,
srcy and srez, for the source schemas in Figure 1. src; = [students
= 54], and src; = [students = S5, courseEvals = (', where S, Sa,
and C are SetlDs with the following associated facts (for simplicity,
we drop thefield |abel s and the angle brackets surrounding the record
vaues):

S1(001, Mary, CS120, A), S1(005, John, CS500, B)
S2(001, Mary, K7), S2(001, Mary, K4)
C(KT,CS120, file01), C(K4, C'S200, file0T)

Figure 2 shows two queries over the target schema of Figure 1. The
gueriesarewritten in an XQuery-like notation, using thef or -wher e-
return style of syntax; queries with | et clauses are not in the
syntax, although they can be represented using subqueries in the for
clause and then rewritten to eliminate these subqueries. This notation
isthe internal nested relationalanguage into which external queries
in XQuery syntax are trandated. Query ¢; asks for al tuples with
name, course, grade and file for that course. Record expressions (e.g.,
[name = s.student.N,. . .]) are used to construct and to group elements
together in the return clause. Query g2 constructs nested output, by
using a subquery that returns a set of results (with grade and file) for
each student.

Core query language (CQ) The queries that we consider have the
following general form:
q = for ziing,..
where B
return r

wherer isdefined by r :=[A1 = r1, ..., A = 7] | e | ¢, and g;,
e, B are defined as with mappings. Both source and target schema
elements can be used in ¢ and in fact, during rewriting, a partially
rewritten query will mix target and source schema elements. We call
this language CQ (core queries). Additionally, CQ allows for Skolem
functionswherever an expression e can be used. Skolem functions,
which we introduce in Section 4.1, play an important role in describ-
ing “unknown” values aswell as SetlDs. In our implementation, fea-
tures such as user functions, arithmetic operations, inequalities, etc.,
are alowed in the query, though they are not part of CQ. An impor-
tant subclass of CQ is one in which queries can not have subqueries.
We cdll thisfragment CQo.

~75Eniﬂgn

2.3 Target Query Answering

We address first the following question: given a set of source in-

J J
tgt.students: .
001 Mary Cs, tgt.students:
005 John Cs, 001 Mary Cs,
001 Mary Cs, 005 John Cs,
001 Mary Cs,
Cs;:
Csy: Css: Cs120 £, sy
CS120 E, CS120 E; 5120 E, cs500 E,
> Cs Csy: ==  cow ¢,
Chase with CS500 E, Cs200 E, PNE
My, M, . tgt.evals:
tgt.evals:
E, B F, ;
E, G, file07 4 P4

Figure 3: Thecanonical target instanceis J.

more constructive flavor and can be generalized to the cases of XML
queries. This approach, described next, extends recent work on se-
mantics of relational data exchange and query answering based on
universal solutions [14]. Moreover, we show in Section 3 that this
approach is more inclusive than the semantics by certain answers,
even in the relational case.

Canonical instance We define the semantics of target query answer-
ing by constructing acanonicaltarget instance J based on the source
instances and the mappings. Intuitively, thisiswhat a user would see
if we are to materialize a target instance that is consistent with the
given sources and mappings. We then define the result of a target
query to be the result of evaluating it on J. The construction of the
canonical target instance is described below.

For each combination of tuplesin the sourcesthat matchestheforeach
clause and its where clause of a mapping we add tuples in the tar-
get so that the exists clause and its where clause are satisfied. The
atomic values being added are either equal to source values (if the
with clause specifies this equality) or they are created as new, “un-
known”, values (called nulls). Every generated null is different from
the other nulls and source values unless the mapping or some target
constraint specifies otherwise. In addition to creating nulls, we also
generate SetlDs. For our example source instance srci, the tuple
[001, Mary,CS120, A] matches M ; we thus add three related tu-
plesintgt: ast udent tuple[001, Mary, Cs1]undert gt . st ude-
nt s, acour sel nf o tuple [C'S120, E1] under C's1, and an eval
tuple [E1, A, F1] under t gt . eval s. Here, C's; is anewly gener-
ated SetlD, while E; and F; are nulls. Note that the same null E;
isused to fill in thetwo E elementsin cour sel nf o and eval as
required by the mapping viathe condition ¢’.courselnfo.E = ¢’.eval .E
in the exists clause. The target instance that results after filling in all
the necessary target tuplesistheinstance J’ of Figure 3. The process
described informally hereis called the chase

Finally, we take the view that the mapping also specifies some im-
plicit grouping conditions that the target must satisfy. In particular,
we require that in any set we cannot have two distinct tuples that
agree on al the atomic valued elements, component wise, but do not
agree on the set-valued elements (if any). For example, the three
tuples under t gt . st udent s that involve Mary al have the same
atomic values but different SetlDs: Csy, Cs3, and C's4. We do not
allow such instance. Instead, we collapse the three tuples into one by
identifying the three SetlDs. Hence, the three singleton sets contain-
ing cour sel nf o for Mary are merged into one set (identified by
C's1; seetheinstance J in Figure 3). The resulting instance J isin
Partitioned Normal Form (or PNF) [1]. PNF is a basic form of data

stances (e.gsrci1 and srez shown before), and given a set of map- merging that is consistent with most user requirements. The instance
pings (e.g.,M: and M), what should the answers to a target query J isthen our canonical instance.

such asg: be? One possibility that has been considered in the re-
lational literature on query answering using views [17, 20] as well
as in query answering in incomplete databases [29], is to consider
the set of all possible target instances J that are consistent with the
mappings and the source instances and then take the intersection of
q1(J) over al such J. Thisintersection is called the set of the cer-
tain answers We take a somewhat different approach, which has a

Theevaluation of ¢; on J producesthefollowing set of tuples: {[Mary,
CS120, A, F1], [John, CS500, B, F5], [Mary, CS120, Gs, file01],
[Mary, CS200, G4, file0T]}. We view thisas being the right result
for ¢1. We adopt this semantics as aformal requirement on query an-
swering although not necessarily as an implementation strategy. In



fact, we show in Section 4 how to implement this semantics, without
meaterializing the canonical instance, but instead by query rewriting.
For ¢1, we would generate the following rewritings:

(r1) for s in src,.students

return [name = s.N, course = s.C, grade = s.G, file = null]
(r2) for s in srce.students, e in srco.courseEvals

where sK=eK

return [name = s.N, course = e.C, grade = null, file = e.F]

Evaluating r1 U ro on the sources (srci and srce) gives precisely
the above four tuples that would be obtained by evaluating g1 on J.
This is modulo the fact that the null values for grade and file have
all been replaced by one single nul | value. In general, “unknown”
values can be replaced by nul | at the end of the rewriting process,
as long as the corresponding schema element is nullable in the tar-
get schema. This would not be the case if we were to return one of
the two E elements: E plays an integrity role (key/keyref) and can-
not be nullable. The rewritings would then include Skolem terms to
explicitly construct values for E.

The relational chase [4] has been used to study the semantics of data
exchange as well as query answering in [14]. Their canonical univer-
sal solution would correspond to our canonical target instance, if we
restrict to the relational model. We use here a nested extension [25]
of the chase.

2.4 Target Constraints

Next, we consider the following question: under which conditions,
will the answers to the target query include “merged” tuples that,
for example, fuse the grade and the file for Mary and CS120 in our

running example?he answer will rely on the use of the target con-
straints to specify data merging rules. For example, the following
constraints can be specified on the target instance for the mapping
scenario of Figure 1:

(c1) for s; in tgt.students, ¢; in s;.student.Cs,
so In tgt.students, co in so.student.Cs
[ s1.student.S = s5.student.S and
c1.courselnfo.C = ¢5.courselnfo.C
— ¢1.courselnfo.E = ca.courselnfo.E |
(c2) for e; in tgtevals, es in tgt.evas
[ 61.E.Va|.E = eg.eval.E
— e1.eval.G=e;.eval.G and e; .eval.F=e,.eval .F]

The constraint ¢; asserts that there must be at most one evaluation
id (E) for agiven pair of student id (S) and course (C), while c; as-
serts that E must be a primary key of the set t gt . eval s. Both
constraints are functional dependencies; however ¢; is a functional
dependency that goes across nested sets. The constraints that we use
generdize the relational equality-generating dependencies of [4] and
are the same fragment as the EGDs introduced in [25] for a dightly
richer datamodel. We call these constraints NEGDs (nested equality-
generating dependencies). The genera formis:

[ B1 — B2]

where g;, B1, B2 are defined as with mappings and queries. NEGDs
capture XML Schema key constraints as well as forms that are not
expressible by XML Schema (e.g., c1).

for ziin gi,...,zn N gn

Recall the source instances given earlier for our example, and the
canonical instance J constructed in Figure 3. Given the additional
specification with ¢; and c2, J is no longer an accurate view of the
sources. In particular, the constraints ¢c; and c2 are not satisfied (there
aretwo distinct £ valuesfor Mary and C'S120). We define the new
canonical instance to be the result of additional chasing of J with the
target constraints. Figure 4 shows how J is transformed into J; via
this chase. Concretely, whenever two distinct nulls are required to be
equal by some constraint, we enforce the equality by identifying one
with the other. Similarly, if anull isrequired to be equal to a source
value, we enforce it by replacing the null with the source value. At
the end we may need to reapply the PNF procedure. The result, Ji,
is now the “correct” view of the sources. It now includes only one

J

tgt.students: J;
001 Mary Cs,

tgt.students:
005 John Cs,

001 Mary Cs,
005 John Cs,

Cs;:
Es120 \g Cs,: Cs;: Cs,:
CSI20 &g, €S500 E, CS120 £, (csppp E,
1 2 2
€S200 E, C:>hase > oS00 €
tgt.evals: €, G tgt.evals:
E, A R0l E, A file01
E B, F E B F
£, % 54 file01 E, G, file07

' E, G, fileo7
Figure 4: Chasewith target constraints.

tuple containing all theinformation (grade and file) about M ary and
(C'S120. We take the semantics of target query answering to be the
result of evaluating the query on this canonical target instance.

For our example, if weevaluate ¢; on J1, weobtain: {[Mary, C'S120,
A, file01], [John, CS500, B, F»], [Mary, CS200, G4, file0T]}.

The first tuple correctly “fuses’ data from the two sources. One of

our main contributions is the technique to produce such tuples that

are consistent with the mappings and the target constraints, without

materializing a canonical Instance, but instead by additional trans-

formation of the query (via resolution Section 5). In particular, we

obtain an additional rewriting for ¢; that joins the two sources on

student id and course, and produces the “fused” tuple:®

(r3) for sin src;.students, s’ in srco.students,
e’ in srcy.courseEvals
where s’ K=¢' Kands.S=s".Sands.C=¢'.C
return [name = s.N, course = s.C, grade = 5.G, file = ¢’ .F]

3. QUERY REWRITING REQUIREMENTS

In this section, we give the formal details regarding the semantics for
target query answering, and articulate in a precise way the require-
ments on query rewriting. Let I be a source instance, X,; be a set of
mappings, and 3, beaset of target constraints (NEGDs), all arbitrary.
In general, there can be multiple canonical instances J for I due to
the fact that the chase may choose different names for the nulls, or
the sequence in which the mappings and constraints are applied may
be different. However, the important fact about canonical instancesis
that they behave essentially the same when queriesin CQ, are evalu-
ated on them. We call atarget instance K a solutionwith respect to
1, ¥, and X (or solution, in short), if K satisfies the constraints of
st U X, for thegiven 1.

DEFINITION 3.1. Let ¢ be a CQy query. Then the set of the
PNF-certain answers of with respect tol, ¥,; and X, denoted
PNF-certain:_, us, (¢, I), istheset of all tuplest suchthat ¢ € ¢(K)
for everysolution K.

PrROPOSITION 3.2. Let J be a canonical target instance fdr,
Y.t and X;. Then for everyC'Qo queryq, we have thay(J);, =
PNF-certain:,,us, (¢, I). Heregq(J), is the result of evaluating
on J and then removing all tuples with nulls.

Thus, CQo query evaluation on a canonical instance is essentialy
the same as computing the certain answers. In general, we would
like a rewriting algorithm to produce a rewriting » of ¢ such that
r(I); = q(J); (= PNF-certain-_,us, (g, I)). Typicaly, r must be
a union of rewritings. We call such » asound and complete rewrit-
ing. When the exact equality is not guaranteed by the algorithm but
we havethat (1), C ¢(J), (= PNF-certain:,,us, (¢, 1)), we say
that r isasound rewriting An agorithm that always produces sound
rewritings is sound. An algorithm that always produces sound and

3We also assume here, for simplicity of presentation, that student id
(S) functionally determines student name (N). Otherwise, the rewrit-
ing is slightly more complex, in order to account for all the different
names for a given student id.



complete rewritings is sound and complete. We are interested in
rewriting algorithms that are sound and, if possible, complete.

For the larger class CQ of queries, the classical notion of the certain
answers is no longer sufficient (because the answers are no longer
flat tuples). However, we will continue to use the canonical tar-
get instance to define the semantics of query answering, thus going
beyond the notion of the certain answers and beyond CQ,. Further-
more, in practice, we do not remove tuples that contain nulls during
evaluation, that is, we do not compute »(I), (or ¢(J),) but rather
r(I) (or g(J)). In that case, we cannot require the exact equality
r(I) = q(J) (or r(I) C q(J), for that matter), since the nulls (as
well as the SetlDs in the case of queries that return nested sets) may
be named differently. Instead, for sound rewritings, we require are-
laxed version of containment: r(I) < ¢(J) if there exists a function
h mapping the nullsoccurringin (1) into values (null or non-null) of
q(J) and mapping the SetlDs occurring in (1) into SetlDs of ¢(.J),
such that the facts of (1) are mapped into facts of ¢(J) (when r(I)
and ¢(J) are viewed as nested instances). For sound and complete
rewritings, we will requirethat »(I) < ¢(J) and ¢(J) < r(I).

4. BASIC QUERY REWRITING

We describe next the basic algorithm that rewrites a target query into
aset of source queries, based on the mappings. There are four phases
in the algorithm: rule generationquery translationquery optimiza-
tion, and query assemblyRule generation creates a set of mapping
rulesbased on the schemas and the given set of mappings. The map-
ping rules are then used in the translation phase to reformulate tar-
get queries into (unions of) source queries. If the target query has
nested subqueries in the return clause, the translation phase also
decorrelates the query into a set of stand-alone queries and trans-
lates them one by one. The optimization phase removes unsatisfi-
able source queries and minimizes the satisfiable ones. The assembly
phase re-assembl es the decorrelated source queries back into queries
with nested subqueries, if the original target query is nested. In Sec-
tion 5 we extend this basic algorithm to handle target constraints, by
inserting aquery resolutiorphase between the trandl ation and the op-
timization phases.

4.1 RuleGeneration

Mappings are often incomplete and may specify only a subset of the
target elements. The goal of the rule generation phase is to turn this
incompl ete specification into a set of mapping rulesthat fully specify
the target in terms of the sources, so that target expressions can be
substituted by source expressions later. We illustrate the algorithm
for generating mapping rules using our running example in Figure 1.
The algorithm starts by generating a rule for each root of the target
schema. For theroot t gt of our target schema we generate:

(Ro) tgt = [ students = Stht_Oo, evals= Stht.lO ]

S Kigto and S Kigt.1 are 0-ary Skolem functionthat are used to gener-
ate the SetlDs for the set elements st udent s and eval s, respec-
tively. The functions are O-ary because only one instance of each of
these sets must exist, according to the schema. In general, we asso-
ciate each set type in the target schema with a unique Skolem func-
tion that can generate instances (i.e., SetlDs) at that type. The Skolem
function depends, in general, on the atomic elements from the current
nesting level aswell asfrom the parent and ancestor levels. Once we
finished with the roots, the algorithm looks at the mappings. For each
mapping and for each generator in the exists clause we construct a
rule. For the generator s’ in tgt.studentsin M7, we obtain:

(R1) SKigo()
for s in src;.students
return [student=[ S=s.S, N =s.N,
Cs= SK{gtlo_o,z(S.S, SN)]]
S Kigro() isthe head of the rule, while the body of therule is a query

that constructs st udent elements for the set denoted by S Kigt.o()
(i.e, st udent s). The foreach and associated where clause of the

“An agreed upon definition of the certain answers in this case does
not exist, as far as we know.

mapping become the for and where clauses of the query, while the
source expressions in the with clause are used to fill in values for the
atomic elements (s.S and s.N, in this case) in the return clause. For
the set type Cs, we again use a Skolem function to generate corre-
sponding SetlDs. In this case, a new SetlD (and, accordingly, a new
set of cour sel nf o elements) is generated for each different com-
bination of s.Sand s.N. The name of the Skolem function, S Kigt.0.0.2
is generated based on the position of the element Cs in the schema
(eg., it is the 2nd child of the Oth child of the Oth child of t gt ).
Continuing with ¢ in s’ .student.Cs of M, we produce:

(Rz) Stht_o_o_iS.S, S.N) —
for s in src;.students
return [courselnfo=[ C=s.C,
E=SKi25(s.S,5.N,s.C,5.G)]]

This rule populates, with elements, the SetlDs that were created by
R1. The head of this rule is a Skolem function with arguments: s.S
and s.N. Hence, the rule generates cour sel nf o elements under a
different set S Kigro.ods.S, s.N), for each different pair of s.S and
s.N. Note that courses for the same student (i.e., same id and name)
are grouped together under the same set. Thisisin accordance with
the requirement that the target instance must be in partitioned normal
form (PNF). Since M; does not specify a value for the atomic ele-
ment £, we use an atomic type Skolem function (S K25 isasystem
generated name) to create a value for it. This function depends on
all the source atomic elements that are mapped into the target viathe
mapping. Finally, one more rule is generated for M :
(R3) SKig) <

for s in src;.students

return [ eva=[ E=S K125(s.S5,5.N,s.C,s.G), G=5.G,

F=SK126(s.S,5.N,s.C,5.G)]]

Note that the same function SK125 asin R is used to generate an
E-vaue. Thisis because the mapping requires the two E values to
be equal, as specified in the target where clause. Inasimilar fashion,
three more rules are generated from the second mapping, M. Welist
below two of them:
(R4) SKigo) «

for s in srce.students, ¢ in srce.courseEvals

where s.K=cK

return [student =[ S= 5.5, N = s.N, Cs= SKigr004s.S, s.N)]]
(R5) SK[Q{_(),O,Z(S.S, SN) —

for s in srco.students, ¢ in srcs.courseEvals

where s.K=cK

return [courselnfo=[ C=¢.C, E= SK127(s.S, s.N, ¢.C, c.F)]
The same Skolem function, S Kigto.0.2 iSused in Ry and Rs asin
Ry and R» (as mentioned, such Skolem function is associated with
the set type in the schema and not with a mapping). Hence, if the
same student id and name occur in both sources, the course related
information is mergedunder the same set. Again, this reflects the
PNF requirement on the target. Such PNF-based merging isaform of
data merging across sources that we achieve even without additional
target constraints.

After iterating through all the mappings, the algorithm merges all the
rules with the same Skolem function in the head, to obtain a single
definition for each target set type. Essentially, this amounts to taking
aunion and isstraightforward for S Kigt.o() and S Kigt.1(). However, in
the case of combining rules R, and R, we cannot just take the union
sincethe head is parameterized. Instead we describe the combined ef-
fect of the two rules by defining (seerule R2s in Figure 5) S Kigro.0.2
as afunction (lambda), with two arguments, /; and [, denoting pos-
sible student id and name. The function returns a set of associated
course entries by combining the bodies of the rules R> and Rs. Note
that the two queries used inside Rz are now parameterized by [; and
l2. If the same student id and name appear in both sources then both
these queries are non-empty and their union is non trivial. Figure 5
gives all the mapping rules for our example. We note that evaluating
the generated mapping rules on any source instance would give us a
canonical target instance as described in Section 2.3.

4.2 Query Trandation
The next phase is to trandate the target query into a set of source
queries based on the mapping rules. The QueryTranslatealgorithm



(Ro) tot=[ students= S Kigto(), evals= S Kigt1() ]
(F14) SKigro=A() .

for s In src,.students
return [ student=[ S=s.S5,N =s.N,

U Cs= SthtOOiS S S. N)]]
for s in srce.students, ¢ in srcs.courseEvals
where s.K =c.K
return [ student=[ S=s.5,N=s.N,

Cs= SK@{,QQ_XS.S, SN)]] }
(R25) SKigroo2=A(l1,12) . {
for s In src;.students
where [; =s.S and > =s.N
return [ courselnfo=[ C=s.C,
E=S5K125(5.5,5.N,s.C,5.G)]]

U
for s in srce.students, ¢ in srce.courseEvals
where sK=cK and /; =s.S and I, =s.N
return [ courseinfo=[ C = ¢c.C,

E= SK127(8.S,5.N,C.C,C.F)]]}

(Ras) SKigti=A(). é

for s In src;.students

return [ eva =[ E= SK125(s.S,5.N,5.C,5.G), G = 5.G,
F=SKi26(s.S5s.N,s.C,5.G)]]

U

for s in srco.students, ¢ in srce.courseEvals

where s.K =cK

return [ eval = [ E=SK127(5.5,5.N,c.C,c.F),
G=SK128(s.S,5.N,c.C,c.F), F=c.F]] }

Figure5: Mappingrules

(shown in Figure 6) achieves this by iteratively substituting genera-
tors in the for clause of the target query with source generators of
the matching mapping rules. The set of transformation rules (also
in Figure 6) are applied to transform the rest of the query after each
substitution. We describe next both the transformation rules and the
QueryTranslatealgorithm. We will use the notation E[z — y] to
denote the result of substituting al occurrences of = in E with y and
then recursively applying the transformation rules.

The transformation rules describe the steps involved in transform-
ing a query when an expression in the query is replaced by another
expression. There are a total of four rules: 1) Lambda substitution
rule: this rule extracts the union of queries () from the body of the
lambda definition and replaces the lambda variables with the actual
arguments. 2) Union separation rule: this rule divides a query whose
for clause contains a union of queries into a set of queries without
union in the for clause. 3) De-Nesting rule: this rule applies when a
guery contains an inner query initsfor clause. It replacesthe genera-
tor (g in Q) with the for clause of Q and appendsthe origina where
clause to the where clause of Q. Every occurrence of g through-
out the query is then substituted with Q’s return clause. 4) Record
projection rule: intuitively, this rule applies when a record value is
projected on one of its labels. The inner value matching the label is
returned as the result of the projection. It can be applied multiple
times until no projection step is left.

The algorithm first substitutes the target root element using the root
rule (e.g., Ro in Figure 5). The result is marked as atop query to dif-
ferentiate it from asubquery nested inside another query. Thequery is
then addedto L, alist of al partially rewritten queries. Inthese partial
queries, whenever a Skolem function occurs in a generator in the for
clause, it is substituted with the lambda definition of the correspond-
ing mapping rule. After each substitution step, the algorithm applies
all the applicable transformation rules and adds the resulting query
or queries back to L. Eventually, the for clause will contain only
source generators and this marks the completion of the rewriting for
this query (without considering its subqueries). If the query contains
subqueries, then the algorithm decorrel ates the parent query from the
subqueries (line 10-14) before adding it to the output. Decorrelation
serves two purposes: first, it simplifies and improves the performance
of the algorithm by avoiding unnecessary overhead of examining the
parent query when child queries are being processed; second, it sim-
plifies the QueryOptimizatiorand QueryResolutioml gorithms (Sec-

Input: target query g, set of mapping rules R

1. Initializelist L and Q s

2. qo = g[root — body(Rroot)]

3. Mark g top query, and add it to L

4. while L is not empty

qc = L.remoyeFirst

if exists {Qi m SKSeIID(‘ .
Qc = qc[S Kseup — body(Rseup)]
Add all queriesin Q. to L and continue

9. elseifq..return contains subqueries:

10. for each subquery qs»:

5
6. )} ing..for:
7.
8

11. Assign aunique QryID t0 gsp
12. let E bethe sequence of all distinct expressions
in g5 that refer to any variablein g...for
13. Goub = qsublE — (lo, -+, lp)] and add gsyp to L

14. =qc[gsub — SQQWID(E)]

15. Add qc to Qs and continue

16. elseAdd g. to Qs and continue

Output: the set Qs of translated and decorrelated queries

Lambda Substitution Rule:
{A(l1, ..., ln){E}}(e1,...,en) = E[l1 —e1,...

Union Separ ation Rule:
for....g;in{Q.u...
where B return
U
for...,g:in{Q:},. for ..
where Breturn»  U.

yln — en]

UQn}...

» gi 11 in {Qn} cee
.U where B return »

De-Nesting Rule:
for =, inx;,...=,inX,
gin {for y, |n Yi,..o vk IN 'Y, where B return -},

Z1 |n Z1, .o Zm ﬂ m

where By return o
i)

for z;inx,,..., T, N Xn,piNYy, .., Yie IN Yy,
21N Za[g — 1], .. 2m N Z[g — 7]

where Bo[g — ] and B return rolg — 7]

Record Projection Rule:
o li=r, ]l =7

Figure6: Algorithm QueryTransiate

tions 4.3 and 5) by relieving them of the complexity of dealing with
nested subqueries. During decorrelation, each subquery is assigned
aunique QryID; its occurrence in the parent subquery is then substi-

tuted by a Skolem query terrS Qoryio (£ %), where SQarip isafresh

Skolem function, and E are al the expressions in the subquery that
refer to variables in the for clause of the parent query. The subquery

itself is added to the working list L, after Eis replaced by a set of
fresh variables lo, . . ., lx. These variables will be substituted back
with the actual expressionsin the assembly phase.

Figure 7 sketches several steps during the rewriting of query ¢; of
Figure 2. The first query shown is the result of substituting the tar-
get root tgt using the mapping rule Ry in Figure 5 and applying
record projection afterwards. The target generators are substituted
with source generators one by one, until the query becomes a source
query®. Figure 8 uses the running query ¢- to illustrate decorrel ation.
After step 1, which substitutes S Kigto using rule R14, the trandation
of the top query itself is completed. Since there is a subquery in the
return clause, step 2 decorrelates the subquery from the top query by
replacing it with SQ201(s1.N), where SQ201 is anew Skolem func-
tion associated with this subquery and s1.N is the expression in the
subquery that refersto the parent variable s;. The subquery ismarked
with the QryI D (i.e., 201) and all occurrences of s;.N are replaced
with the variable [.

4.3 Source Query Optimization

The optimization phase consists of two components. compilation
and minimization Compilation eliminates the equalities involving
Skolem terms that occur in the where clause of a rewriting. Any

®Dueto space limitation, weignore here the second term of the union,
in R14, aswell asintherest of therules.



@ S m SK[gtAo(), c m S.Student.CS, e m Stht.l()

where c.courselnfo.E = e.eval .E

return [ name=s.student.N, course=c.courselnfo.C,
grade=e.eval .G, file=e.eval .F ]

(Step 1) »U/ Substitute Stht.O

for s’ in src;.students, cin SKigrooAs’.S, s".N),
e in SKigta()
where c.courselnfo.E = e.eval .E
return [ name=s’.N, course=c.courselnfo.C,
grade=e.eval .G, file=e.eval.F ]

(Steps 2 and 3) »U« Substitute Stht.O.O.Z and Stht.l

for s’ in src;.students, ¢ in src; .students, e’ in src; .students
where SK125(c’.S, ¢ N, ¢.C, ¢.G) = SKi25(€’.S, ¢’.N, €'.C, €'.G)
and s’.S=c’.Sand s’.N=c'.N
return [ name=s’.N, course=c’.C, grade=¢’.G,
file=SK126(e’.S, ¢’ .N, €'.C, ¢ .G) |

Figure 7: Example stepsduring trandation of ¢;

(top) for s in SKigto()
return [ name=s.student.N,
results= for s’ in tgt.students, c in s’.student.Cs,
e’ in tgt.evals
where ¢ .courselnfo.E = ¢’.eval.E and
s’ .student.N = s.student.N
return [ result = [ grade = ¢’.eval.G,
file=e'.eva.F]]
(step 1) |} (substitution)
(top) for s in src; .students
return [ name=s;.N,
results= for s’ in tgt.students, c in s’.student.Cs,
e’ in tgt.evals
where ¢ .courselnfo.E =¢’.eva.E and
s’ .student.N = 51.N
return [ result =[ grade = ¢’ .eval.G,
file=¢’.eval.F]]
(step 2) | (decorrelation)
(top) for s in srcy.students
return [ name=si.N, results= SQ201(s1.N) ]

+
(SQ201(0))
for s” in tgt.students, c in s’.student.Cs, €’ in tgt.evals
where ¢’.courselnfo.E = ¢’ .eval.E and s’.student.N = [y
return [ result = [ grade = ¢’.eval.G, file=¢’.eval.F] ]

Figure 8: Example stepsduring transdation of go

equality between two Skolem terms that have the sameSkolem func-
tion, that is, of the form F(¢1,...,tx) = F(t1,...,t}), isreplaced
by the equalities of their arguments; t; = ¢} and ... and tx = t}.
In contrast, if arewriting contains an equality involving two Skolem
terms with different Skolem functions or a Skolem term and a non-
Skolem term, then the rewriting is marked unsatisfiable (i.e., return-
ing the empty set) and eliminated. This procedure preserves com-
pleteness of the algorithm (see Section 4.5) as long as there are no
target constraints. Minimization is applied afterwards; it eliminates
redundant generators by searching for aminimal subset of generators
and, hence, minimal query, that can yield the same answers. The ac-
tual procedure is a case of the minimization introduced in [9]. For
our query qi, if we take the rewriting obtained after the translation
steps shown in Figure 7 and apply compilation and minimization, we
obtain the following minimal rewriting:

for s’ in src;.students
return [ name=s’.N, course=s’.C, grade=s".G,
fi|e=SK126(S/.S, S/.N, S/.C, S/.G)]

This is the same as the rewriting 71 shown in Section 2, provided
that we replace the above Skolem function by nul | , which is done
whenever the value is nullable. We point out that the queries that
result after rewriting often contain redundancies, and minimization is
akey component for the efficient evaluation of such queries.

| J J

b P T
a, A A
mo 5[

c

a; b X; a; biX;y
a, b X, a, i X,

a, b a,b X, a bX,
M: foreach p in P
exists tinT
with tA=pA andt.B=p.B

C. @tl m T,tQ m T[tl.thQ.B — t1.C:t2.C]
Figure 9: Mapping scenario with target constraints.

4.4 Query Assembly

After optimization, the set of minimized, decorrelated source queries
are assembled back into nested queries in the query assembly phase.
First, the top queries are identified; there can be a set of top queries
since one top query can be rewritten into a set of queries, all of which
are top queries. Each Skolem query term with a given QryID in
the return clause of atop query is substituted with the union of al
queriesthat are marked with the same QryID. A query isfully assem-
bled whenitsreturn clauses (including those insideits subqueries) no
longer contain any Skolem query term.

4.5 Soundness, Completeness, & Complexity
The following theorem is a statement of the correctness and com-
pleteness of the basic rewriting algorithm with respect to the seman-
tics given by the canonical target instance. We use here the notation
and terms introduced in Section 3.

THEOREM 4.1. Let X,; be a set of mappings. For every core
query g over the target, the basic rewriting algorithm generates
such that: wheneveris a source instance anflis a canonical target
instance forl and X, thenr(I) < ¢(J) (soundness) ang(J) <

r(I) (completeness). In particular(I), = ¢(J); = PNF-certains_, (¢, I),

if gisin CQy.
In the above r is a union of rewritings. We next give a bound on the
number of rewritings generated by QueryTranslateor a given CQo
query (either the input query or a query that results after decorrela
tion).

PrRoOPOSITION 4.2. If k is the size (number of variables) of an
input CQ, query andn is the number of mappings then the number
of rewritings generated by QueryTranslatedgn®).

5. QUERY RESOLUTION

When target constraints are part of the input, the basic rewriting al-
gorithm becomes incomplete. This means that the condition ¢(.J) <
r(I) is no longer true, that is, ¢(J) may contain answers that are
not reflected in (). We show next how to extend the basic rewrit-
ing algorithm in order to handle target constraints. We illustrate
the deficiencies of the basic algorithm when it comes to target con-
straints, and show how a new algorithm called query resolutiored-
dresses these deficiencies. For the simplicity of discussion, we will
use throughout this section a scenario (Figure 9) that is simpler than
our previous example.

Rewriting revisited In Figure 9, the A and B columns of a source
relation P are mapped via the mapping M into the A and B columns
of atarget relation T. The C column represents an identifier that exists
at the target but not at the source. A target constraint ¢ asserts that
B functionally determines C. Figure 9 also shows a possible source
instance I, aswell asthe canonical instance J obtained from I based
on the mapping M alone, and the canonical instance J, based on M
andec. In particular, J; reflects the fact that C-values are functionally
determined by the B-values. The following target query:
(@) for ¢t1in T,t2in T
where ¢;.C=t,.C
return [A; =t1.A, Ay =12.A]

asks for all pairs of A-values that have the same identifier (C-value).
We consider first the case of rewriting ¢ based on M aone. Accord-
ing to the basic query rewriting algorithm, we generate a mapping
rule R for M, and then rewrite ¢ by using R into a source query gs:




(R) T =for pin Preturn [A=p.A, B=p.B, C=F(p.A, p.B)]

(gs) for pi in Ppz in P
where F(p:.A, p1.B) = F(p2.A, p2.B)
return [A; =pi.A, As = pa A

The equality of the C-values has thus been replaced by an equality
of two Skolem terms. |In effect, the query ¢s incorporates reason-
ing about incomplete information in the form of equalities involving
Skolem functions. Inthe absence of target constraints, the query com-
pilation algorithm described in Section 4.3 is applied and the equal-
ity of the Skolem termsisreplaced by the equalities of the arguments.
We say that this replacement resolveghe Skolem term equality. After
minimization we obtain:

(7“1) fO_I' P1 m Preturn [A1 :pl.A,Az :p1.A]

The result is arewriting that, when applied to the source instance I,
generates all the “identity” pairs (a1, a1), . .., (an,axn). Thisiscon-
sistent with the semantics given by the canonical instance .J, which
is obtained in the absence of c. However, in the presence of ¢, this set
of answers isincomplete. All pairs of the form (a;, a;) with i # j
are also correct answers (consistent with the semantics given by J;).
To obtain these additional answers we make the following crucial ob-
servation. When we resolve the equality of the Skolem termsin ¢ by
replacing it with the equalities of the arguments, wein fact generate a
containedewriting, by making use of thefact that (p; .A =p2.A and

p1.B =p2.B) impliesF(p1.A, p1.B) = F(p2.A, p2.B). Thisimplication
isatrivia one (i.e. always true). However, in general, it is possible
that additional contained rewritings exist, because of additional con-
ditions that might imply the equality of the two Skolem terms. We
next show how to discover such additional conditions, based on the
target constraints. (The completeness part of Theorem 4.1 implies
that such rewritings do not exigt, if there are no target constraints.)

Rewriting of target NEGDs We rewrite target NEGDs by applying
the same tranglation algorithm (Section 4.2) that we use for queries.
We do not apply the compilation algorithm; hence, Skolem term
equalities may occur in the left-hand side of the implication, in the
resulting constraints. We do, however, apply minimization in order to
limit the size of the constraints. Theresult is a set of constraints over
the source schemas that imply additional equalities between Skolem
terms. In our example, the NEGD c is rewritten as a constraint that
gives us an additional condition (besides the trivial one) under which
the two Skolem termsin g5 can be considered equal:

(cs) forp: in Bpy in P
[pl.B:pz.B — F(pl.A,pl.B):F(pQ.A,pQ.B)]

Resolution step The rewritten constraints are then applied to gen-
erate additional ways of resolving equalities involving Skolem func-
tions. For the query ¢s and constraint ¢s, we can simply add the
precondition p;.B = p2.B from ¢, to the where clause of ¢5. We ob-
tain the following rewriting (also contained in g5, because we only
added an extra condition):

for p1 in Pp2 in P
where p1.B=p>B and F(pi.A, p1.B) =F(p2.A, p2.B)
return [A1 =pi.A, Az = p2.A]

But then we can immediately drop F(p1.A, p1.B) = F(p2.A, p2.B),
sinceit isimplied by the constraint. We obtain the rewriting r, shown
below. We call the process of generating r» from ¢, aresolution step
The result of the rewriting algorithm isnow r; U r, (and not just r1).
We note that (r1 U r2)(I) includes pairs of the form (a;, a;) with
i # j,andinfact (r1 Urs)(I) = q(J1). Thisistruefor all instances
1. Thus, 1 U 72 is sound and completg(according to Section 3).
(r2) for pi in Pp2 in P

where p:.B=p2.B

return [A1 =p1 A A = pgA]
For this example, r1 happens to be contained in r2 and, hence, it
is redundant. In our system, at the end of the resolution phase, we
remove redundant rewritings by performing containment checks.

In general, to apply aresolution step, the constraint need not match
the query exactly. Hence, the general resolution step is slightly more

Input: source query gs:
for pinp
where Bi(p) and F(t1,....t) = G(t), ..., t})
return o(p)
source constraint cg:
for rin R [Ba()— Fle,....e1) =Gle}, ... e})]
1. Compute equalities to unify the two Skolem term equalities:
O(p.n=(t1 =ei)and ... and (; = e;) and
(t, = ¢)and ... and (¢, = ¢;)
2. Generate contained rewriting » by “unioning” ¢s and ¢,
and then eliminating the Skolem term equality
for pinpPrinRr
where B (p) and B,(r) and ©(p,r)
return o(p)
3. Find minimal subset (ro iN Rg) of (r IN R) so that the
induced subquery »™ (see below) is equivalent to r.
for pin Py in Ry
where B (p) and Bj(ro) and e’(p, ro)
return o(p)
Output: Rewriting »™.

Figure 10: Algorithm Resolution Step

complicated than explained on this example. We sketch the complete
resolution step in Figure 10. We usethe notation p in P to denote a set
of generatorspy in Pi,.. .,pn in P, and p to denote aset of variables
p1,--.,Dn (SAMefor r). Essentially, the algorithm generatesa“join”
between the query ¢, and the constraint ¢ (where the join condition
ensures that the two Skolem term equalitiesin the query and, respec-
tively, constraint, match). Then the Skolem term equality in the query
becomes implied, given that the constraint is true, and hence elimi-
nated. Among the newly introduced generators and conditions, not
al may be necessary. In the final step we apply a minimization pro-
cedure that removes the redundant ones. There, an induced subquery
isaquery obtained by eliminating asubset of generators from the par-
ent query and then “projecting” the parent where clause to contain
all the conditionsthat involve only remaining variables. Checking the
equivalence of v with r is performed by checking the existence of
containment mappings. The minimization procedure and the equiv-
aence check follow the techniques described in [9]. Although min-
imization is an exponential procedure, it is important to apply it in
order to limit the size of the resulting rewriting. Furthermore, the ex-
ponent in our case is given only by the number of generatorsr in R
and we expect thisto berelatively small in practice. The performance
of resolution is measured experimentally in the next section.

The above resolution step is applied to eliminate an equality involv-
ing Skolem terms in the where clause. Similarly, a resolution step
can be used to substitute Skolem termsin the return clause with non-
Skolem terms. This style of resolution (not shown here due to space
limitation) is used, in addition to the one described above, to gener-
ate the rewriting r3 of Section 2.4 for the query ¢; of our running
example.

Resolution phase For a given query, there can be multiple ways in
which one resolution step can be applied, for different constraints,
and for different Skolem term equalities in the where clause (or the
different Skolem terms in the return clause). The query resolution
phasgQueryResolutionis the one in which we explore exhaustively
al possible ways of applying resolution steps. For each query gs
that results after query trandation, we start by applying one reso-
lution step in al possible ways, and generate multiple rewritings.
Each rewriting resolves either one Skolem term equality inthewhere
clause or one Skolem term in thereturn clause of the given query. We
then continue with the new rewritings to generate more rewritings.
The computation can be viewed as a tree, whose branching factor is
given by the multiple ways in which a resolution step can apply to
aquery. All the generated rewritings (all the nodes in the tree) are
contained rewritings of the original ¢,. Some of these queries may be
redundant; also, the same query may be generated twice. We elim-
inate all redundant rewritings. The remaining ones enter the query
optimization and assembly phase, asin the basic rewriting algorithm.




Termination of resolution; acyclic constraints Each resolution step
eliminates at least one Skolem term equality in the where clause or
one Skolem term in the return clause. After the resolution step, it is
possible that new Skolem term equalities appear in the where clause
of the resulting query. This happens when the applied constraint con-
tains such Skolem term equality in the left-hand side of the implica-
tion. The newly introduced Skolem term egualities can then enable
additional resolution steps (in order to resolve them). Thus, this pro-
cess can be recursive in the sense that constraints can enable each
other. In order to guarantee termination of resolution, we impose a
natural acyclicity condition on the shape of the constraints. Let F
be the set of constraints over the source schemathat are obtained by
trandating the set of target NEGDs, based on the mapping rules. If
f1 and f, are constraints in F, we say that f; enablesf, and write
fi — foif f1 and f> are of the following form:

(fa) for ...[... F(..)=G(.) ... — ...]

(f2) for ...[ ... — ... F(..)=G(...) ...]
where F', G are two Skolem functions (possibly the same). Intu-
itively, if f1 isapplied in aresolution step to aquery, then f> becomes
applicable in a subsequent resolution step (even though it may not
have been applicable before). We construct a directed graph whose
nodes are the constraints in F and whose edges are given by the
“enables’ relation. We then say that F is acyclic if the correspond-
ing directed graph is acyclic. In the following, we will restrict our-
selves to target NEGDs that, for given schemas and mappings, give
rise to an acyclic set F. A typical example of target NEGDs that
may violate this condition is the set of two functional dependencies
{B — C,C — B} onatarget relation T'. If F is acyclic then we
can immediately prove that resolution is terminating.

Soundness & complexity The next theorem is a statement of the cor-
rectness (soundness) of the rewriting algorithm extended to include
the resolution phase.
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Chain Query 1: asingle-variable query
for $r in doc()/Target/ R, return  $r/B,,
Chain Query 2: athree-variable query

for  $ry, in doc()/Target/R,,, $rn.1 in $ry/Rn.1, $rn.2 in $rn.a/Rn2
return  $rp-2/ Bn.2

Authority Query 1: an m-way merging query
for  $r in doc()/Target/ Ro
return  <result> {$r/C1} {$r/C2} ... {$r/C), } <Iresult>
Authority Query 2: athree-variable query
for $rg in doc()/Target/ Ro, $r1 in $ro/ Ry, $ry, in $ro/ Ry,
return  <result> {$r1/B1} {$r,/By} <[result>
Authority Target Constraint:
every $rq indoc()/Target/ Ro, $r2 in doc()/Target/ Ry
satisfies if $r1/Ko=%$r2/Kyp

then $r1/C1 = $r2/C1 ﬂd . @$T1/Cm =%r2/Co

Figure 11: The synthetic “chain” (left) and “authority” (right) scenar-
ios, with queriesfor both and atarget constraint for “authority” scenario.
Queriesand constraintsarewritten in XQuery syntax (asthey areimple-
mented).

THEOREM 5.1. LetX,; and X, be a set of mappings and target
NEGDs, respectively. Assume that theBedf translated constraints
is acyclic. For every target CQ query the extended algorithm gen-
eratesr such that: wheneveris a source instance andlis a canoni-
cal target instance fof, ¥,; and%,, thenr(I) < ¢(J) (soundness).
In particular, 7(I); C ¢(J), = PNF-certains_,us, (¢, ), if gisin
CQo.

We point out that the extended algorithm may still be incomplete.

in the return clause) of an input CQquery. LetM be the maxi-
mum size of a mapping (humber of variables in fiveclause), let

n be the number of mappings, letbe the maximum size of a tar-
get NEGD (number of variables) and letbe the number of target
NEGDs. Moreover, assume that the $eof translated constraints is
acyclic. In that case, lef andh be the maximal fan-out and, respec-
tively, the maximum length of a path in the directed acyclic graph as-
sociated taF. Then the number of rewritings generated and explored

More precisely, there are exampl es of schemas, mappings, target func-
tional dependencies, and target CQ query ¢ for which the rewrit-
ing r that is generated by the extended algorithm does not satisfy
q(J) < r(I). Thisfollows from aresult from [12] that showed that,
for relational settings, one needs recursion in order to obtain the com-
plete set of the certain answers, in the case when functional depen-
dencies are allowed in the target. Thisholdsin our case aswell, since
the scenarios that we consider generalize the relational LAV scenario
of [12]. We note that we did not consider recursion as an accept-
able choice for our language of rewritings, as one of the main goals
of this work was to generate rewritings that can be expressed using
the core fragments of SQL or XQuery and, hence, can be efficiently
optimized and executed. Although incomplete in general, we believe
that the rewritings generated by the extended algorithm perform well
in practice. There are many examples of settings with target NEGDs
for which the generated rewritings are in fact complete (the examples
shown in this paper, and others). Furthermore, our current experi-
ence with the implemented system tells us that even for the cases
where the generated rewritings are incomplete, the answers that we
get are a pretty close approximation to the complete set of answers.
We plan to further validate this claim, experimentally, in our future
work. Also, it remains to be seen whether there isaway to bridge the
completeness gap in an efficient way.

Thefollowing gives abound on the number of rewritings explored by
the extended algorithm, for agiven CQo query.

by the extended rewriting algorithm @(n* x (Mknr)*").

This number is till a polynomial in the number of mappings, if we
consider the other parameters fixed. This is the same as in the case
of using QueryTranslatealone (although the degree is higher now).
In terms of the input query size, the complexity is higher now (expo-
nentia in k log k, as opposed to just exponentia in k).

6. EXPERIMENTAL EVALUATION

We evaluated the performance of our query rewriting system using
a comprehensive set of experiments, including two synthetic map-
ping scenarios and one real world scenario. We show that the system
scales well with the increasing mapping and query complexities in
the synthetic scenarios and is capable of efficiently rewriting a set of
common queries in the real scenario. The system isimplemented in
Javaand all experiments are performed on a PC-compatible machine,
with asingle 2.0GHz P4 CPU and 512MB RAM, running Windows
XP (SP1) and JRE 1.4.1. Each experiment is repeated five times and
the average of the five is used as the measurement.

6.1 The Synthetic Scenarios

We designed two scenarios (shown in Figure 11), chain and au-
thority, to evaluate the performance of the system along two ma-
jor dimensions: the mapping complexitymeasured by the number
of elements and referential relationships in a single source schema
and the number of independent sources that are mapped to the target

PrRoPOSITION 5.2. Letk be the size (number of variables, num- schema, and the query complexitymeasured as the number of levels
ber of conditions in theavhere clause, and number of expressions of nested subqueries (and indirectly, the number of variables) in the
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Figure 12: Performance of RuleGeneration and QueryTranslate with (A)
number of sources= 3 and (B) depth or number of children = 3 (Notethat
in B, the costs for QueryTranslate of both Q2 are given on theright y axis).

query. The chain scenario simulates the case where multiple inter-
linked relational tables are mapped into an XML target with large
number of nesting levels (depth). The authority scenario simulates
the case where multiple relational tables referencing a central table
are mapped into a shallow XML target with a large branching factor
(number of children). Three queries were designed for each scenario:
two of them (Q1 and Q2) have different number of variables in the
for clause (shown in the figure), and one (Q3) has adjustable level of
nested subqueries (Q3 is not shown due to space limitation). A target
constraint is defined on the authority scenario to be used in evaluat-
ing the performance of the QueryResolutioralgorithm. In addition
to these two scenarios, we also designed a scenario that isthe reverse
of the chain scenario, i.e., the XML schemas are used as the sources
and the relational schema is used as the target. The results for this
scenario are similar to those for the chain scenario and therefore not
reported here.

Mapping complexity: Figure 12 shows the performance of Rule-
Generationand QueryTranslaten rewriting Q1 and Q2 in both sce-

narios with the increasing mapping complexity. The upper limit on

the depth or number of children (also called single schema complex-

ity) is set to 20 as we believe this is a reasonably high estimate for

real schemas (the system can easily scale up to 40 children or levels

deep, costing under 10 seconds for either RuleGeneratioror Query-
Translatg. As shown in the figure, the RuleGeneratioralgorithm

scales well with both the increasing single schema complexity and

the increasing number of sources in the mapping scenario (it takes

less than 2.5 seconds with 50 sources and depth/number of children

equal to 3). QueryTranslatescales well for both queries with the in-

creasing single schema complexity and for the single-variable query

with increasing number of sources. For the three-variable query, the

cost of QueryTranslaténcreases quickly (but is still acceptable) with

theincreasing number of sources (around 10 minutes with 50 sources

for authority Q2). Thisis dueto the large number of possible waysto

substitute a target generator, which produces many potential source

queries that are invalidated later. As part of the future work, we

are exploring ways of improving the performance of QueryTrans-
late through early detection of unsatisfiable source queries. We aso

evaluated QueryOptimizatiorand QueryAssemblagorithms, which

show similar performance patterns to the QueryTranslatealgorithm

on a per produced query basis (not shown due to space limitation).

A Performance of Rewriting Nested Queries
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Figure 13: Performance of rewriting nested query (A) and QueryReso-
lution (B) (The cost of QueryOptimization is measured as per produced query).

Query complexity: The panel A of Figure 13 showsthe performance
of rewriting queries with an increasing nesting level (Q3). The sub-
query at each level contains a single-variable for clause in both chain
and authority scenarios. The QueryTranslateslgorithm scales well
with the increasing levels of nesting, taking less than 12 seconds for
a 7-level nested query in the chain scenario. The cost is mainly af-
fected by the number of produced (decorrelated) queries: the largest
number of produced queriesis 9840 for chain Q3 and 840 for author-
ity Q3, which account for the performance differences between the
two (y axis on the right). The performance of RuleGenerations not
affected by the query complexity.

Performance of QueryResolution: We further evaluated the per-
formance of QueryResolutiolgorithm using the authority scenario
with a single child in each source schema and the target constraint
shown in Figure 11. The results of rewriting the merging query Q1
are shown in panel B of Figure 13. As expected, the number of valid
source queries being produced increases with number of sources. The
total time cost for QueryResolutiorl gorithm increases accordingly.
As a subject of our future work, the cost can be reduced if we know
that certain sources can not have complementary data of the same
object: any merged source query involving at least two of those non-
overlapping sources can not be valid.

6.2 ThelLife Sciences Scenario

Although synthetic scenarios can help us analyze the behavior of the
system, real world examples are necessary to test its practicality. In
this regard, we measured the performance of the system using areal
data integration scenario from the Life Sciences domain. In are-
cent project [8], two prominent protein-protein interaction databases,
BIND and DIP?, areintegrated into asingle centralized database. The
mapping scenario (from BIND and DIP to the central target schema)
is extracted and five queries that are representatives of those com-
monly asked by the biologists are chosen for rewriting (shown in
Figure 14 is one of the five queries). The three schemas (all are
XML schemas) contain atotal of about 500 elements with a maxi-
mum depth of 17 and amaximum fanout of 13. The mapping scenario

Shttp://www.bind.ca/; http://dip.doe-mbi.ucla.edu/
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Q5: Find “NFKB” interaction chainswith length 3
for  $o in doc()/root/org, $a in $o/obj, $ai in $a/obj_inter,
$an in $a/obj_name, $b in $o/obj, $bi in $b/obj_inter
where $an/name="“NFKB” and $ai/inter_with/id = $b/id
return <result>
{ for $bn in $b/obj_name return $bn/name }
{for $cin $olobj
where  $bi/inter_with/id = $cfid
return <names>
{ for $cn in $c/obj_name return $cn/name }
</names>
<[result>

Figure 14: Rewriting common protein interaction queries

contains 4 logical mappings with 3-10 variables in both foreach and
exists clauses for each mapping, and two target key constraintsiden-
tifying components of a protein (or its interaction partner) given the
id. Figure 14 shows the time cost for each component of our sys-
tem to rewrite the five representative queries. Each of those queries
is rewritten into 4-8 valid source queries, while the total number of
produced (decorrelated) queries, valid or invalid, ranges from 16 to
2560. Each of the five queries is rewritten by the system in atotal of
about 60 seconds, with query 4 being the longest one to finish, taking
69.5 seconds.

7. CONCLUSION

This paper presentsthefirst mapping and constraint based XML query
rewriting system. Our techniques can be applied in various XML or
relational data integration scenarios for answering queries through
avirtual target schema. The semantics of such query answering in
the presence of both mappingsand target constraintss defined and
used as the basis for the system. Mappings can be incomplete, and
this gives flexibility to the design of the data integration system. The
incorporation of target constraints ensures that various parts of the
same data entity, though residing at different sources, are merged and
presented to the user as a whole. Two novel algorithms are imple-
mented: the basic query rewriting algorithrtransformstarget queries
into source queries based on mappings, while the query resolution
algorithm generates additional source queries to merge related data
based on the constraints. Experimental evaluation showsthat the sys-
tem scales well with increasing complexities of the mapping scenario
and the target query, and ispractical in areal dataintegration scenario
drawn from the Life Sciences domain. Some of the open questions
that remain to be answered are: identifying classes of mappings and
target constraints for which resolution is guaranteed to be complete,
further performance improvement of the resolution algorithm, and
extension to a larger class of queries that would include aggregation
and more complex predicates.
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