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ABSTRACT
Recently there has been significant development in the use of
wavelet methods in various data mining processes. However, there
has been written no comprehensive survey available on the topic.
The goal of this is paper to fill the void. First, the paper presents a
high-level data-mining framework that reduces the overall process
into smaller components. Then applications of wavelets for each
component are reviewd. The paper concludes by discussing the
impact of wavelets on data mining research and outlining potential
future research directions and applications.

1. INTRODUCTION
The wavelet transform is a synthesis of ideas that emerged over
many years from different fields, such as mathematics and signal
processing. Generally speaking, the wavelet transform is a tool
that divides up data, functions, or operators into different frequency
components and then studies each component with a resolution
matched to its scale [52]. Therefore, the wavelet transform is antic-
ipated to provide economical and informative mathematical repre-
sentation of many objects of interest [1]. Nowadays many computer
software packages contain fast and efficient algorithms to perform
wavelet transforms. Due to such easy accessibility wavelets have
quickly gained popularity among scientists and engineers, both in
theoretical research and in applications. Above all, wavelets have
been widely applied in such computer science research areas as im-
age processing, computer vision, network management, and data
mining.
Over the past decade data mining, or knowledge discovery in
databases (KDD), has become a significant area both in academia
and in industry. Data mining is a process of automatic extraction of
novel, useful and understandable patterns from a large collection of
data. Wavelet theory could naturally play an important role in data
mining since it is well founded and of very practical use. Wavelets
have many favorable properties, such as vanishing moments, hier-
archical and multiresolution decomposition structure, linear time
and space complexity of the transformations, decorrelated coeffi-
cients, and a wide variety of basis functions. These properties could
provide considerably more efficient and effective solutions to many
data mining problems. First, wavelets could provide presentations
of data that make the mining process more efficient and accurate.
Second, wavelets could be incorporated into the kernel of many
data mining algorithms. Although standard wavelet applications
are mainly on data which have temporal/spatial localities (e.g. time
series, stream data, and image data) wavelets have also been suc-
cessfully applied to diverse domains in data mining. In practice,

a wide variety of wavelet-related methods have been applied to a
wide range of data mining problems.
Although wavelets have attracted much attention in the data mining
community, there has been no comprehensive review of wavelet ap-
plications in data mining. In this paper we attempt to fill the void by
presenting the necessary mathematical foundations for understand-
ing and using wavelets as well as a summary of research in wavelets
applications. To appeal to a broader audience in the data mining
community, this paper also providea brief overview of the practical
research areas in data mining where wavelet could be used. The
reader should be cautioned, however, that the wavelet is so a large
research area that truly comprehensive surverys are almost impos-
sible, and thus, that our overview may be a little eclectic. An inter-
ested reader is encouraged to consult with other papers for further
reading, in particular, surveys of wavelet applicaations in statis-
tics [1; 10; 12; 121; 127; 163], time series analysis [124; 44; 129;
121; 122], biological data [9], signal processing [110; 158], image
processing [133; 115; 85] and others [117; 174]. Also, [93] pro-
vides a good overview on wavelet applications in database projects.
The reader should be cautioned also that in our presentation mathe-
matical descriptions are modified so that they adapt to data mining
problems. A reader wishing to learn more mathematical details of
wavelets is referred to [150; 52; 46; 116; 169; 165; 151].
This paper is organized as follows: To discuss a wide spectrum
of wavelet applications in data mining in a systematic manner it
seems crucial that data mining processes are divided into smaller
components. Section 2 presents a high-level data mining frame-
work, which reduces data mining process into four components.
Section 3 introduces some necessary mathematical background re-
lated to wavelets. Then wavelet applications in each of the four
components will be reviewed in Sections 4, 5, and 6. Section 7
discusses some other wavelet applications which are related to data
mining. Finally, Section 8 discusses future research directions.

2. A FRAMEWORK FOR DATA MINING
PROCESS

In this section, we give a high-level framework for data mining
process and try to divide the data mining process into components.
The purpose of the framework is to make our following reviews
on wavelet applications in a more systematic way and hence it is
colored to suit our discussion. More detailed treatment of the data
mining process could be found in [79; 77].
Data mining or knowledge discovery is the nontrivial extraction
of implicit, previously unknown, and potentially useful informa-
tion from large collection of data. It can be viewed as a multi-
disciplinary activity because it exploits several research disciplines
of artificial intelligence such as machine learning, pattern recog-
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nition, expert systems, knowledge acquisition, as well as mathe-
matical disciplines such as statistics, information theory and uncer-
tain inference. In our understanding, knowledge discovery refers
to the overall process of extracting high-level knowledge from low-
level data in the context of large databases. In the proposed frame-
work, we view that knowledge discovery process usually consists
of an iterative sequence of the following steps:data manage-
ment, data preprocessing, data mining tasks algorithms and
post-processing. These four steps are the four components of our
framework.
First, data managementconcerns the specific mechanism and
structures for how the data are accessed, stored and managed. The
data management is greatly related to the implementation of data
mining systems. Though many research papers do not elaborate
explicit data management, it should be note that data management
can be extremely important in practical implementations.
Next, data preprocessingis an important step to ensure the data
quality and to improve the efficiency and ease of the mining pro-
cess. Real-world data tend to be incomplete, noisy, inconsistent,
high dimensional and multi-sensory etc. and hence are not di-
rectly suitable for mining. Data preprocessing usually includes
data cleaning to remove noisy data and outliers, data integration
to integrate data from multiple information sources, data reduction
to reduce the dimensionality and complexity of the data and data
transformation to convert the data into suitable forms for mining
etc.
Third, we referdata mining tasks and algorithmsas an essen-
tial step of knowledge discovery where various algorithms are ap-
plied to perform the data mining tasks. There are many different
data mining tasks such as visualization, classification, clustering,
regression and content retrieval etc. Various algorithms have been
used to carry out these tasks and many algorithms such as Neu-
ral Network and Principal Component Analysis could be applied to
several different kinds of tasks.
Finally, we needpost-processing[28] stage to refine and evaluate
the knowledge derived from our mining procedure. For example,
one may need to simplify the extracted knowledge. Also, we may
want to evaluate the extracted knowledge, visualize it, or merely
document it for the end user. We may interpret the knowledge and
incorporate it into an existing system, and check for potential con-
flicts with previously induced knowledge.
The four-component framework above provides us with a simple
systematic language for understanding the steps that make up the
data mining process. Sincepost-processingmainly concerns the
non-technical work such as documentation and evaluation, we then
focus our attentions on the first three components and will review
wavelet applications in these components.
It should be pointed out that categorizing a specific wavelet tech-
nique/paper into a component of the framework is not strict or
unique. Many techniques could be categorized as performing on
different components. In this survey, we try to discuss the wavelet
techniques with respect to the most relevant component based on
our knowledge. When there is an overlap, i.e., a wavelet technique
might be related to different components, we usually briefly exam-
ine the relationships and differences.

3. WAVELET BACKGROUND
In this section, we will present the basic foundations that are neces-
sary to understand and use wavelets. A wavelet can own many at-
tractable properties, including the essential properties such as com-
pact support, vanishing moments and dilating relation and other
preferred properties such as smoothness and being a generator of an

orthonormal basis of function spacesL2(Rn) etc. Briefly speak-
ing, compact support guarantees the localization of wavelets (In
other words, processing a region of data with wavelets does not af-
fect the the data out of this region); vanishing moment guarantees
wavelet processing can distinguish the essential information from
non-essential information; and dilating relation leads fast wavelet
algorithms. It is the requirements of localization, hierarchical rep-
resentation and manipulation, feature selection, and efficiency in
many tasks in data mining that make wavelets be a very power-
ful tool. The other properties such as smoothness and generators
of orthonormal basis are preferred rather than essential. For ex-
ample, Haar wavelet is the simplest wavelet which is discontinu-
ous, while all other Daubechies wavelets are continuous. Further-
more all Daubechies wavelets are generators of orthogonal basis for
L2(Rn), while spline wavelets generate unconditional basis rather
than orthonormal basis [47], and some wavelets could only gener-
ate redundant frames rather than a basis [138; 53]. The question
that in what kinds of applications we should use orthonormal ba-
sis, or other (say unconditional basis, or frame) is yet to be solved.
In this section, to give readers a relatively comprehensive view of
wavelets, we will use Daubechies wavelets as our concrete exam-
ples. That is, in this survey, a wavelet we use is always assumed to
be a generator of orthogonal basis.
In signal processing fields, people usually thought wavelets to be
convolution filters which has some specially properties such as
quadrature mirror filters (QMF) and high pass etc. We agree that
it is convenient to apply wavelets to practical applications if we
thought wavelets to be convolution filters. However, according to
our experience, thinking of wavelets as functions which own some
special properties such as compact support, vanishing moments and
multiscaling etc., and making use of some simple concepts of func-
tion spacesL2(Rn) (such as orthonormal basis, subspace and inner
product etc.) may bring readers a clear understanding why these ba-
sic properties of wavelets can be successfully applied in data min-
ing and how these properties of wavelets may be applied to other
problems in data mining. Thus in most uses of this survey, we treat
wavelets as functions. In real algorithm designs and implementa-
tions, usually a function is straightforwardly discretized and treated
as a vector. The interested readers could refer to [109] for more
details on treating wavelets as filters.
The rest of the section is organized to help readers answer the fun-
damental questions about wavelets such as: what is a wavelet, why
we need wavelets, how to find wavelets, how to compute wavelet
transforms and what are the properties of wavelets etc. We hope
readers could get a basic understanding about wavelet after reading
this section.

3.1 Basics of Wavelet inL2(R)

So, first,what is a wavelet? Simply speaking, a mother wavelet
is a functionψ(x) such that{ψ(2jx − k), i, k ∈ Z} is an or-
thonormal basis ofL2(R). The basis functions are usually referred
as wavelets1. The term wavelet means a small wave. The small-
ness refers to the condition that we desire that the function is of
finite length or compactly supported. The wave refers to the con-
dition that the function is oscillatory. The term mother implies that
the functions with different regions of support that are used in the
transformation process are derived by dilation and translation of the
mother wavelet.

1A more formal definition of wavelet can be found in Appendix A.
Note that this orthogonality is not an essential property of wavelets.
We include it in the definition because we discuss wavelet in the
context of Daubechies wavelet and orthogonality is a good property
in many applications.
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At first glance, wavelet transforms are pretty much the same as
Fourier transforms except they have different bases. Sowhy bother
to have wavelets? What are the real differences between them?
The simple answer is that wavelet transform is capable of provid-
ing time and frequency localizations simultaneously while Fourier
transforms could only provide frequency representations. Fourier
transforms are designed for stationary signals because they are ex-
panded as sine and cosine waves which extend in time forever, if the
representation has a certain frequency content at one time, it will
have the same content for all time. Hence Fourier transform is not
suitable for non-stationary signal where the signal has time varying
frequency [130]. Since FT doesn’t work for non-stationary signal,
researchers have developed a revised version of Fourier transform,
The Short Time Fourier Transform(STFT). In STFT, the signal is
divided into small segments where the signal on each of these seg-
ments could be assumed as stationary. Although STFT could pro-
vide a time-frequency representation of the signal, Heisenberg’s
Uncertainty Principle makes the choice of the segment length a big
problem for STFT. The principle states that one cannot know the
exact time-frequency representation of a signal and one can only
know the time intervals in which certain bands of frequencies exist.
So for STFT, longer length of the segments gives better frequency
resolution and poorer time resolution while shorter segments lead
to better time resolution but poorer frequency resolution. Another
serious problem with STFT is that there is no inverse, i.e., the orig-
inal signal can not be reconstructed from the time-frequency map
or the spectrogram.
Wavelet is designed to give good time resolution and poor fre-
quency resolution at high frequencies and good frequency reso-
lution and poor time resolution at low frequencies [130]. This
is useful for many practical signals since they usually have high
frequency components for a short durations (bursts) and low
frequency components for long durations (trends). The time-
frequency cell structures for STFT and WT are shown in Figure 1
and Figure 2 respectively.

0 1
0

2

1

3

4

2 3 4

Time(seconds/T)

Fr
eq

ue
nc

y

Figure 1: Time-Frequency
structure of STFT. The graph
shows that time and frequency
localizations are independent.
The cells are always square.
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Figure 2: Time Frequency
structure of WT. The graph
shows that frequency resolution
is good for low frequency and
time resolution is good at high
frequencies.

In data mining practice, the key concept in use of wavelets is the
discrete wavelet transform(DWT). So our following discussion on
wavelet is focused on discrete wavelet transform.

3.2 Dilation Equation
How to find the wavelets? The key idea is self-similarity. Start
with a functionφ(x) that is made up of smaller version of itself.
This is the refinement (or 2-scale,dilation) equation

φ(x) =

∞∑
k=−∞

akφ(2x− k) (3.1)

a′ks are called filter coefficients or masks. The functionφ(x) is
called the scaling function (or father wavelet). Under certain con-
ditions,

ψ(x) =

∞∑
k=−∞

(−1)kbkφ(2x− k) =

∞∑
k=−∞

(−1)kā1−kφ(2x− k)

(3.2)
gives a wavelet2.
What are the conditions? First, the scaling function is chosen to
preserve its area under each iteration, so

∫∞
−∞ φ(x)dx = 1. Inte-

grating the refinement equation then∫ ∞

−∞
φ(x)dx =

∑
ak

∫ −∞

−∞
φ(2x−k)dx =

1

2

∑
ak

∫ ∞

−∞
φ(u)du

Hence
∑
ak = 2. So the stability of the iteration forces a con-

dition on the coefficientak. Second, the convergence of wavelet
expansion3 requires the condition

∑N−1
k=0 (−1)kkmak = 0 where

m = 0, 1, 2, . . . , N
2
− 1 (if a finite sum of wavelets is to represent

the signal as accurately as possible). Third, requiring the orthogo-
nality of wavelets forces the condition

∑N−1
k=0 akak+2m = 0 where

m = 0, 1, 2, . . . , N
2
− 1. Finally if the scaling function is required

to be orthogonal
∑N−1

k=0 a2
k = 2. To summarize, the conditions are

∑N−1
k=0 ak = 2 stability∑N−1
k=0 (−1)kkmak = 0 convergence∑N−1
k=0 akak+2m = 0 orthogonality of wavelets∑N−1
k=0 a2

k = 2 orthogonality of scaling functions

This class of wavelet function is constrained, by definition, to be
zero outside of a small interval. This makes the property of com-
pact support. Most wavelet functions, when plotted, appear to be
extremely irregular. This is due to the fact that the refinement equa-
tion assures that a waveletψ(x) function is non-differentiable ev-
erywhere. The functions which are normally used for performing
transforms consist of a few sets of well-chosen coefficients result-
ing in a function which has a discernible shape.
Let’s now illustrate how to generate Haar4 and Daubechies
wavelets. They are named for pioneers in wavelet theory [75; 51].
First, consider the above constraints on theak for N = 2. The
stability condition enforcesa0 + a1 = 2, the accuracy condition
implies a0 − a1 = 0 and the orthogonality givesa2

0 + a2
1 = 2.

The unique solution isa0 = a1 = 1. if a0 = a1 = 1, then
φ(x) = φ(2x) + φ(2x − 1). The refinement function is satisfied
by a box function

B(x) =

{
1 0 ≤ x < 1
0 otherwise

Once the box function is chosen as the scaling function, we then
get the simplest wavelet: Haar wavelet, as shown in Figure 3.

H(x) =

 1 0 ≤ x < 1
2

−1 1
2
≤ x ≤ 1

0 otherwise

2ā means the conjugate ofa. Whena is a real number,̄a = a.
3This is also known as the vanishing moments property.
4Haar wavelet represents the same wavelet as Daubechies wavelets
with support at[0, 1], calleddb1.
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Figure 3: Haar Wavelet

Second, ifN = 4, The equations for the masks are:

a0 + a1 + a2 + a3 = 2

a0 − a1 + a2 − a3 = 0

−a1 + 2a2 − 3a3 = 0

a0a2 + a1a3 = 0

a2
0 + a2

1 + a2
2 + a2

3 = 2

The solutions area0 = 1+
√

3
4

, a1 = 3+
√

3
4

, a2 = 3−
√

3
4

, a3 =
1−
√

3
4

. The corresponding wavelet is Daubechies-2(db2) wavelet
that is supported on intervals[0, 3], as shown in Figure 4. This
construction is known as Daubechies wavelet construction [51]. In
general,dbn represents the family of Daubechies Wavelets andn
is the order. The family includes Haar wavelet since Haar wavelet
represents the same wavelet asdb1. Generally it can be shown that

• The support fordbn is on the interval[0, 2n− 1].

• The waveletdbn hasn vanishing moments5.

• The regularity increases with the order.dbn hasrn continu-
ous derivatives (r is about0.2).
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Figure 4: Daubechies-2(db2) Wavelet

Finally let’s look at some examples where the orthogonal property
does not hold. Ifa−1 = 1

2
, a0 = 1, a1 = 1

2
, then

φ(x) =
1

2
φ(2x+ 1) + φ(2x) +

1

2
φ(2x− 1).

The solution to this is the Hat function

φ(x) =

 x+ 1 −1 ≤ x ≤ 0
−(x− 1) 0 ≤ x ≤ 1
0 otherwise

5We will discuss more about vanishing moments in Section 3.5.

So we would getψ(x) = − 1
2
φ(2x + 1) + φ(2x) − 1

2
φ(2x − 1).

Note that the wavelets generated by Hat function are not orthogo-
nal. Similarly, if a−2 = 1

8
, a−1 = 1

2
, a0 = 3

4
, a1 = 1

2
, a2 = 1

8
,

we get cubic B-spline and the wavelets it generated are also not
orthogonal.

3.3 Multiresolution Analysis(MRA) and fast
DWT algorithm

How to compute wavelet transforms? To answer the question
of efficiently computing wavelet transform, we need to touch on
some material of MRA. Multiresolution analysis was first intro-
duced in [102; 109] and there is a fast family of algorithms based
on it [109]. The motivation of MRA is to use a sequence of em-
bedded subspaces to approximateL2(R) so that people can choose
a proper subspace for a specific application task to get a balance
between accuracy and efficiency (Say, bigger subspaces can con-
tribute better accuracy but waste computing resources). Mathemat-
ically, MRA studies the property of a sequence of closed subspaces
Vj , j ∈ Z which approximateL2(R) and satisfy

· · ·V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ,⋃
j∈Z Vj = L2(R) (L2(R) space is the closure of the union of

all Vj) and
⋂

j∈Z Vj = ∅ (the intersection of allVj is empty). So
what does multiresolution mean?The multiresolution is reflected
by the additional requirementf ∈ Vj ⇐⇒ f(2x) ∈ Vj+1, j ∈ Z
(This is equivalent tof(x) ∈ V0 ⇐⇒ f(2jx) ∈ Vj),i.e., all the
spaces are scaled versions of the central(reference) spaceV0.
Sohow does this related to wavelets? Because the scaling func-
tion φ easily generates a sequence of subspaces which can pro-
vide a simple multiresolution analysis. First, the translations of
φ(x), i.e., φ(x − k), k ∈ Z, span a subspace, sayV0 (Actually,
φ(x − k), k ∈ Z constitutes an orthonormal basis of the subspace
V0). Similarly 2−1/2φ(2x− k), k ∈ Z span another subspace, say
V1. The dilation equation 3.1 tells us thatφ can be represented by
a basis ofV1. It implies thatφ falls into subspaceV1 and so the
translationsφ(x − k), k ∈ Z also fall into subspaceV1. ThusV0

is embedded intoV1. With different dyadic, it is straightforward to
obtain a sequence of embedded subspaces ofL2(R) from only one
function. It can be shown that the closure of the union of these sub-
spaces is exactlyL2(R) and their intersections are empty sets [52].
So here, we see thatj controls the observation resolution whilek
controls the observation location.
Given two consecutive subspaces, sayV0 andV1, it is natural for
people to ask what information is contained in the complement
spaceV1	V0, which is usually denoted asW0. From equation 3.2,
it is straightforward to see thatψ falls also intoV1 (and so its trans-
lationsψ(x − k), k ∈ Z). Notice thatψ is orthogonal toφ. It
is easy to claim that an arbitrary translation of the father wavelet
φ is orthogonal to an arbitrary translation of the mother wavelet
ψ. Thus, the translations of the waveletψ span the complement
subspaceW0. Similarly, for an arbitraryj, ψk,j , k ∈ Z, span
an orthonormal basis ofWj which is the orthogonal complement
space ofVj in Vj+1. Therefore,L2(R) space is decomposed into
an infinite sequence of wavelet spaces, i.e.,L2(R) =

⊕
j∈Z Wj .

More formal proof of wavelets’ spanning complement spaces can
be found in [52].
A direct application of multiresolution analysis is the fast discrete
wavelet transform algorithm, calledpyramidalgorithm [109]. The
core idea is to progressively smooth the data using an iterative pro-
cedure and keep the detail along the way, i.e., analyze projections
of f toWj . We use Haar wavelets to illustrate the idea through the
following example. In Figure 5, the raw data is in resolution 3 (also
called layer 3). After the first decomposition, the data are divided
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into two parts: one is of average information (projection in the scal-
ing spaceV2 and the other is of detail information (projection in the
wavelet spaceW2). We then repeat the similar decomposition on
the data inV2, and get the projection data inV1 andW1, etc. We
also give a more formal treatment in Appendix B.

Layer 0

Layer 1

Layer 2

Layer 3 12 16 20

11 18 21

10

11

1

1012

12 10

= 

=

+

-

( ) / 

(

2

) / 2

Wavelet space

Figure 5: Fast Discrete Wavelet Transform

The fact thatL2(R) is decomposed into an infinite wavelet sub-
space is equivalent to the statement thatψj,k, j, k ∈ Z span an
orthonormal basis ofL2(R). An arbitrary functionf ∈ L2(R)
then can be expressed as follows:

f(x) =
∑

j,k∈Z

dj,kψj,k(x), (3.3)

wheredj,k = 〈f, ψj,k〉 is calledwavelet coefficients. Note that
j controls the observation resolution andk controls the observa-
tion location. If data in some location are relatively smooth (it can
be represented by low-degree polynomials), then its corresponding
wavelet coefficients will be fairly small by the vanishing moment
property of wavelets.

3.4 Examples of Haar wavelet transform
In this section, we give two detailed examples of Haar wavelet
transform.

3.4.1 One-dimensional transform
Haar transform can be viewed as a series of averaging and differ-
encing operations on a discrete function. We compute the aver-
ages and differences between every two adjacent values off(x).
The procedure to find the Haar transform of a discrete function
f(x) =[7 5 1 9] is shown in Table 1: Resolution 4 is the full res-

Resolution Approximations Detail coefficients
4 7 5 1 9
2 6 5 -1 4
1 5.5 -0.5

Table 1: An Example of One-dimensional Haar Wavelet Transform

olution of the discrete functionf(x). In resolution 2, (6 5) are
obtained by taking the average of (7 5) and (1 9) at resolution 4
respectively. (-1 4) are the differences of (7 5) and (1 9) divided
by 2 respectively. This process is repeated until a resolution1 is
reached. The Haar transformH(f(x)) =(5.5 -0.5 -1 4) is obtained

by combining the last average value5 and the coefficients found on
the right most column, -0.5, -1 and 4. In other words, the wavelet
transform of original sequence is the single coefficient representing
the overall average of the original average of the original numbers,
followed by the detail coefficients in order of increasing resolu-
tions. Different resolutions can be obtained by adding difference
values back or subtracting differences from averages. For instance,
(6 5)=(5.5+0.5,5.5−0.5) where5.5 and−0.5 are the first and the
second coefficient respectively. This process can be done recur-
sively until the full resolution is reached. Note that no information
has been gained or lost by this transform: the original sequence had
4 numbers and so does the transform.
Haar wavelets are the most commonly used wavelets in
database/computer science literature because they are easy to com-
prehend and fast to compute. Theerror treestructure is often used
by researchers in the field as a helpful tool for exploring and un-
derstanding the key properties of the Haar wavelets decomposi-
tion [113; 70]. Basically speaking, theerror tree is a hierarchical
structure built based on the wavelet decomposition process. The
error tree of our example is shown in Figure 6. The leaves of the
tree represents the original signal value and the internal nodes cor-
respond to the wavelet coefficients. the wavelet coefficient associ-
ated with an internal node in the error tree contributes to the signal
values at the leaves in its subtree. In particular, the root corresponds
the overall average of the original data array. The depth of the tree
represents the resolution level of the decomposition.

7 5 1 9

h-1 h4
h-0.5

h5.5

�����

HHHHH

�
�

�

@
@
@

�
�

�

@
@
@

Figure 6: Error tree.

3.4.2 Multi-dimensional wavelet transform
Multi-dimensional wavelets are usually defined via the tensor prod-
uct6. The two-dimensional wavelet basis consists of all possible
tensor products of one-dimensional basis function7. In this sec-
tion we will illustrate the two-dimensional Haar wavelet transform
through the following example.
Let’s compute the Haar wavelet transform of the following two-
dimensional data 

3 5 6 7
9 8 7 4
6 5 7 9
4 6 3 8

 .
The computation is based on2 × 2 matrices. Consider the upper
left matrix [

3 5
9 8

]
.

6For a given component function f1, · · · fd, define∏d
j=1 f

j(x1, · · · , xd) =
∏d

j=1 f
j(xj) as the tensor product.

7There are also some non-standard constructions of high dimen-
sional basis functions based on mutual transformations of the di-
mensions and interested readers may refer to [149] for more details.
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We first compute the overall average:(3 + 5 + 9 + 8)/4 = 6.25,
then the average of the difference of the summations of the rows:
1/2[(9 + 8)/2 − (3 + 5)/2] = 2.25, followed by the average of
the difference of the summations of the columns:1/2[(5 + 8)/2−
(3 + 9)/2] = 0.25 and finally the average of the difference of the
summations of the diagonal:1/2[(3+8)/2−(9+5)/2] = −0.75.
So we get the following matrix[

6.25 2.25
0.25 −0.75

]
.

For bigger data matrices, we usually put the overall average ele-
ment of all transformed2×2 matrix into the first block, the average
of the difference of the summations of the columns into the second
block and so on. So the transformed matrix of the original data is

6.25 6 2.25 −0.50
5.25 6.75 −0.25 −1.25
0.25 −0.50 −0.75 −1
0.25 1.75 0.75 0.75

 .
3.5 Properties of Wavelets
In this section, we summarize and highlight the properties of
wavelets which make they are useful tools for data mining and
many other applications. A wavelet transformation converts data
from an original domain to a wavelet domain by expanding the raw
data in an orthonormal basis generated by dilation and translation
of a father and mother wavelet. For example, in image process-
ing, the original domain is spatial domain, and the wavelet domain
is frequency domain. An inverse wavelet transformation converts
data back from the wavelet domain to the original domain. Without
considering the truncation error of computers, the wavelet transfor-
mation and inverse wavelet transformation are lossless transforma-
tions. So the representations in the original domain and the wavelet
domain are completely equivalent. In the other words, wavelet
transformation preserves the structure of data. The properties of
wavelets are described as follows:

1. Computation Complexity: First, the computation of wavelet
transform can be very efficient. Discrete Fourier trans-
form(DFT) requiresO(N2) multiplications and fast Fourier
transform also needsO(N logN) multiplications. However
fast wavelet transform based on Mallat’s pyramidal algo-
rithm) only needsO(N) multiplications. The space com-
plexity is also linear.

2. Vanishing Moments: Another important property of wavelets
is vanishing moments. A functionf(x) which is supported
in bounded regionω is called to haven-vanishing moments
if it satisfies the following equation:∫

ω

f(x)xjdx = 0, j = 0, 1, . . . , n. (3.4)

That is, the integrals of the product of the function and low-
degree polynomials are equal to zero. For example, Haar
wavelet(ordb1) has 1-vanishing moment anddb2 has 2-
vanishing moment. The intuition of vanishing moments of
wavelets is the oscillatory nature which can thought to be
the characterization of difference or details between a datum
with the data in its neighborhood. Note that the filter [1, -1]
corresponding to Haar wavelet is exactly a difference oper-
ator. With higher vanishing moments, if data can be repre-
sented by low-degree polynomials, their wavelet coefficients
are equal to zero. So if data in some bounded region can
be represented (approximated) by a low-degree polynomial,

then its corresponding wavelet coefficient is (is close to) zero.
Thus the vanishing moment property leads to many impor-
tant wavelet techniques such as denoising and dimensional-
ity reduction. The noisy data can usually be approximated
by low-degree polynomial if the data are smooth in most of
regions, therefore the corresponding wavelet coefficients are
usually small which can be eliminated by setting a threshold.

3. Compact Support: Each wavelet basis function is supported
on a finite interval. For example, the support of Haar function
is [0,1]; the support of waveletdb2 is [0, 3]. Compact sup-
port guarantees the localization of wavelets. In other words,
processing a region of data with wavelet does not affect the
the data out of this region.

4. Decorrelated Coefficients: Another important aspect of
wavelets is their ability to reduce temporal correlation so that
the correlation of wavelet coefficients are much smaller than
the correlation of the corresponding temporal process [67;
91]. Hence, the wavelet transform could be able used to re-
duce the complex process in the time domain into a much
simpler process in the wavelet domain.

5. Parseval’s Theorem: Assume thate ∈ L2 andψi be the or-
thonormal basis ofL2. The Parseval’s theorem states the
following property of wavelet transform

‖e‖22 =
∑

i

| < e, ψi > |2.

In other words, the energy, which is defined to be the square
of its L2 norm, is preserved under the orthonormal wavelet
transform. Hence the distances between any two objects are
not changed by the transform.

In addition, the multiresolution property of scaling and wavelet
functions, as we discussed in Section 3.3, leads to hierarchical rep-
resentations and manipulations of the objects and has widespread
applications. There are also some other favorable properties of
wavelets such as the symmetry of scaling and wavelet functions,
smoothness and the availability of many different wavelet basis
functions etc. In summary, the large number of favorable wavelet
properties make wavelets powerful tools for many practical prob-
lems.

4. DATA MANAGEMENT
One of the features that distinguish data mining from other types
of data analytic tasks is the huge amount of data. So data man-
agement becomes very important for data mining. The purpose of
data management is to find methods for storing data to facilitate
fast and efficient access. Data management also plays an important
role in the iterative and interactive nature of the overall data min-
ing process. The wavelet transformation provides a natural hierar-
chy structure and multidimensional data representation and hence
could be applied to data management.
Shahabi et al. [144; 143] introduced novel wavelet based tree struc-
tures: TSA-tree and 2D TSA-tree, to improve the efficiency of mul-
tilevel trends and surprise queries on time sequence data. Frequent
queries on time series data are to identify rising and falling trends
and abrupt changes at multiple level of abstractions. For example,
we may be interested in the trends/surprises of the stock of Xe-
rox Corporation within the last week, last month, last year or last
decades. To support such multi-level queries, a large amount of
raw data usually needs to be retrieved and processed. TSA (Trend
and Surprise Abstraction) tree are designed to expedite the query
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Figure 7: 1D TSA Tree Structure:X is the input sequence.AXi

andDXi are the trend and surprise sequence at leveli.

process. TSA tree is constructed based on the procedure of discrete
wavelet transform. The root is the original time series data. Each
level of the tree corresponds to a step in wavelet decomposition. At
the first decomposition level, the original data is decomposed into a
low frequency part (trend) and a high frequency part (surprise). The
left child of the root records the trend and the right child records the
surprise. At the second decomposition level, the low frequency part
obtained in the first level is further divided into a trend part and a
surprise part. So the left child of the left child of the root records
the new trend and the right child of the left child of the root records
the new surprise. This process is repeated until the last level of the
decomposition. The structure of the TSA tree is described in Fig-
ure 7. Hence as we traverse down the tree, we increase the level of
abstraction on trends and surprises and the size of the node is de-
creased by a half. The nodes of the TSA tree thus record the trends
and surprises at multiple abstraction levels. At first glance, TSA
tree needs to store all the nodes. However, since TSA tree encodes
the procedure of discrete wavelet transform and the transform is
lossless, so we need only to store the all wavelet coefficients (i.e.,
all the leaf nodes). The internal nodes and the root can be easily ob-
tained through the leaf nodes. So the space requirement is identical
to the size of original data set. In [144], the authors also propose the
techniques of dropping selective leaf nodes or coefficients with the
heuristics of energy and precision to reduce the space requirement.
2D TSA tree is just the two dimensional extensions of the TSA tree
using two dimensional discrete wavelet transform. In other words,
the 1D wavelet transform is applied on the 2D data set in differ-
ent dimensions/direction to obtain the trends and the surprises. The
surprises at a given level correspond to three nodes which account
for the changes in three different directions: horizontal, vertical and
diagonal. The structure of a 2D TSA-tree is shown in Fig 8.
Venkatesan et al. [160] proposed a novel image indexing tech-
nique based on wavelets. With the popularization of digital images,
managing image databases and indexing individual images become
more and more difficult since extensive searching and image com-
parisons are expensive. The authors introduce an image hash func-
tion to manage the image database. First a wavelet decomposition
of the image is computed and each subband is randomly tiled into
small rectangles. Each rectangle’s statistics (e.g., averages or vari-
ances) are calculated and quantized and then input into the decod-
ing stage and a suitably chosen error-correcting code to generate the
final hash value. Experiments have shown that the image hashing
is robust against common image processing and malicious attacks.
Santini and Gupta [141] defined wavelet transforms as a data type
for image databases and also presents an algebra to manipulate the
wavelet data type. It also mentions that wavelets can be stored us-

X

D3X1D2X1D1X1AX1

AX2 D1X2 D2X2 D3X2

AX3 D1X3 D2X3 D3X3

Figure 8: 2D TSA Tree Structure:X is the input sequence.
AXi, D1Xi, D2Xi, D3Xi are the trend and horizontal, vertical
and diagonal sequence at leveli respectively.

ing a quadtree structure for every band and hence the operations
can be implemented efficiently. Subramanya and Youssef [155] ap-
plied wavelets to index the Audio data. More wavelet applications
for data management can be found in [140]. We will discuss more
about image indexing and search in Section 6.5.

5. PREPROCESSING
Real world data sets are usually not directly suitable for performing
data mining algorithms [134]. They contain noise, missing values
and may be inconsistent. In addition, real world data sets tend to
be too large, high-dimensional and so on. Therefore, we need data
cleaning to remove noise, data reduction to reduce the dimension-
ality and complexity of the data and data transformation to con-
vert the data into suitable form for mining etc. Wavelets provide
a way to estimate the underlying function from the data. With the
vanishing moment property of wavelets, we know that only some
wavelet coefficients are significant in most cases. By retaining se-
lective wavelet coefficients, wavelets transform could then be ap-
plied to denoising and dimensionality reduction. Moreover, since
wavelet coefficients are generally decorrelated, we could transform
the original data into wavelet domain and then carry out data min-
ing tasks. There are also some other wavelet applications in data
preprocessing. In this section, we will elaborate various applica-
tions of wavelets in data preprocessing.

5.1 Denoising
Noise is a random error or variance of a measured variable [78].
There are many possible reasons for noisy data, such as measure-
ment/instrumental errors during the data acquisition, human and
computer errors occurring at data entry, technology limitations and
natural phenomena such as atmospheric disturbances, etc. Remov-
ing noise from data can be considered as a process of identifying
outliers or constructing optimal estimates of unknown data from
available noisy data. Various smoothing techniques, such as bin-
ning methods, clustering and outlier detection, have been used in
data mining literature to remove noise. Binning methods smooth
a sorted data value by consulting the values around it. Many data
mining algorithms find outliers as a by-product of clustering algo-
rithms [5; 72; 176] by defining outliers as points which do not lie
in clusters. Some other techniques [87; 14; 135; 94; 25] directly
find points which behave very differently from the normal ones.
Aggarwal and Yu [6] presented new techniques for outlier detec-
tion by studying the behavior of projections from datasets. Data
can also be smoothed by using regression methods to fit them with
a function. In addition, the post-pruning techniques used in deci-
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sion trees are able to avoid the overfitting problem caused by noisy
data [119]. Most of these methods, however, are not specially de-
signed to deal with noise and noise reduction and smoothing are
only side-products of learning algorithms for other tasks. The in-
formation loss caused by these methods is also a problem.
Wavelet techniques provide an effective way to denoise and have
been successfully applied in various areas especially in image re-
search [39; 152; 63]. Formally, Suppose observation datay =
(y1, . . . , yn) is a noisy realization of the signalx = (x1, . . . , xn):

yi = xi + εi, i = 1, . . . , n, (5.5)

whereεi is noise. It is commonly assumed thatεi are independent
from the signal and are independent and identically distributed (iid)
Gaussian random variables. A usual way to denoise is to findx̂
such that it minimizes the mean square error (MSE),

MSE(x̂) =
1

n

n∑
i=1

(x̂i − xi)
2. (5.6)

The main idea of wavelet denoising is to transform the data into a
different basis, the wavelet basis, where thelarge coefficients are
mainly the useful information and thesmallerones represent noise.
By suitably modifying the coefficients in the new basis, noise can
be directly removed from the data.
Donoho and Johnstone [60] developed a methodology called
waveShrinkfor estimatingx. It has been widely applied in
many applications and implemented in commercial software, e.g.,
wavelet toolbox of Matlab [69].
WaveShrink includes three steps:

1. Transform datay to the wavelet domain.

2. Shrink the empirical wavelet coefficients towards zero.

3. Transform the shrunk coefficients back to the data domain.

There are three commonly used shrinkage functions: the hard, soft
and the non-negative garrote shrinkage functions:

δH
λ (x) =

{
0 |x| ≤ λ
x |x| > λ

δS
λ (x) =

 0 |x| ≤ λ
x− λ x > λ
λ− x x < −λ

δH
λ (x) =

{
0 |x| ≤ λ
x− λ2/x |x| > λ

whereλ ∈ [0,∞) is the threshold.
Wavelet denoising generally is different from traditional filtering
approaches and it is nonlinear, due to a thresholding step. Deter-
mining thresholdλ is the key issue in waveShrink denoising. Min-
imax threshold is one of commonly used thresholds. The
minimax8 thresholdλ∗ is defined as thresholdλ which minimizes
expression

inf
λ

sup
θ

{
Rλ(θ)

n−1 + min(θ2, 1)

}
, (5.7)

whereRλ(θ) = E(δλ(x) − θ)2, x ∼ N(θ, 1). Interested readers
can refer to [69] for other methods and we will also discuss more
about the choice of threshold in Section 6.3. Li et al. [104] inves-
tigated the use of wavelet preprocessing to alleviate the effect of
noisy data for biological data classification and showed that, if the
localities of data the attributes are strong enough, wavelet denois-
ing is able to improve the performance.
8Minimize Maximal Risk.

5.2 Data Transformation
A wide class of operations can be performed directly in the wavelet
domain by operating on coefficients of the wavelet transforms of
original data sets. Operating in the wavelet domain enables to per-
form these operations progressively in a coarse-to-fine fashion, to
operate on different resolutions, manipulate features at different
scales, and to localize the operation in both spatial and frequency
domains. Performing such operations in the wavelet domain and
then reconstructing the result is more efficient than performing the
same operation in the standard direct fashion and reduces the mem-
ory footprint. In addition, wavelet transformations have the ability
to reduce temporal correlation so that the correlation of wavelet co-
efficients are much smaller than the correlation of corresponding
temporal process. Hence simple models which are insufficient in
the original domain may be quite accurate in the wavelet domain.
These motivates the wavelet applications for data transformation.
In other words, instead of working on the original domain, we could
working on the wavelet domain.
Feng et al. [65] proposed a new approach of applying Principal
Component Analysis (PCA) on the wavelet subband. Wavelet
transform is used to decompose an image into different frequency
subbands and a mid-range frequency subband is used for PCA rep-
resentation. The method reduces the computational load signif-
icantly while achieving good recognition accuracy. Buccigrossi
and Simoncelli [29] developed a probability model for natural
images, based on empirical observation of their statistics in the
wavelet transform domain. They noted that pairs of wavelet co-
efficients, corresponding to basis functions at adjacent spatial loca-
tions, orientations, and scales, generally to be non-Gaussian in both
their marginal and joint statistical properties and specifically, their
marginals are heavy-tailed, and although they are typically decor-
related, their magnitudes are highly correlated. Hornby et al. [82]
presented the analysis of potential field data in the wavelet domain.
In fact, many other wavelet techniques that we will review for other
components could also be regarded as data transformation.

5.3 Dimensionality Reduction
The goal of dimension reduction9 is to express the original data set
using some smaller set of data with or without a loss of information.
Wavelet transformation represents the data as a sum of prototype
functions and it has been shown that under certain conditions the
transformation only related to selective coefficients. Hence simi-
lar to denoising, by retaining selective coefficients, wavelets can
achieve dimensionality reduction. Dimensionality reduction can
be thought as an extension of the data transformation presented
in Section 5.2: while data transformation just transforms original
data into wavelet domain without discarding any coefficients, di-
mensionality reduction only keeps a collection of selective wavelet
coefficients.
More formally, the dimensionality reduction problem is to project
then-dimensional tuples that represent the data in ak-dimensional
space so thatk << n and the distances are preserved as well as
possible. Based on the different choices of wavelet coefficients,
there are two different ways for dimensionality reduction using
wavelet,

• Keep the largestk coefficients and approximate the rest with
0,

• Keep the firstk coefficients and approximate the rest with0.
9Some people also refer this as feature selection.
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Keeping the largestk coefficients achieve more accurate represen-
tation while keeping the firstk coefficients is useful for index-
ing [74]. Keeping the firstk coefficients implicitly assumes a priori
the significance of all wavelet coefficients in the firstk coarsest lev-
els and that all wavelet coefficients at a higher resolution levels are
negligible. Such a strong prior assumption heavily depends on a
suitable choice ofk and essentially denies the possibility of local
singularities in the underlying function [1].
It has been shown that [148; 149], if the basis is orthonormal, in
terms ofL2 loss, maintaining the largestk wavelet coefficients pro-
vides the optimalk-term Haar approximation to the original signal.
Suppose the original signal is given byf(x) =

∑M−1
i=0 ciµi(x)

whereµi(x) is an orthonormal basis. In discrete form, the data
can then be expressed by the coefficientsc0, · · · , cM−1. Let σ
be a permutation of0, . . . ,M − 1 and f ′(x) be a function that
uses the firstM ′ number of coefficients of permutationσ, i.e.,
f ′(x) =

∑M′−1
i=0 cσ(i)µσ(i)(x). It is then straightforward to show

that the decreasing ordering of magnitude gives the best permuta-
tion as measured inL2 norm. The square ofL2 error of the approx-
imation is

||f(x)− f ′(x)||22
=

〈
f(x)− f ′(x), f(x)− f ′(x)

〉
=

〈
M−1∑
i=M′

cσ(i)µσ(i),

M−1∑
j=M′

cσ(j)µσ(j)

〉

=

M−1∑
i=M′

M−1∑
j=M′

cσ(i)cσ(j)

〈
µσ(i), µσ(j)

〉
=

M−1∑
i=M′

(cσ(i))
2

Hence to minimize the error for a givenM ′, the best choice forσ
is the permutation that sorts the coefficients in decreasing order of
magnitude; i.e.,|cσ(0)| ≥ cσ(1) ≥ · · · ≥ cσ(M−1).
Using the largestk wavelet coefficients, given a predefined preci-
sionε, the general step for dimension reduction can be summarized
in the following steps:

• Compute the wavelet coefficients of the original data set.

• Sort the coefficients in order of decreasing magnitude to pro-
duce the sequencec0, c1, . . . , cM−1.

• Starting with M ′ = M , find the bestM ′ such that∑M−1
i=M′ ||ci|| ≤ ε.

||ci|| is the norm ofci. In general, the norm can be chosen as
L2 norm where||ci|| = (ci)

2 or L1 norm where||ci|| = |ci| or
other norms. In practice, wavelets have been successfully applied
in image compression [45; 37; 148] and it was suggested thatL1

norm is best suited for the task of image compression [55].
Chan and Fu [131] used the firstk coefficients of Haar wavelet
transform of the original time series for dimensionality reduction
and they also show that no false dismissal (no qualified results will
be rejected) for range query and nearest neighbor query by keeping
the first few coefficients.

6. DATA MINING TASKS AND ALGO-
RITHMS

Data mining tasks and algorithms refer to the essential procedure
where intelligent methods are applied to extract useful information
patterns. There are many data mining tasks such as clustering, clas-
sification, regression, content retrieval and visualization etc. Each

task can be thought as a particular kind of problem to be solved
by a data mining algorithm. Generally there are many different al-
gorithms could serve the purpose of the same task. Meanwhile,
some algorithms can be applied to different tasks. In this section,
we review the wavelet applications in data mining tasks and al-
gorithms. We basically organize the review according to different
tasks. The tasks we discussed are clustering, classification, regres-
sion, distributed data mining, similarity search, query processing
and visualization. Moreover, we also discuss the wavelet applica-
tions for two important algorithms: Neural Network and Princi-
pal/Independent Component Analysis since they could be applied
to various mining tasks.

6.1 Clustering
The problem of clustering data arises in many disciplines and has a
wide range of applications. Intuitively, the clustering problem can
be described as follows: LetW be a set ofn data points in a multi-
dimensional space. Find a partition ofW into classes such that the
points within each class aresimilar to each other. The clustering
problem has been studied extensively in machine learning [41; 66;
147; 177], databases [5; 72; 7; 73; 68], and statistics [22; 26] from
various perspectives and with various approaches and focuses.
The multi-resolution property of wavelet transforms inspires the
researchers to consider algorithms that could identify clusters at
different scales. WaveCluster [145] is a multi-resolution clustering
approach for very large spatial databases. Spatial data objects can
be represented in an n-dimensional feature space and the numerical
attributes of a spatial object can be represented by a feature vector
where each element of the vector corresponds to one numerical at-
tribute (feature). Partitioning the data space by a grid reduces the
number of data objects while inducing only small errors. From a
signal processing perspective, if the collection of objects in the fea-
ture space is viewed as an n-dimensional signal, the high frequency
parts of the signal correspond to the regions of the feature space
where there is a rapid change in the distribution of objects (i.e.,
the boundaries of clusters) and the low frequency parts of then-
dimensional signal which have high amplitude correspond to the ar-
eas of the feature space where the objects are concentrated (i.e., the
clusters). Applying wavelet transform on a signal decomposes it
into different frequency sub-bands. Hence to identify the clusters is
then converted to find the connected components in the transformed
feature space. Moreover, application of wavelet transformation
to feature spaces provides multiresolution data representation and
hence finding the connected components could be carried out at
different resolution levels. In other words, the multi-resolution
property of wavelet transforms enable the WaveCluster algorithm
could effectively identify arbitrary shape clusters at different scales
with different degrees of accuracy. Experiments have shown that
WaveCluster outperforms Birch [176] and CLARANS [126] by a
large margin and it is a stable and efficient clustering method.

6.2 Classification
Classification problems aim to identify the characteristics that in-
dicate the group to which each instance belongs. Classification can
be used both to understand the existing data and to predict how
new instances will behave. Wavelets can be very useful for classi-
fication tasks. First, classification methods can be applied on the
wavelet domain of the original data as discussed in Section 5.2 or
selective dimensions of the wavelet domain as we will discussed
in this section. Second, the multi-resolution property of wavelets
can be incorporated into classification procedures to facilitate the
process.
Castelli et al. [33; 34; 35] described a wavelet-based classification
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algorithm on large two-dimensional data sets typically large dig-
ital images. The image is viewed as a real-valued configuration
on a rectangular subset of the integer latticeZ2 and each point
on the lattice (i.e. pixel) is associated with a vector denoting as
pixel-values and a label denoting its class. The classification prob-
lem here consists of observing an image with known pixel-values
but unknown labels and assigning a label to each point and it was
motivated primarily by the need to classify quickly and efficiently
large images in digital libraries. The typical approach [50] is the
traditional pixel-by-pixel analysis which besides being fairly com-
putationally expensive, also does not take into account the corre-
lation between the labels of adjacent pixels. The wavelet-based
classification method is based on the progressive classification [35]
framework and the core idea is as follows: It uses generic (paramet-
ric or non-parametric) classifiers on a low-resolution representation
of the data obtained using discrete wavelet transform. The wavelet
transformation produce a multiresolution pyramid representation of
the data. In this representation, at each level each coefficient corre-
sponds to ak × k pixel block in the original image. At each step
of the classification, the algorithm decides whether each coefficient
corresponds to a homogeneous block of pixels and assigns the same
class label to the whole block or to re-examine the data at a higher
resolution level. And the same process is repeated iteratively. The
wavelet-based classification method achieves a significant speedup
over traditional pixel-wise classification methods. For images with
pixel values that are highly correlated, the method will give more
accurate results than the corresponding non-progressive classifier
because DWT produces a weight average of the values for ak × k
block and the algorithm tend to assume more uniformity in the im-
age than may appear when we look at individual pixels. Castelli
et al. [35] presented the experimental results illustrating the per-
formance of the method on large satellite images and Castelli et
al. [33] also presented theoretical analysis on the method.
Blume and Ballard [23] described a method for classifying image
pixels based on learning vector quantization and localized Haar
wavelet transform features. A Haar wavelet transform is utilized
to generate a feature vector per image pixel and this provides in-
formation about the local brightness and color as well as about the
texture of the surrounding area. Hand-labeled images are used to
generated the a codebook using the optimal learning rate learning
vector quantization algorithm. Experiments show that for small
number of classes, the pixel classification is as high as99%.
Scheunders et al. [142] elaborated texture analysis based on
wavelet transformation. The multiresolution and orthogonal de-
scriptions could play an important role in texture classification and
image segmentation. Useful gray-level and color texture features
can be extracted from the discrete wavelet transform and useful
rotation-invariant features were found in continuous transforms.
Sheikholeslami [146] presented a content-based retrieval approach
that utilizes the texture features of geographical images. Vari-
ous texture features are extracted using wavelet transforms. Us-
ing wavelet-based multi-resolution decomposition, two different
sets of features are formulated for clustering. For each feature
set, different distance measurement techniques are designed and
experimented for clustering images in database. Experimental re-
sults demonstrate that the retrieval efficiency and effectiveness im-
prove when the clustering approach is used. Mojsilovic et al. [120]
also proposed a wavelet-based approach for classification of texture
samples with small dimensions. The idea is first to decompose the
given image with a filter bank derived from an orthonormal wavelet
basis and to form an image approximation with nigher resolution.
Texture energy measures calculated at each output of the filter bank
as well as energies if synthesized images are used as texture fea-

tures for a classification procedure based on modified statistical t-
test.The new algorithm has advantages in classification of small and
noisy samples and it represents a step toward structural analysis of
weak textures. More usage on texture classification using wavelets
can be found in [100; 40]. Tzanetakis et al. [157] used wavelet
to extract a feature set for representing music surface and rhythm
information to build automatic genre classification algorithms.

6.3 Regression
Regression uses existing values to forecast what other values will
be and it is one of the fundamental tasks of data mining. Consider
the standard univariate nonparametric regression setting:yi =
g(ti) + εi, i = 1, . . . , n whereεi are independentN(0, σ2) ran-
dom variables. The goal is to recover the underlying functiong
from the noisy datayi, without assuming any particular parametric
structure forg. The basic approach of using wavelets for nonpara-
metric regression is to consider the unknown functiong expanded
as a generalized wavelet series and then to estimate the wavelet co-
efficients from the data. Hence the original nonparametric problem
is thus transformed to a parametric one [1]. Note that the denoise
problem we discussed in Section 5.1 can be regarded as a subtask
of the regression problem since the estimation of the underlying
function involves the noise removal from the observed data.

6.3.1 Linear Regression
For linear regression, we can express

g(t) = c0φ(t) +

∞∑
j=0

2j−1∑
k=0

wjkψjk(t),

wherec0 =< g, φ >,wjk =< g, ψjk >. If we assumeg belongs
to a class of functions with certain regularity, then the correspond-
ing norm of the sequence ofwjk is finite andwjk ’s decay to zero.
So

g(t) = c0φ(t) +

M∑
j=0

2j−1∑
k=0

wjkψjk(t)

for someM and a corresponding truncated wavelet estimator is [1]

ĝM (t) = ĉ0φ(t) +

M∑
j=0

2j−1∑
k=0

ŵjkψjk(t).

Thus the original nonparametric problem reduces to linear regres-
sion and the sample estimates of the coefficients are given by:

ĉ0 =
1

n

n∑
i=1

φ(ti)yi, ŵjk =
1

n

n∑
i=1

ψjk(ti)yi.

The performance of the truncated wavelet estimator clearly de-
pends on an appropriate choice ofM . Various methods such as
Akaike’s Information Criterion [8] and cross-validation can be used
for choosingM . Antoniadis [11] suggested linear shrunk wavelet
estimators where thêwjk are linearly shrunk by appropriately cho-
sen level-dependent factors instead of truncation. We should point
out that: the linear regression approach here is similar to the di-
mensionality reduction by keeping the first several wavelet coeffi-
cients discussed in section 5.3. There is an implicit strong assump-
tion underlying the approach. That is, all wavelet coefficients in
the firstM coarsest levels are significant while all wavelet coef-
ficients at a higher resolution levels are negligible. Such a strong
assumption clearly would not hold for many functions. Donoho
and Johnstone [60] showed that no linear estimator will be optimal
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in minimax sense for estimating inhomogeneous functions with lo-
cal singularities. More discussion on linear regression can be found
in [10].

6.3.2 Nonlinear Regression
Donoho et al. [58; 61; 60; 59] proposed a nonlinear wavelet esti-
mator ofg based on reconstruction from a more judicious selec-
tion of the empirical wavelet coefficients. The vanishing moments
property of wavelets makes it reasonable to assume that essentially
only a few ’large’ ŵjk contain information about the underlying
functiong, while ’small’ ŵjk can be attributed to noise. If we can
decide which are the ’significant’ large wavelet coefficients, then
we can retain them and set all the others equal to zero, so obtaining
an approximate wavelet representation of underlying functiong.
The key concept here is thresholding. Thresholding allows the data
itself to decide which wavelet coefficients are significant. Clearly
an appropriate choice of the threshold valueλ is fundamental to
the effectiveness of the estimation procedure. Too large threshold
might “cut off” important parts of the true function underlying the
data while too small a threshold retains noise in the selective recon-
struction. As described in Section 5.1, there are three commonly
used thresholding functions. It has been shown that hard thresh-
olding results in larger variance in the function estimate while soft
thresholding has large bias. To comprise the trade-off between bias
and variance, Bruce and Gao [27] suggested a firm thresholding
that combines the hard and soft thresholding.
In the rest of the section, we discuss more literatures on the
choice of thresholding for nonlinear regression. Donoho and John-
stone [58] proposed the universal thresholdλun = σ

√
2 logn/

√
n

whereσ is the noise level and can be estimated from the data.
They also showed that for both hard and soft thresholding the re-
sulting nonlinear wavelet estimator is asymptotically near-minimax
in terms ofL2 risk and it outperforms any linear estimator for
inhomogeneous functions. They [59] also proposed an adaptive
SureShrink thresholding rule based on minimizing Stein’s unbiased
risk estimate. Papers [123; 86] investigated using cross-validation
approaches for the choice of threshold. Some researchers [2; 128]
developed the approaches of thresholding by hypothesis testing
the coefficients for a significant deviation from zero. Donoho
et al. [61] proposed level-dependent thresholding where different
thresholds are used on different levels. Some researchers [30; 76]
proposed block thresholding where coefficients are thresholded in
blocks rather than individually. Both modifications imply better
asymptotic properties of the resulting wavelet estimators. Various
Bayesian approaches for thresholding and nonlinear shrinkage has
also been proposed [161; 4; 3; 159]. In the Bayesian approach,
a prior distribution is imposed on wavelet coefficient and then the
function is estimated by applying a suitable Bayesian rule to the
resulting posterior distribution of the wavelet coefficients. Garo-
falakis and Gibbons [70] introduced a probabilistic thresholding
scheme that deterministically retains the most important coeffi-
cients while randomly rounding the other coefficients either up to a
larger value or down to zero. The randomized rounding enables
unbiased and error-guaranteed Reconstruction of individual data
values. Interested readers may refer to [162] for comprehensive
reviews of Bayesian approaches for thresholding. More discussion
on nonlinear regression can be found in [10].

6.4 Distributed Data Mining
Over the years, data set sizes have grown rapidly with the advances
in technology, the ever-increasing computing power and computer
storage capacity, the permeation of Internet into daily life and the
increasingly automated business, manufacturing and scientific pro-

cesses. Moreover, many of these data sets are, in nature, geograph-
ically distributed across multiple sites. To mine such large and dis-
tributed data sets, it is important to investigate efficient distributed
algorithms to reduce the communication overhead, central storage
requirements, and computation times. With the high scalability of
the distributed systems and the easy partition and distribution of a
centralized dataset, distribute clustering algorithms can also bring
the resources of multiple machines to bear on a given problem as
the data size scale-up. In a distributed environment, data sites may
behomogeneous, i.e., different sites containing data for exactly the
same set of features, orheterogeneous, i.e., different sites storing
data for different set of features, possibly with some common fea-
tures among sites. The orthogonal property of wavelet basis could
play an important role in distributed data mining since the orthogo-
nality guarantees correct and independent local analysis that can be
used as a building-block for a global model. In addition, the com-
pact support property of wavelets could be used to design parallel
algorithms since the compact support guarantees the localization
of wavelet and processing a region of data with wavelet does not
affect the the data out of this region.
Kargupta et al.[92; 81] introduced the idea of performing
distributed data analysis using wavelet-basedCollective Data
Mining(CDM) from heterogeneous sites. The main steps for the
approach can be summarized as follows:

• choose an orthonormal representation that is appropriate for
the type of data model to be constructed,

• generate approximate orthonormal basis coefficients at each
local site,

• if necessary, move an approximately chosen sample of the
datasets from each site to a single site and generate the
approximate basis coefficients corresponding to non-linear
cross terms,

• combine the local models, transform the model into the user
described canonical representation and output the model.

The foundation of CDM is based on the fact that any function can
be represented in a distributed fashion using an appropriate basis.
If we use wavelet basis, The orthogonality guarantees correct and
independent local analysis that can be used as a building-block for
a global model. Hershberger et al. [81] presented applications of
wavelet-based CDM methodology to multivariate regression and
linear discriminant analysis. Experiments have shown that the re-
sults produced by CDM are comparable to those obtained with cen-
tralized methods and the communication cost was shown to be di-
rectly proportional to the number of terms in the function and inde-
pendent of the sample size.

6.5 Similarity Search/Indexing
The problem of similarity search in data mining is: given a
pattern of interest, try to find similar patterns in the data set
based on some similarity measures. This task is most com-
monly used for time series, image and text data sets. For time
series, for example, given the Xerox stock prices over last 7
days and wish to find the stocks that have similar behaviors.
For image, given a sample image and wish to find similar im-
ages in a collection of image database. For text, given some
keywords, wish to find relevant documents. More formally, A
dataset is a set denotedDB = {X1, X2, . . . , Xi, . . . , XN},where
Xi = [xi

0, x
i
1, . . . , x

i
n] and a given pattern is a sequence of data

pointsQ = [q0, q1, . . . , qn]. Given a patternQ, the result setR
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from the data set isR = {Xi1 , Xi2 , . . . , Xij , . . . , Xim}, where
{i1, i2, · · · , im} ⊆ {1, · · · , N}, such thatD(Xij , Q) < d. If we
use Euclidean distance betweenX andY as the distance function
D(X,Y ), then,

D(X,Y ) =

√∑
j

|xj − yj |2

which is the aggregation of the point to point distance of two pat-
terns. Wavelets could be applied into similarity search in several
different ways. First, wavelets could transform the original data
into the wavelet domain as described in Section 5.2 and we may
also only keep selective wavelet coefficients to achieve dimension-
ality reduction as in Section 5.3. The similarity search are then
conducted in the transformed domain and could be more efficient.
Although the idea here is similar to that reviewed in Section 5.2
and Section 5.3: both involves transforming the original data into
wavelet domain and may also selecting some wavelet coefficients.
However, it should be noted that here for the data set: to project the
n-dimensional space into ak-dimensional space using wavelets,
the samek-wavelet coefficients should be stored for objects in the
data set. Obviously, this is not optimal for all objects. To find thek
optimal coefficients for the data set, we need to compute the aver-
age energy for each coefficient. Second, wavelet transforms could
be used to extract compact feature vectors and define new similarity
measure to facilitate search. Third, wavelet transforms are able to
support similarity search at different scales. The similarity measure
could then be defined in an adaptive and interactive way.
Wavelets have been extensively used in similarity search in time
series [83; 172; 131; 132]. Excellent overview of wavelet meth-
ods in time series analysis can be found in [44; 121; 122]. Chan
and Fu [131] proposed efficient time series matching strategy by
wavelets. Haar transform wavelet transform is first applied and the
first few coefficients of the transformed sequences are indexed in
an R-Tree for similarity search. The method provides efficient for
range and nearest neighborhood queries. Huhtala et al. [83] also
used wavelets to extract features for mining similarities in aligned
time series. Wu et al.[172] presented a comprehensive compari-
son between DFT and DWT in time series matching. The exper-
imental results show that although DWT does not reduce relative
matching error and does not increase query precision in similar-
ity search, DWT based techniques have several advantage such as
DWT has multi-resolution property and DWT has complexity of
O(N) while DFT has complexity ofO(N logN). Wavelet trans-
form gives time-frequency localization of the signal and hence most
of the energy of the signal can be represented by only a few DWT
coefficients. Struzik and Siebes [153; 154] presented new similar-
ity measures based on the special presentations derived from Haar
wavelet transform. Instead of keeping selective wavelet coeffi-
cients, the special representations keep only the sign of the wavelet
coefficients (sign representation) or keep the difference of the log-
arithms (DOL) of the values of the wavelet coefficient at highest
scale and the working scale (DOL representation). The special rep-
resentations are able to give step-wise comparisons of correlations
and it was shown that the similarity measure based on such repre-
sentations closely corresponds to the subjective feeling of similarity
between time series.
Wavelets also have widespread applications in content-based sim-
ilarity search in image/audio databases. Jacobs et al.[85] pre-
sented a method of usingimage querying metricfor fast and ef-
ficient content-based image querying. The image querying metric
is computed on thewavelet signatureswhich are obtained by trun-
cated and quantized wavelet decomposition. In essential, the image

querying metric compares how many wavelet significant wavelet
coefficients the query has in common with the potential targets.
Natsev et al. [125] proposedWALRUS(WAveLet-based Retrieval
of User-specified Scenes) algorithm for similarity retrieval in im-
age diastases. WALRUS first uses dynamic programming to com-
pute wavelet signatures for sliding windows of varying size, then
clusters the signatures in wavelet space and finally the similarity
measure between a pair of images is calculated to be the fraction of
the area the two images covered by matching signatures. Ardizzoni
et al. [13] describedWindsurf(Wavelet-Based Indexing of Images
Using Region Fragmentation), a new approach for image retrieval.
Windsurf uses Haar wavelet transform to extract color and texture
features and applies clustering techniques to partition the image
into regions. Similarity is then computed as the Bhattcharyya met-
ric [31] between matching regions. Brambilla [24] defined an ef-
fective strategy which exploits multi-resolution wavelet transform
to effectively describe image content and is capable of interac-
tive learning of the similarity measure. Wang et al. [167; 84]
describedWBIIS(Wavelet-Based Image Indexing and Searching),
a new image indexing and retrieval algorithm with partial sketch
image searching capability for large image databases. WBIIS ap-
plies Daubechies-8 wavelets for each color component and low fre-
quency wavelet coefficients and their variance are stored as fea-
ture vectors. Wang, Wiederhold and Firschein [166] described
WIPETM(Wavelet Image Pornography Elimination) for image re-
trieval. WIPETM uses Daubechies-3 wavelets, normalized central
moments and color histograms to provide feature vector for similar-
ity matching. Subramanya and Youssef [155] presented a scalable
content-based image indexing and retrieval system based on vector
coefficients of color images where highly decorrelated wavelet co-
efficient planes are used to acquire a search efficient feature space.
Mandal et al. [112] proposed fast wavelet histogram techniques for
image indexing. There are also lots of applications of wavelets in
audio/music information processing such as [103; 56; 101; 156]. In
fact, IEEE Transactions on Signal Processing has two special issues
on wavelets, in Dec. 1993 and Jan. 1998 respectively. Interested
readers could refer to these issues for more details on wavelets for
indexing and retrieval in signal processing.

6.6 Approximate Query Processing
Query processing is a general task in data mining and similarity
search discussed in Section 6.5 is one of the specific form of query
processing. In this section, we will describe wavelet applications in
approximate query processing which is another area within query
processing. Approximate query processing has recently emerged
as a viable solution for large-scale decision support. Due to the
exploratory nature of many decision support applications, there are
a number of scenarios where an exact answer may not be required
and a user may in fact prefer a fast approximate answer. Wavelet-
based techniques can be applied as a data reduction mechanism
to obtainwavelet synopsesof the data on which the approximate
query could then operate. The wavelet synopses are compact sets of
wavelet coefficients obtained by the wavelet decomposition. Note
that some of wavelet methods described here might overlap with
those described in Section 5.3. The wavelet synopses reduce large
amount of data to compact sets and hence could provide fast and
reasonably approximate answers to queries.
Matias, Vitter and Wang [113; 114] presented a wavelet-based
technique to build histograms on the underlying data distribu-
tions for selectivity estimation and Vitter et al. [164; 88] also pro-
posed wavelet-based techniques for the approximation of range-
sum queries over OLAP data cubes. Generally, the central idea is
to apply multidimensional wavelet decomposition on the input data
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collection (attribute columns or OLAP cube) to obtain a compact
data synopsis by keeping a selective small collection of wavelet
coefficients. Experiments in [113] showed that wavelet-based his-
tograms improve the accuracy substantially over random sampling
and results from [164] clearly demonstrated that wavelets can be
very effective in handling aggregates over high-dimensional OLAP
cubes while avoiding the high construction costs and storage over-
heads. Chakrabarti et al. [36] extended previous work on wavelet
techniques in approximate query answering by demonstrating that
wavelets could be used as a generic and effective tool for decision
support applications. The generic approach consists of three steps:
the wavelet-coefficient synopses are first computed and then using
novel query processing algorithms SQL operators such as select,
project and join can be executed entirely in the wavelet-coefficient
domain. Finally the results is mapped from the wavelet domain to
relational tuples(Rendering). Experimental results verify the effec-
tiveness and efficiency. Gilbert et al. [71] presented techniques for
computing small space representations of massive data streams by
keeping a small number of wavelet coefficients and using the repre-
sentations for approximate aggregate queries. Garofalakis and Gib-
bons [70] introduced probabilistic wavelet synopses that provably
enabled unbiased data reconstruction with guarantees on the ac-
curacy of individual approximate answers. The probabilistic tech-
nique is based on probabilistic thresholding scheme to assign each
coefficient a probability of being retained instead of deterministic
thresholding.

6.7 Visualization
Visualization is one of the description tasks (exploratory data anal-
ysis) of data mining and it allows the user to gain an understanding
of the data. Visualization works because it exploits the broader in-
formation bandwidth of graphics as opposed to text or numbers.
However, for large dataset it is often not possible to even perform
simple visualization task. The multiscale wavelet transform facil-
itates progressive access to data with the viewing of the most im-
portant features first.
Miller et al. [118] presented a novel approach to visualize and ex-
plore unstructured text based on wavelet. The underlying tech-
nology applies wavelet transforms to a custom digital signal con-
structed from words within a document. The resultant multireso-
lution wavelet energy is used to analyze the characteristics of the
narrative flow in the frequency domain. Wong and Bergeron [170]
discussed with the authenticity issues of the data decomposition,
particularly for data visualization. A total of six datasets are used
to clarify the approximation characteristics of compactly supported
orthogonal wavelets. It also presents an error tracking mechanism,
which uses the available wavelet resources to measure the quality
of the wavelet approximations. Roerdink and Westenberg [137]
considered multiresolution visualization of large volume data sets
based on wavelets. Starting from a wavelet decomposition of the
data, a low resolution image is computed; this approximation can
be successively refined. Du and Moorhead [62] presented a tech-
nique which used a wavelet transform and MPI(Message Passing
Interface) to realize a distributed visualization system. The wavelet
transform has proved to be a useful tool in data decomposition and
progressive transmission.

6.8 Neural Network
Neural networks are of particular interest because they offer a
means of efficiently modeling large and complex problems and they
can be applied to many data mining tasks such as classification,
clustering and regression. Roughly speaking, a neural network is a
set of connected input/hidden/output units where each connection

has an associated weight and each unit has an associated activated
function. Usually neural network methods contain a learning phase
and a working phase. A learning phase is to adjust the weights and
the structures of the network based on the training samples while
the working phase is to execute various tasks on new instances. For
more details on neural network, please refer to [80; 64; 90].
The idea of combining neural networks with multiscale wavelet de-
composition has been proposed by a number of authors [42; 98;
43; 54; 97; 49; 95; 96; 171]. These approaches either use wavelets
as the neuron’s activation functions [98; 38](usually call these as
wavelet neural network), or in a pre-processing phasing by the ex-
traction of features from time series data [42; 54; 171]. The proper-
ties of wavelet transforms emerging from a multi-scale decomposi-
tion of signals allow the study of both stationary and non-stationary
signals. On the other hand the neural network performs a non-
linear analysis as well linear dependencies due to different possi-
ble structures and activation functions. Hence combining wavelets
and neural network would give us more power on data analysis.
A wavelet neural network, using the wavelets as activation func-
tions and combining the mathematically rigorous, multi-resolution
character of wavelets with the adaptive learning of artificial neu-
ral networks, has the capability of approximating any continuous
nonlinear mapping to any high resolution. Learning with wavelet
neural network is efficient, and is explicitly based on the local or
global error of approximation. A simple wavelet neural network
displays a much higher level of generalization and shorter com-
puting time as compared to three-layer feed forward neural net-
work [173]. Roverso [139] proposed an approach for multivariate
temporal classification by combining wavelet and recurrent neural
network. Kreinovich et al. [99] showed that wavelet neural net-
works are asymptotically optimal approximators for functions of
one variable in the sense that it require to store the smallest possi-
ble number of bits that is necessary to reconstruct a function with
a given precision. Bakshi et al. [18] described the advantages of
wavelet neural network learning over other artificial neural learning
techniques and discussed the relationship between wavelet neural
network and other rule-extraction techniques such as decision trees.
It also shows that wavelets may provide a unifying framework for
various supervised learning techniques.
WSOM is a feedforward neural network that estimates optimized
wavelet bases for the discrete wavelet transform on the basis of the
distribution of the input data [32]. Sheng and Chou [105] reported
the application of using wavelet transform and self-organizing map
to mine air pollutant data.

6.9 Principal/Independent Component Anal-
ysis

A widely used technique for data mining is based on diagonalizing
the correlation tensor of the data-set, keeping a small number of
coherent structures (eigenvectors) based on principal components
analysis (PCA) [19]. This approach tends to be global in char-
acter. Principal component analysis (PCA) has been adopted for
many different tasks. Wavelet analysis and PCA can be combined
to obtain proper accounting of global contributions to signal energy
without loss of information on key local features. In addition, the
multi-resolution property of wavelets could help to find the princi-
pal component at multiple scales.
Bakshi [16] used multiscale PCA(MSPCA) for process monitor-
ing. Multiscale PCA combines the ability of PAC to decorrelate
the variables by extracting a linear relationship with that of wavelet
analysis to extract deterministic features and approximately decor-
relate autocorrelated measurements. MSPCA computes the PCA
of the wavelet coefficients at each scale, followed by combining
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the results at relevant scales. Due to its multiscale nature, MSPCA
is approximate for modeling of data containing contributions from
events whose behavior changes over time and frequency. Pro-
cess monitoring by MSPCA involves combining only those scales
where significant events are detected, and is equivalent to adap-
tively filtering the scores and residuals and adjusting limits for
easiest detection of deterministic changes in the measurements.
Bakshi [17] presented an overview of multiscale data analysis and
empirical modeling methods based on wavelet analysis. Feng et
al. [65] proposed an approach of applying Principal Component
Analysis (PCA) on the wavelet subband as described in Section 5.2.
Wavelet analysis could also be combined with Independent Com-
ponent Analysis (ICA). The goal of ICA is to recover independent
sources given only sensor observations that are unknown linear
mixtures of the unobserved independent source signals. Briefly,
ICA attempts to estimate the coefficients of an unknown mixture
of n signal sources under the hypotheses that the sources are sta-
tistically independent, the medium of transmission is deterministic,
and crucially, the mixture coefficients are constant with respect to
time. One then solves for the sources from the observations by
invertingthe mixture matrix. In contrast to correlation-based trans-
formations such as Principal Component Analysis (PCA), ICA not
only decorrelates the signals (2nd-order statistics) but also reduces
higher-order statistical dependencies, attempting to make the sig-
nals as independent as possible. In other words, ICA is a way of
finding a linear non-orthogonal co-ordinate system in any multi-
variate data. The directions of the axes of this co-ordinate system
are determined by both the second and higher order statistics of
the original data. The goal is to perform a linear transform which
makes the resulting variables as statistically independent from each
other as possible. More details about the ICA algorithms can be
found in [21; 48; 20; 89]. A fundamental weakness of existing
ICA algorithms, namely that the mixture matrix is assumed to be
essentially constant. This is unsatisfactory when moving sources
are involved. Wavelet transforms can be utilized to this problem by
using time-frequency characteristics of the mixture matrix in the
source identification. Moreover, ICA algorithms could also make
use of the multiscale representation of wavelet transforms.

7. SOME OTHER APPLICATIONS
There are some other wavelet applications that are related to data
mining.
Web Log Mining : Wavelets offer powerful techniques for mathe-
matically representing web requests at multiple time scales and a
compact and concise representation of the requests using wavelet
coefficients. Zhai et al. [175] proposed to use wavelet-based tech-
niques to analyze the workload collected from busy web servers. It
aims at finding the temporal characteristics of the web server web-
log which contains workload information and predicting the trend
it evolves.
Traffic Monitoring : The wavelet transform significantly reduces
the temporal dependence and simple models which are insuffi-
cient in the time domain may be quite accurate in the wavelet do-
main. Hence wavelets provide an efficient way to modeling net-
work traffic. Riedi et al. [136] developed a new multiscale mod-
eling framework for characterizing positive-valued data with long-
range-dependent correlations. Using the Haar wavelet transform
and a special multiplicative structure on the wavelet and scaling
coefficients to ensure positive results. Ma and Ji [106; 107; 108]
presented the work on modeling on modeling temporal correlation
(the second-order statistics) of heterogeneous traffic, and modeling
non-Gaussian (high-order statistics) and periodic traffic in wavelet
domain.

Change Detection: The good time-frequency localization of
wavelets provides a natural motivation for their use in change point
detection problems. The main goal of change detection is estima-
tion of the number, locations and sizes of function’s abrupt changes
such as sharp spikes or jumps. Change-point models are used in
a wide set of practical problems in quality control, medicine, eco-
nomics and physical sciences [1]. The general idea of using wavelet
for detecting abrupt changes is based on the connection between the
function’s local regularity properties at a certain point and the rate
of decay of the wavelet coefficients located near this point across
increasing resolution level [111]. Local regularities are identified
by unusual behavior in the wavelet coefficients at high-resolution
levels at the corresponding location [168]. Bailey et al. [15] used
wavelet to detect signal in underwater sound. Donoho et al. [57]
discussed the application of wavelets for density estimation.

8. CONCLUSION
This paper provides an application-oriented overview of the math-
ematical foundations of wavelet theory and gives a comprehensive
survey of wavelet applications in data mining The object of this
paper is to increase familiarity with basic wavelet applications in
data mining and to provide reference sources and examples where
the wavelets may be usefully applied to researchers working in data
analysis. Wavelet techniques have a lot of advantages and there al-
ready exists numerous successful applications in data mining. It
goes without saying that wavelet approaches will be of growing
importance in data mining.
It should also be mentioned that most of current works on wavelet
applications in data mining are based orthonormal wavelet basis.
However, we argue that orthonormal basis may not be the best rep-
resentation for noisy data even though the vanishing moments can
help them achieve denoising and dimensionality reduction purpose.
Intuitively, orthogonality is the most economical representation. In
other words, in each direction, it contains equally important infor-
mation. Therefore, it is usually likely that thresholding wavelet
coefficients remove useful information when they try to remove
the noise or redundant information (noise can also be regarded as
one kind of redundant information). To represent redundant infor-
mation, it might be good to use redundant wavelet representation
– wavelet frames. Except orthogonality, wavelet frames preserve
all other properties that an orthonormal wavelet basis owns, such
as vanishing moment, compact support, multiresolution. The re-
dundancy of a wavelet frame means that the frame functions are
not independent anymore. For example, vectors[0, 1] and [1, 0]
is an orthonormal basis of a planeR2, while vectors[1/2, 1/2],
[−1/2, 1/2], and[0,−1] are not independent, and consist a frame
for R2. So when data contain noise, frames may provide some
specific directions to record the noise. Our work will be the estab-
lishment of criteria to recognize the direction of noise or redundant
information.
Wavelets could also potentially enable many other new researches
and applications such as conventional database compression, mul-
tiresolution data analysis and fast approximate data mining etc. Fi-
nally we eagerly await many future developments and applications
of wavelet approaches in data mining.
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Appendix A: Formal Definition
A function ψ(x) ∈ L2(R) is called awaveletif it satisfies the
following properties:

•
∫
ψ(x)dx = 1;

• There is a finite interval[a, b], such thatψ(x) = 0 for all
x /∈ [a, b];

• There exists a functionφ(x) such that〈φ, ψ〉 = 0 (i.e.,φ is
orthogonal toψ) and satisfies

φ(x) =

n∑
i=0

hiφ(2x− i),

for somehi, i = 0, n;

• There exist a finite sequence of real numbersg0, . . . , an such
that

ψ(x) =

n∑
i=0

giφ(2x− i);

• The dyadic dilation and translation ofφ,

ψj,k = 2−j/2ψ(2jx− k), where j, k ∈ Z

is an orthonormal basis.

Appendix B: More on Fast DWT Algorithm
For a given functionf ∈ L2(R) one can find aN such that
fN ∈ VN approximatesf up to predefined precision (in terms of
L3 closeness). Ifgi ∈ Wi, fi ∈ Vi, thenfN = fN−1 + gN−1 =∑M

i=1 gN−i + fN−M . Informally, we can think of the wavelets
in Wi as a means of representing the parts of a function inVi+1

that can not be represented inVi. So the decomposition process
is as follows: given afN in VN , we first decomposefn into two
parts where one part is inVN−1 and the other part is inWN−1.
At next step, we continue to decompose the part inVN−1 obtained
from previous step into two parts where one inVN−2 and the other
in WN−2. This procedure is then repeated. This is exactly the
wavelet decomposition.
Recall that we haveφ(x) =

∑∞
k=−∞ akφ(2x − k) andψ(x) =∑∞

k=−∞(−1)kā1−kφ(2x − k) whereφ(x), the scaling function,

is related to the spaceV0 andψ(x), the mother wavelet function, is
related toW0. Definebk = (−1)ka1−k and usually the sequences
{ak}, {bk} are called Quadrature Mirror filters(QMF) in the ter-
minology of signal processing.ak is a low-band or low-pass filter
andbk is a hi-band or hi-pass filter. For a sequencef = {fn} that
represents the discrete signal to be decomposed and the operators
H andG are defined by the following coordinativewise relations:

(Hf)k =
∑

n

a(n− 2k)f(n), (Gf)k =
∑

n

b(n− 2k)f(n)

(This can be represented as convolution:Hf = f(k) ∗ a(n −
k), Gf = f(k)∗b(n−k)). They represent filtering a signal through
digital filtersa(k), b(k) that corresponds to the mathematical oper-
ation of convolution with the impulse response of the filters. The
factor2k represents downsampling. The operatorsH andG cor-
respond to one-step in the wavelet decomposition. Thus the DWT
transformation can be summarized as a single line:

f → (Gf,GHf,GH2f, . . . , GHj−1f,Hjf)

= (d(j−1), d(j−2), . . . , d(0), c(0)),

where we can calld(j−1), d(j−2), . . . , d(1), d(0) coefficients details
andc(0) coefficient approximation. The details and approximation
are defined by iterative way:c(j−1) = Hc(j), d(j−1) = Gd(j).
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