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Abstract. Recent work on querying data streams has focused
on systems where newly arriving data is processed and con-
tinuously streamed to the user in real time. In many emerging
applications, however, ad hoc queries and/or intermittent con-
nectivity also require the processing of data that arrives prior
to query submission or during a period of disconnection. For
such applications, we have developed PSoup, a system that
combines the processing of ad hoc and continuous queries by
treating data and queries symmetrically, allowing new queries
to be applied to old data and new data to be applied to old
queries. PSoup also supports intermittent connectivity by sep-
arating the computation of query results from the delivery of
those results. PSoup builds on adaptive query-processing tech-
niques developed in the Telegraph project at UC Berkeley. In
this paper, we describe PSoup and present experiments that
demonstrate the effectiveness of our approach.

Keywords: Stream query processing — Query-data duality —
Disconnected operation

1 Introduction

The proliferation of the Internet, the Web, and sensor networks
has fueled the development of applications that treat data as
a continuous stream rather than as a fixed set. Telephone call
records, stock and sports tickers, and data feeds from sensors
are examples of streaming data. Recently, a number of sys-
tems have been proposed to address the mismatch between
traditional database technology and the needs of query pro-
cessing over streaming data (e.g., [1,8,9,22,10]). In contrast
to traditional DBMSs that answer streams of queries over a
nonstreaming database, these continuous query (CQ) systems
treat queries as fixed entities and stream the data over them.
Previous systems allow only the queries or the data to be
streamed, but not both. As aresult, they cannot support queries
that require access to both data that have arrived already and
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data that will arrive in the future. Furthermore, existing CQ
systems continuously deliver results as they are computed. In
many situations, however, such continuous delivery may be
infeasible or inefficient. Two such scenarios are:

Data recharging: data recharging [13] is a process through
which personal devices such as PDAs periodically connect
to the network to refresh their data contents. For example,
consider a business traveler who wishes to stay apprised of in-
formation ranging from the movements of financial markets to
the latest football scores, all within a certain historical window.
These interests are encoded into queries to be executed at a
remote server, the results of which must be downloaded to the
user’s PDA when it is connected to the network infrastructure.
Monitoring: consider a user who wants to track interesting
pieces of information such as the number of music downloads
from within his subnet in the last hour or recent postings on
Slashdot (http://www.slashdot.org/) with a score greater than
a certain threshold. Even when online, the user might only
periodically wish to see summaries of recent activity rather
than being interrupted by every update. Aggregated over many
users, the bandwidth and server load wasted on transmitting
data that are never accessed will be significant. A more efficient
approach is to return the current results of a standing query on
demand.

To support such applications, we propose PSoup, a query
processor based on the Telegraph [22] query-processing
framework. The core insight in PSoup that allows us to support
such applications is that both data and queries are streaming
and, more importantly, are duals of each other: multiquery
processing is viewed as a join of query and data streams. In
addition, PSoup also partially precomputes and materializes
results to support disconnected operation and to improve data
throughput and query response times.

1.1 Overview of the system

A user interacts with PSoup by initially registering a query
specification with the system. The system returns a handle
to the user, which can then be used repeatedly to invoke the
results of the query at later times. A user can also explicitly
unregister a previously specified query.

An example query specification is shown below:
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Fig. 1. Outline of solution

Select *

From Data_Stream D_s

Where (D_s.a <vi A D_s.b> v3)
Begin (NOW —10)

End (NOW)

PSoup supports monotonic SELECT-FROM-WHERE queries
with conjunctive predicates.! Queries also contain a BEGIN-
END clause that specifies the input window over which the
query results are to be computed. In this paper, we assume
that the system clock time is used to define the ends of the
input window and that the same time-window applies to all
the streams in the FRoM clause. By using a per-stream logical
counter for the number of tuples in each stream, the ideas pre-
sented here can be adapted to allow logical windows (i.e., win-
dows whose sizes are specified using number of tuples rather
than system clock time). It is also relatively straightforward
to extend our implementation to support the application of
different-sized windows to each stream. The arguments to the
BEGIN-END clause can either be constants (using absolute val-
ues) or be specified relative to the current system clock (using
the keyword NOW). The BEGIN-END clause allows the specifi-
cation of snapshot (constant BEGIN-TIME, constant END-TIME)
[38], landmark (constant BEGIN-TIME, variable END-TIME), or
sliding window (variable BEGIN-TIME, variable END-TIME) se-
mantics [19] for the queries. Because PSoup is currently im-
plemented as a main-memory engine, the acceptable windows
are limited by the size of memory.

Internally, PSoup views the execution of a stream of
queries over a stream of data as a join of the two streams, as
illustrated in Fig. 1. We refer to this process as the query-data
join.

Our system stores the queries and data in structures called
State Modules (SteMs) [32]. There is one Query SteM for all
the query specifications in the system, and there is one Data
SteM for each data stream. Figure 1 shows an example with
one data stream. When a client first registers a query, it is in-
serted into the Query SteM and then used to probe the Data
SteM. This application of “new” queries to “old” data is how
PSoup executes queries over historical data. Similarly, when a
new data element arrives, it is inserted into the Data SteM and
used to probe the Query SteM. This act of applying “new” data

! The system currently does not allow nested subqueries. This con-
straint is not inherent in the treatment of queries as data. The imple-
mentation of subqueries, as well as of disjunctions, is the subject of
future work.

to “old” queries is how PSoup supports continuous queries. In
both cases, the results of the probes are materialized in a Re-
sults Structure (not shown in figure). When a query is invoked,
the current input window is computed from the BEGIN-END
clause using the current value of NOW. This window is then ap-
plied to the materialized values to retrieve the current results.
Materialization is the key to efficient support for set-based
semantics in continuous queries.

1.2 Contributions of the paper

We propose a scheme that efficiently solves the problem of in-
termittently repeated snapshot, landmark, and sliding window
queries over streaming data within a recent historical window.
We explore the trade-off between the computation required to
materialize and maintain the results of a query and the response
time for invocation of those queries.

We demonstrate several advantages of treating data and
queries as streams and as duals. First, this idea is the key
to solving the problem of processing queries that can access
both data that arrived before the query registration and data
that will arrive in the future. Second, multiquery evaluation
can be optimized by using appropriate algorithms to join the
data and query streams. Third, we can leverage Eddies [4] to
adaptively respond to changing characteristics of both the data
and query specification streams.

Finally, we develop techniques to share both the compu-
tation and storage of different query results. We index predi-
cates to share computation for incremental maintenance across
standing queries. The storage of the results of the query-data
join computation is the key to PSoup’s ability to support inter-
mittently connected operations. We share storage across the
base data and the results of all standing queries by avoiding
copies.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work. In Sects. 3 and 4, we describe
how PSoup executes selection and join queries. We present the
results of our experiments in Sect. 5. Section 6 discusses is-
sues involving aggregation queries that are of specific interest
to PSoup. In Sect. 7, we present our conclusions and directions
for future work.

2 Related work

PSoup is part of the Telegraph [22] project at UC Berkeley. It
spans work on continuous queries, triggers, and materialized
views.

2.1 Continuous queries

There is a large volume of work on continuous queries. We
broadly discuss three different classes of work on continuous
queries: work on CQ semantics and languages, CQ engines,
and sequence operators.

2.1.1 CQ semantics and languages

The first class of related work is the literature that describes
the semantics of standing queries over streams of data.
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Terry et al. [40] studied continuous queries to filter doc-
uments using a SQL-like language. They define continuous
semantics as follows:

The result of a continuous query is the set of data
that would be returned if the query were executed at
every instant.

Based on this definition, they define monotone queries as
those whose output is at all times strictly nondecreasing with
time. The system they describe, Tapestry, executes only sim-
ple monotone queries; further, it does not handle aggregates
or outer joins.

The definition of an algebra and query language for CQ
engines involving both relations and sequences of tuples is
the subject of current research of both the TelegraphCQ and
STREAM projects. Chandrasekaran et al. [11] and Motwani et
al. [30] describe a preliminary specification of their respective
semantics and languages.

Seshadri et al. [36] discuss the problem of defining and
executing queries over sequenced data. They use the notion of
the scope of the input to define the windows over which the
computation is to be performed. They only consider queries
that produce a singleton tuple as output for each input win-
dow. They present methods for costing and optimizing such
sequence queries.

Gehrke et al. [19] describe two classes of windowed
queries: landmark and sliding window queries. Landmark win-
dows extend from a fixed point in the stream to the latest tuple,
while sliding windows are of fixed size with both ends of the
window moving as new tuples appear in the stream.

Bonnet et al. [6,7] describe different kinds of queries over
streaming data, namely, historical, snapshot, and long-running
queries. They define historical queries as queries over tuples
with timestamps that span a range in the past. Snapshot queries
are defined as those over a set of streaming sources but at a sin-
gle point in time in the past. Finally, they define long-running
queries as standing queries that continually return answers as
new data appear.

Sadri et al. [39] propose a language, SQL-TS, that can
express sequence-sensitive operations over windows of the
stream. By allowing queries to explicitly alias individual tuples
in the input window, the WHERE clause can express queries
that utilize the underlying sequence property of the tuples.
A key feature of SQL-TS is the ability to define windows
according to repeating patterns in the stream. This is achieved
by associating one (or more) of the above mentioned aliases
with a property that holds between consecutive tuples in the
pattern. The alias then refers to the entire subsequence where
the property holds.

Kanellakis et al. [24] define tuples as constraint specifica-
tions on tuples. These constraints can be either value assign-
ments or predicates, thus expressing both data and queries.

2.1.2 CQ engines

The second class of work on continuous queries that we are
interested in is the various CQ engines that have recently been
proposed in the literature.

SIFT [44] is a selective document dissemination system
that allows users to subscribe to text documents by specifying
a set of weighted keywords. It was one of the earlier papers

to suggest the reversal of roles of queries and data in filtering
systems through the use of an inverted index on the queries.

XFilter [1] is an XML-document-filtering engine for a
publish-subscribe system. It builds a finite state machine to
group and efficiently apply various user profiles (specified in
XPath) to the incoming documents.

NiagaraCQ [10] is an XML-based engine that supports
continuous queries over changing data, typically Web-site data
such as stock quotes, that are updated periodically. NiagaraCQ
builds static plans for the different continuous queries in the
systems and allows two queries to share the operator in their
query plans if the input to that operator is the same in both
query plans. As a result, two queries applying two filters over
different attributes of the stream in the same sequence may
share the operation of the first filter. They may, however, only
share the second one if the output of the first filter was the
same for both queries.

CACQ [29] is an earlier CQ extension of the Telegraph
engine that exploits the adaptivity offered by the Eddy operator
[4] to efficiently handle skews in data distribution and arrival
rates. CACQ also introduced the notion of tuple lineage to
allow overcome the limits on sharing described above in the
NiagaraCQ system. These ideas are also exploited in PSoup.

All of the above four systems focus on “filter”” operators:
they accept one long sequence of tuples as input and produce
another monotonically growing sequence as output. Further,
they do not offer support for queries over historical data. Fi-
nally, they do not consider disconnected operations. Compared
to these systems, we consider a more comprehensive work-
load, allowing queries to have nonmonotonic sets as inputs
and output, thereby allowing snapshot, landmark, and sliding
window queries. The techniques developed in PSoup to query
recently arrived and future data and to support disconnected
operation can be integrated into these earlier CQ systems. In
some ways, PSoup can be seen as a logical extension of these
CQ techniques to handle intermittent set-based queries over
both recent and future data.

Fabret et al. [17] observe that publish-subscribe systems
can apply newly published events to existing subscriptions
and match new subscriptions to existing (valid) events. How-
ever, they focus on grouping subscriptions and optimizing the
matching process on the arrival of new data and suggest that
standard query-processing techniques can be used to process
new subscriptions.

Fjords [28] is an architecture for querying streaming sen-
sor data. It proposes the use of queues between operators in
a query plan as a mechanism of combining push-based and
pull-based data sources.

More recently, a new class of systems called data stream
management systems (DSMSs) are being built at various uni-
versities to rethink every aspect of data management in the
context of streaming data.

TelegraphCQ [11], the next generation Telegraph sys-
tem being built at UC Berkeley, is focused on meeting the
challenges that arise in handling large streams of continu-
ous queries over high-volume, highly variable data streams. It
builds on the ideas developed in PSoup [12] and CACQ); the
key features of TelegraphCQ are therefore the shared and adap-
tive processing of multiple queries. TelegraphCQ also lever-
ages FluX [34], a load balancing and fault tolerance operator,
that allows it to be implemented on a cluster.
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STREAM [5] is a DSMS being built at Stanford. It focuses
on the issues of memory requirements for executing various
types of queries by considering the cost of self-maintenance
of different materialized views [3,8]. They also consider re-
source management issues including approximate query an-
swering in the face of limited resources. In our work, we are
less concerned with the trade-off between computation and
scratch storage than with the sharing of storage among differ-
ent queries.

Aurora [9] is another CQ engine currently being built
jointly at Brown University, Brandeis University, and M.L.T.
Aurora uses a network of operators to share the computa-
tion of different standing queries. This approach is similar to
that in NiagaraCQ. The Aurora network also contains connec-
tion points, which are intermediate tables in the network upon
which ad hoc queries can be executed. A key goal of Aurora
is the support for Quality-of-Service (QoS) specfications for
individual queries.

2.1.3 Sequence operators

Other recent research has focused on developing algorithms
for and implementing operators to perform specific functions
on sequenced data. TRIBECA [35] considers novel query
modules over streams like multiplexers and demultiplexers.
The band-join operator [15] extends the multiplexer opera-
tion to allow skew between the time attributes of the streams.
Lee et al. [26] study how to learn distributions from a stream
and detect anomalies. Gehrke et al. [19] consider the prob-
lem of computing correlated aggregate queries over streams
and present techniques for obtaining approximate answers in
a single pass. Yang et al. [45,46] discuss data structures for
computing and maintaining aggregates over streams. These
efforts address complex, but special, classes of queries that
we do not consider. Instead, we focus on more general Select-
Project-Join (SPJ) views and simple classes of aggregates.

2.2 Triggers and materialized views

The computation of standing queries based on tuple windows
is similar to trigger processing and also to the incremental
maintenance of materialized views. Triggerman [21] is a scal-
able trigger system that uses the Gator discrimination network
[20] to statically compute optimal strategies for processing the
trigger. Gator is a generalization of the Rete [16] and TREAT
[27] algorithms. The Chronicle data model [23] defines an al-
gebra for the materialized view problem over append-only
data. Wave indices [33] are another solution designed for
append-only data in a data warehousing scenario. They are
a set of indices maintained over different time intervals of the
data and allow queries over windowed input. They ensure high
harvest [18] (i.e., fraction of data used to answer query) of the
data while old data are being expired or as new data arrive.
This technique works well for hourly or daily bulk data up-
dates but does not scale to higher data arrival and expiration
rates.

3 Query-processing techniques

In this section we describe how PSoup processes a stream of
queries having the same FROM clause using several examples.
In Sect. 4, we extend the solution to handle queries with dif-
ferent FRoM clauses and describe the implementation in more
detail.

3.1 Overview

As described in Sect. 1.1, the client begins by registering a
query specification with the system. Query specifications are
of the form:

Select select_list

From from_list

Where conjoined_boolean_factors

Begin begin-time

End end-time

PSoup assigns the query a unique ID (called queryID) that

it returns to the user as a handle for future invocations. The
client can then go away (or disconnect) and return intermit-
tently to invoke the query to retrieve the current results. Be-
tween the invocations of the query by the client, PSoup contin-
uously matches data to query predicates in the background and
materializes the results of the matches in the Results Structure.
Upon invocation of the query, PSoup computes the current in-
put window for the query using the BEGIN-END clause and
applies it to the Results Structure to return the current results
of the query.

3.2 Entry of new query specifications or new data

We now describe the background query-data join processing
in greater detail. We defer the discussion of query invocation
and of the Results Structure until Sect. 3.3.

When PSoup receives a query specification, it splits the
query specification into two parts. The first part consists of
the SELECT-FROM-WHERE clauses of the specification, which
we refer to as a standing query clause (SQC). The second part,
which consists of the BEGIN-END clause, is stored in a separate
structure called the WindowsTable for reference during future
invocations of the query. The SQC is first inserted into a data
structure called the Query SteM. The SQC is then used to
probe the Data SteMs corresponding to the tables in its FRoM
clause. The Data SteMs contain the data tuples in the system.
The results of the probe indicate the data tuples that satisfied
the SQC. The identities of those tuples are stored in the Results
Structure.

When a new data tuple enters PSoup, it is assigned a glob-
ally unique tupleID and a physical timestamp (called its phys-
icalID) corresponding to the system clock. Next, the data tuple
is inserted into the appropriate Data SteM (there is one Data
SteM for each stream). The data tuple is then used to probe the
Query SteM to determine which SQCs it satisfies. As we will
describe in Sects. 3.2.2 and 3.2.3, the data tuple might be used
to further probe other Data SteMs to evaluate Join queries.
As before, the tupleIDs and physicallDs of the results of the
probe are stored in the Results Structure.

We now describe this process in more detail using several
examples.
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3.2.1 Selection queries over a single stream

We begin by considering simple queries that involve only a
single data stream. Figure 2 illustrates the actions performed
by PSoup when a new SQC enters the system. Figure 2a shows
the state of the Query SteM and Data SteM after the system
has processed the queries with queryIDs up to and including
23 and the data tuples with tupleIDs up to and including 52.
Now, consider the entry of a new SQC into the system shown
in Fig. 2b (we omit the BEGIN-END clause in the figure). This
standing query is assigned the queryID 24 and is inserted into
the Query SteM by adding a (queryID, QueryPredicate) entry
to the SteM. At this time, we also have to augment the Results
Structure (Fig. 2d) with a new column to store the results of
the query. This standing query is then sent to probe the Data
SteM, where it is matched with each data tuple (Fig. 2c). When
tuples are found to satisfy a query (data tuples with tupleIDs
48 and 50 in the figure), the appropriate entries in the Results
Structure are marked TRUE (Fig. 2d).

Analogously (as shown in Fig. 3), when a new data tuple
arrives, it is first added to the Data SteM and then sent to
the Query SteM, where it is matched with all of the standing
queries in the system. Lastly, the Results Structure is updated.

3.2.2 Join queries over two streams

For queries over multiple data streams (i.e., Join queries), we
use the same approach as before and treat the processing of
multiple Join queries as a join of the query stream with all the
data streams enumerated in the FroM list of the queries. To
do this, we generalize the symmetric join to accept more than
two input streams.

Again, we demonstrate our solution using an example. For
simplicity, we consider queries over two data streams R and
S. Figure 4 shows the actions performed in PSoup when a new

(c) Probing Query SteM (d) Inserting Results

query enters the system. The system has already processed R
and S data tuples with tupleIDs up to and including 54 and
queries with IDs up to and including 22. There are two Data
SteMs, one for each data stream. There is only a single Query
SteM for the query stream. The SteMs have been populated
with the above data and queries.

Consider the arrival of a new standing query with ID 23
(step 1). Its predicate has factors involving only R (R.a <
5), only S (S.b > 1), and both (R.a > S.b). The query is
first inserted into the Query SteM (step 2). Next, the query is
used to probe either the R or S Data SteM. Without loss of
generality, let us assume that the query first probes the R Data
SteM. We match each tuple in the Data SteM to this query
tuple (step 3). Because the query also depends on S, it cannot
be fully evaluated at this stage. However, the R-only boolean
factors can still be completely evaluated to filter out those R
tuples that cannot be in the final result. For the tuples that
satisfy the R-only boolean factors of the query, the values for
R are substituted in the join boolean factors that relate the two
streams; after the substitution, there remains a set of boolean
factors that depends solely on S. Next, we output a “hybrid
struct” that has for each matching R tuple the contents of the R
tuple augmented with the partially evaluated predicate of the
query (step 4). Each of the hybrid structs that are thus produced
are then used to probe the S Data SteM (step 5). Here, for
each S tuple that satisfies the remaining boolean factors of the
query, the Results Structure is updated as follows: an entry for
the pair (R-tupleID, S-tupleID) is created and inserted in the
Results Structure for this pair if one does not already exist.
This entry is then marked to reflect that this pair satisfied the
specific queryID (step 6).

Now consider the entry of a new R data tuple into the
system (Fig. 5). It is inserted into the R Data SteM and first
probes the Query SteM. The rest of the processing closely
parallels the description for the entry of a new query above.
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Observe that there is redundancy among the hybrid structs
(the shaded parts of the structs in the figures). The new SQC
tuple is repeated across all the hybrid structs in Fig. 4, and,
similarly, the new data tuple is repeated across all the hybrid
structs in Fig. 5. This results in repeated computation in the
probes of step 5. This redundancy and techniques to remove
it are described in detail in Sect. 5.4.

3.2.3 N-way Join queries over multiple streams

In this section, we will describe how PSoup executes joins
over N streams (DStreamy, ..., DStream;).

Extending the approach described above for two-way
joins, PSoup executes join queries over N data streams as
an N + 1l-way symmetric join over one query specification
stream (. Stream) and the N data streams.

The system maintains one SteM for all the queries and one
SteM for each of the data streams. When a new query specifi-
cation enters the system, it is first inserted into the Query SteM.
This new query is then used to probe the different Data SteMs
in some sequence. This sequence can either be statically pre-
determined or chosen adaptively on the fly. As in the case of the
two-way joins, hybrid structs are generated after each probe.
Consider the probe of Data SteM D SteM;, which stores the
tuples of DStream,. For each tuple in D SteM; that satisfies
the D Stream;-only component of the probing predicate (i.e.,
the boolean factors of the probing predicate that depend solely
on DStream;), a hybrid struct is produced by substituting
the tuple’s attribute values into the other join boolean factors
involving D Stream;. These hybrid structs are then used to
probe the next Data SteM in the probe sequence. When all the

Data SteMs have been probed, the Results Structure is updated
to reflect which n-tuples satisfied the query.

Now consider the entry of a new data tuple into the sys-
tem. Let us assume this tuple belongs to DStream;. This
data tuple is first inserted into the appropriate Data SteM
(DSteM;). PSoup then constrains this data tuple to first probe
the Query SteM before it probes any of the other Data SteMs.?
The tuple is used to evaluate the D Stream;-only component
of the query specifications stored in QSteM. For each query
whose DStream;-only component is satisfied by this data
tuple, a hybrid tuple is produced by substituting the data tu-
ple’s attribute values into the join boolean factors involving
DStream,. The hybrid structs that are produced are then used
to probe the other Data SteMs. As earlier, the order of these
probes can either be predetermined or determined adaptively.

It is interesting to note that the above technique for execut-
ing joins over IV streams does not rely on the use of interme-
diate tables to store the hybrid structs. The savings in memory
cost due to the nonstorage of intermediate tuples is crucial
for a main-memory engine such as PSoup. This reduction in
storage requirements is, however, achieved at the expense of
increased work through repeated probes. Intermediate tables
can also potentially be incomplete with respect to the base data
streams when the query plan is scrambled such that the inter-
mediate table is no longer generated. In such a situation, care
is required to ensure that no missing or duplicate results ex-
ist. Techniques for combining adaptive processing techniques

2 This constraint is imposed because otherwise the probe of a Data
SteM by a tuple containing no predicate component would result in
a cross product of the probing tuple with the SteM.
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with the storage of intermediate results are under investigation
by the Telegraph group at Berkeley.

3.3 Query invocation and result construction

In this section, we describe the Results Structure and the pro-
cessing performed by PSoup to return the query results when
a previously specified query is invoked.

The Results Structure maintains information about which
tuples in the Data SteMs satisfied which SQCs in the Query
SteM. For each result tuple of each query, it stores the tupleIDs
and physicallDs of all the constituent base tuples of the result
tuple. The Results Structure is updated continuously during
the query-data join described in Sect. 3.2. The results of a
query can be accessed by its queryID. In addition, the results
are ordered and indexed by tuple timestamp (physicallD) for
efficient retrieval of results within a time window.

Consider a user request for the current result of a previ-
ously specified query. Recall from Sect. 3.2 that the BEGIN-
END clauses of query specifications are stored in the Win-
dowsTable. The clause is now retrieved from the table, and
the current values of the endpoints of the input window are
determined. By virtue of the background symmetric join pro-
cessing in PSoup, all the data in the system have already been
joined with the SQC of the query specification, and the results
of the query-data join are present in the Results Structure. The
PSoup engine can therefore directly access this structure and
apply the current input window of the query over its contents
to retrieve the tupleIDs of the base tuples that make up the
current result tuples. The actual tuples themselves can then be
retrieved from the Data SteMs using the tupleIDs and returned
to the client.

For single-stream queries, the retrieval of the current win-
dow from the timestamp of the result tuples is straightforward.
For Join queries, the process is more difficult because the re-
sults are composed of multiple base tuples, each with its own
timestamp. We describe this in Sect. 4. Projections are per-
formed just in time when the query is invoked, concurrent
with result construction. Duplicate elimination, if required, is
also done at this point.

4 Implementation

In Sect. 3, we went through the basic framework of our solu-
tion using simple examples. Here we describe the implemen-
tation of PSoup within the Telegraph system. The principal
components of our solution are the N-relation symmetric join
operator and the Results Structure.

At the heart of the /V-relation symmetric join is an operator
that inserts new data/queries into the appropriate storage struc-
tures and then uses them to probe all the other storage struc-
tures. The storage structures themselves provide insert and
probe methods over data/queries. The Eddy and SteM mech-
anisms [4,32] provide a framework for adaptive n-relation
symmetric joins. They were, however, designed in a different
context. Eddies were originally conceived as a tuple router be-
tween traditional join operators. SteMs were proposed as data
structures that could be shared between the different join oper-
ations. In effect, SteMs eliminate the join modules themselves,

leaving Eddy as the active agent for effecting the join. How-
ever, SteMs were not designed to store queries, and Eddies
were not designed to route them. In addition, the simultaneous
evaluation of multiple standing queries and the storage of the
results require the tracking of more states. The changes needed
in Telegraph to support additional functionality in PSoup are
described below.

4.1 Eddy

The Eddy is implemented using a single thread and performs
its work by picking up the next data tuple to route from a queue
called the Tuple Pool and then sending it to one of many join
operators according to its routing policy.

To allow the Eddy to route SQCs and hybrid structs (in
addition to data), all the entities are encoded as tuples. This is
done by creating a “predicate attribute” to represent (possibly
partially evaluated) queries and having all tuples contain data
and/or predicate attributes. In addition to the data and/or pred-
icate attributes, each tuple also contains a “to-do” list (called
the Interest List) that enumerates the SteMs that have yet to be
routed through before the tuple can be considered completely
processed. This list is the only interface between the tuple and
the Eddy. The Eddy is thus oblivious to the underlying types
of the tuples it routes. It picks the next destination of a tuple
based only on the information in the tuple’s Interest List.

There is, however, a subtle difference between the flavors
of Eddy as described by Avnur and Hellerstein [4] and Mad-
den et al. [29] and the PSoup Eddy. This leads to different
semantics for the results output by the two systems for a given
query.

We say that a query processor produces Stream-Prefix Con-
sistent results if it automically materializes the entire effects
of processing an older tuple (data or query) in its output be-
fore it materializes any of the effects of processing a newer
tuple. At all times, the complete set of results materialized
in the system are then identical to the results of completely
executing some prefix of the query stream over some prefix
of the data stream. This property serializes the effects of new
tuples (query or data) so that they enter the system. Stream pre-
fix consistency is therefore the basis of our ability to support
windowed queries over data streams.

The PSoup Eddy provides Stream prefix consistency by
storing the new and temporary tuples separately in the new
tuple pool (NTP) and the temporary tuple pool (TTP), respec-
tively. The PSoup Eddy begins by picking a tuple from the
NTP and then processing all the temporary tuples in the TTP
before it picks another new tuple from the NTP. The use of
a higher-priority tuple pool to store in-flight tuples serializes
the effects of new tuples on the Results Structure in the or-
der in which they enter the system, thus maintaining it in a
stream-prefix-consistent state at all times. The previous ver-
sions of Eddy cannot guarantee the stream prefix consistency
property. This is due to their use of a single tuple pool to store
both new tuples and temporary (hybrid structs) tuples in flight
within a join query.
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4.2 SteMs

SteMs are abstract data structures that provide insert and probe
methods over their contents. PSoup implements the SteMs in-
terface to store data and queries.® The performance of the
SteMs would be highly inefficient if the data/queries were
probed sequentially and the boolean factors were tested indi-
vidually in the manner described in Sect. 3. We therefore use
indices to speed up operations on data and queries.

4.2.1 Data SteM

Data SteMs are used to store and index the base data of a
stream. There is one Data SteM for each stream that enters the
system. Since PSoup supports range queries, we need a tree-
based index for the data to provide efficient access to probing
queries. There is one tree for every attribute of the stream.
For our main-memory-based implementation, red-black trees
were chosen because they are efficient and have low mainte-
nance cost.

When a query probes the Data SteM, the different single-
relation boolean factors of the query are used to probe the
corresponding indices, and the results of these probes are in-
tersected to yield the final result. The technique used to inter-
sect the individual probe results is similar to the one used in
Query SteMs and is described in Sect. 4.2.2.

The Data SteM also maintains a hash-based index over
tupleIDs for fast access during result construction.

4.2.2 Query SteM

Query SteMs are used to store and index queries. There is
one Query SteM for the entire system, allowing the sharing
of work between queries that have different but overlapping
Frow clauses.

As with the data, it is desirable to index queries for quick
(and shared) evaluation during probes. Numerous predicate
indices have been proposed in the literature [21,25,37,44].
We use an index similar to the one proposed in CACQ [29]:
red-black trees are used to index the single-attribute single-
relation boolean factors of a query. For every relation, there is
one tree for boolean factors over each attribute that appears in
an SQC. The trees are indexed by the constant c that appears in
the expression (R.a RELOP ¢). To support range predicates, the
nodes of the red-black tree are enhanced as shown in Fig. 6.
Each node contains five arrays that store the queryIDs of the
boolean factors that map to that node. There is one array for
each relational operator (<, <=, =,>=,>).

To probe the query index using a data tuple 7;, an equality
search is performed on the query index using the data value
r;.a as the search key. The equality boolean factors that match
the data are quickly identified by the node to which the search
key maps. An index scan is then used to solve the inequality
queries, if any.

3 Since PSoupis currently implemented as a main-memory system,
we restrict Data SteMs to only keep data within a certain maximum
window specified as a system parameter. Supporting queries over
data streams archived on disk is the subject of future work.

Query1: Ra =11
Query2: Ra>11 ANDR.a< 15 <=|Q30
P <
= |Q1
Query30: R.a >4 AND R.a <= 11 >=
Query31: Ra> 11 > [Q2,Q31
e 7
2 1
<=
< |Q2
1 5 8 14 =
>=
>
4 15

> [Q30

Fig. 6. Predicate index

The above expression for boolean factors only captures
single-attribute boolean factors. Queries could also have mul-
tiattribute selection or join boolean factors of the form
(R.a RELOP [R.b|S.b][+/ — ¢]). Such boolean factors are not in-
dexed; all are stored in a single linked list called the predi-
cateList.

Because a query can be split across the different predicate
indices and the predicateList, we need a technique for ANDing
the results of the probes of these different structures. To do
this, the Query SteM contains an array in which each cell
corresponds to a query specification. At the beginning of a
probe by a data tuple, the value of each cell is reset to the
number of boolean factors in the corresponding query. Over
the course of the various probes, every time the data tuple
satisfies a boolean factor, the value of the corresponding cell
in the array is decremented. A cell value of zero at the end of
the probe indicates that the data tuple satisfied the query.*

4.3 Results Structure

The last major component of our solution is the Results Struc-
ture, which is accessed when a user invokes a query to retrieve
the current results for that query.

The Results Structure stores metadata that indicates which
tuples satisfied which SQCs. Since the current main-memory
implementation of PSoup only stores data within a certain
maximum window, the results corresponding to expired data
(and queries that have been removed from the system) are
dropped. We use two different implementations of the Results
Structure. One implementation (as described in Sect. 3) is a
two-dimensional bitmap. There is a separate bitmap for each
From list that appears in any of the SQCs. The rows of this
bitmap are ordered by the timestamp (physicallD) of the data.
The columns are ordered by the ID of the query. Indices are
provided over both the physicallD and the queryID.

The second implementation of the Results Structure as-
sociates with each query a linked list containing the data tu-
ples that have satisfied it. The decision between the alternate
structures can be made according to the trade-off between the

* Obviously, a more general mechanism for the combination of
probe results is needed if we wish to support complicated query ex-
pressions involving both conjunctions and disjunctions of predicates.
This is the subject of future work.
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storage requirements of a (possibly) sparse bitmap and a dense
linked list.

As mentioned above, the results are sorted and indexed
by tuple timestamp to speed up the application of the input
window at query invocation. This is straightforward for single-
table queries whose result tuples each have a single timestamp.
The results of Join queries are, on the other hand, composed of
multiple base tuples, each having its own timestamp. Only two
of these timestamps, however, are significant: the earliest or the
latest, since they serve to bound the age of the result tuples.
The Results Structure associates only these two timestamps
with each result tuple. The question arises as to which of the
two timestamps (the earliest and the latest) should be used to
sort and index the results. We expect queries typically to be
landmark or sliding queries whose END clause (the later edge
of the window) is defined as “NOW.” All data tuples in the
system have to be older than “NOW.” As a result, the later
edge of the window will not, in the common case, filter out
any results. Therefore, the older timestamp is likely to be more
significant for efficient result retrieval and is used to order the
results.

4.4 Implementing PSoup in a traditional setting

Thus far, we have described the implementation of PSoup
within the framework of the Telegraph project using the in-
novative query-processing architecture provided by the Eddy
and SteM operators. In this section, we briefly investigate the
issues involved in the implementation of PSoup in a traditional
query-processing setting that treats queries and data differ-
ently and employs static query plans.

The two main components of PSoup’s operation are the
background query-data join and query invocation. The im-
plementation described in Sect. 4.3 for the latter function is
directly applicable in a traditional query processor. Thus, the
main challenge in implementing PSoup in a traditional query
processor is in executing the background query-data join. As
we mentioned earlier, in the context of publish/subscribe sys-
tems, Fabret et al. [17] looked at the application of subscrip-
tions to both events that appeared before and after the sub-
scription was made. The use of traditional query-processing
techniques was suggested for new subscriptions over previous
events, after which the subscriptions were stored as triggers
in the system for subsequent processing of later events. We,
however, seek a solution that treats queries (subscriptions) and
data (events) in a truly symmetric manner.

The key features in the implementation of PSoup that sep-
arate it from a traditional query processor are the encoding
of queries and hybrid structs as tuples, the consequent imple-
mentation of joins as a sequence of expression evaluations,
the absence of intermediate tables, the shared processing of
multiple queries, and the use of an adaptive query plan.

The first step in implementing the query-data join in a
traditional query processor using static query plans is the en-
coding of queries and hybrid structs as tuples. This can be
done either by creating a user-defined type to store the predi-
cates or by breaking up the WHERE clause into its constituent
boolean factors and encoding each boolean factor along with
its queryID into a separate tuple. For example, if each boolean
factor were constrained to be of the form

RELNT.ATTR RELOP RELN2.ATTR [+/-] | CONST
then each component of the above expression could be en-
coded into a different attribute keyed by the queryID.

In either case, one cannot use the kinds of joins used in
traditional query processors — joins that compare the values
of attributes in two data tuples. Instead, the joins should be
expression-evaluating operators that take in one predicate-
bearing tuple stream and another data stream as inputs and
use the tuples in the data stream to evaluate the predicates in
the other.

The last issue that needs to be addressed is the shared
processing of different query specifications. PSoup treats all
queries as belonging to a single query stream. The Eddy uses
the Interest List to distinguish among query tuples with dif-
ferent FrRoM clauses and route them differently through the
Data SteMs. Traditional query processors, on the other hand,
route all tuples of the same stream/relation in the same fash-
ion. Therefore, the query tuples have to be split into different
streams according to the relations over which they should be
executed. Each of these query tuple streams should then be
joined with a different set of base data streams, with the re-
sults being further joined by the queryID to answer the original
client queries.

For the reasons presented above, Telegraph provides a
more suitable substrate than traditional query processors for
the implementation of PSoup.

5 Performance

We have now described how PSoup implements the duality of
queries and data to apply new queries to old data and new data
to old queries. In this section, we investigate the performance
of PSoup, focusing on the query invocation and data arrival
rates supported by the system under different query workloads
and input-window sizes.

As mentioned earlier, PSoup is a part of the Telegraph
project, and as such it uses and extends the concept of Eddies
and SteMs. However, because of the need to encode queries as
tuples and the difference in mechanisms for ANDing boolean
factors in PSoup and CACQ, the tuple format in PSoup differs
from both the formats used in the non-CQ version of Tele-
graph [22] and CACQ [29]. Hence, we implemented new ver-
sions of both Eddy and SteMs. Like the rest of the Telegraph
system, PSoup is implemented in Java.

In this section, we examine the performance of two differ-
ent implementations of the system: PSoup-partial (PSoup-P)
and PSoup-complete (PSoup-C). PSoup-P is the implemen-
tation we have described in earlier sections: the results cor-
responding to the SQCs are maintained in the Results Struc-
ture, and the BEGIN-END clauses are applied to retrieve the
current results on query invocation. PSoup-C, on the other
hand, continuously maintains the results corresponding to the
current input window for each query in linked lists. For com-
parison purposes, we also include measurements of a system
(NoMat) that does not materialize results but rather executes
each query from scratch when it is invoked. NoMat uses the
same indices over the data and queries as the PSoup systems.
When a selection query contains more than one boolean fac-
tor, we fix the order of application of the predicates so that the
more selective boolean factors are applied first. For two-table
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join queries used in the experiments below, NoMat uses Index
Nested-Loop joins.

5.1 Storage requirements

Before turning to the experiments, it is useful to examine the
storage requirements of each system.’

NoOMAT: the storage cost is equal to the space taken to store
the base data streams within the maximum window over which
queries are supported, plus the size of the structures used to
store the queries themselves.

PSoup-PARTIAL: in addition to costs incurred by NoMat,
PSoup-P also pays the cost of the Results Structure, which
uses either a bitarray or a linked list to store the results, de-
pending on whichever takes less storage. The cost of the first
option depends on the number of standing queries stored in
the system and the maximum window over which queries can
be asked. The cost of the latter approach depends on the result
sizes (before the imposition of the time window). For the set
of experiments described below, we chose the bitarray imple-
mentation for the PSoup-P Results Structure.

PSoup-coMpPLETE: like PSoup-P, PSoup-C pays for the cost
of storing the results in addition to the costs paid by NoMat
systems. PSoup-C always stores the current results of stand-
ing queries at a given time. Under normal loads, we expect
PSoup-C to have substantially higher storage requirements
than PSoup-P, which uses a dense bitarray.

5.2 Computational performance

The environment for which we have targeted PSoup is one in
which new query specifications arrive much less frequently
than the rate at which existing query specifications are in-
voked. We are therefore primarily concerned with minimiz-
ing the query response times. We measure the response time
per query invocation for varying input window size and query
complexity. We also wish to measure the maximum data arrival
rate supported by the system. This maximum rate depends on
the relative costs of the computation devoted to processing the
entry of new data tuples and the computation spent on main-
taining the windows on the results that have been generated.
A server is saturated by these two costs at the maximum data
arrival rate that it can support.

There is an inherent trade-off between response times and
data arrival rates. Lazy evaluation (as used in NoMat) suf-
fers from poor response time while having no maintenance
costs. Eager evaluation (as done in PSoup-C) offers excellent
response time but has increased maintenance costs. PSoup-P
eagerly evaluates the WHERE clause of its query specifications
but adopts a lazy approach with respect to the imposition of
the time windows specified in the BEGIN-END clause. Its per-
formance therefore lies between that of the other approaches.

3 In our implementation, we tried to minimize the size overhead
of Java objects by using primitive data types and custom-built col-
lections of these data types wherever possible.

Table 1. Independent parameters for experiments

Parameters Range of values
Input window size (in #tuples) ~ 27-2'6

#Query specifications 27212
#Boolean factors 1-8

5.2.1 Experimental setup

As mentioned in Sect. 5, we implemented PSoup in Java. In
order to evaluate its performance, we ran a number of experi-
ments that varied the window sizes and the number and type
of boolean factors (equality/inequality, single-relation, two-
relation) of the queries and measured the response time for
query invocations under these different conditions. In addition
to the response time for query invocations, we also looked at
the maximum data arrival rate that can be supported by the sys-
tem. We compared the maximum data arrival rates supported
by two implementations of both PSoup-P and PSoup-C, one
each with and without the use of predicate indices. We also
studied a scheme to remove a type of redundancy that arises
in join processing (as was described in Sect. 3) and measured
its performance under different workloads.

All the experiments were run on an unloaded server with
two Intel Pentium III, 666-MHz, 256-KB on-chip cache pro-
cessors. The server had 768§ MB RAM. PSoup was run com-
pletely in physical memory, so we are not concerned with disk
space or I0. We use Sun’s Java Hotspot(TM) Client VM, ver-
sion “1.3.0”, on Linux with a 2.2.16 kernel.

In order to ensure repeatability of our experiments, we used
synthetically generated query and data streams to compare the
three approaches under a range of application scenarios. We
validated the results obtained over these synthetic streams by
repeating the tests over real traces from traffic sensors. We
summarize the results of the latter experiments in Sect. 5.5.

The data values are uniformly distributed in the interval
[0, 255]. In order to stress the system, we make all the tuples
in the stream available instantaneously, i.e., there is no vari-
able delay between consecutive tuples in the stream. Mad-
den et al. [29] demonstrated the advantages of adaptive query
processing gained by applying the Eddies framework to CQ
processing. Those results also apply to this setting.

For single-relation boolean factors of the form (R.a RELOP
¢), the value of the constant c is chosen uniformly from among
amultiple of 32 in the interval [0,255] with a probability of 0.2,
and uniformly from the entire range [0, 255] with probability
0.8. We used this multimodal distribution to approximate a
query workload in which some items were more interesting
than others. Join queries have exactly one multiple-relation
boolean factor. This is done to isolate the effects of the join. The
multiple-relation boolean factors are of the form (R.a RELOP
S.b +/- ¢), where c has the same distribution as for Selection
queries.

The entire set of stored queries was invoked repeatedly at
different points in time. The observations were then averaged
to yield the mean response time for the queries over time.
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Fig. 7a,b. Response-time for select queries. a Equality predicates. b
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5.2.2 Response time vs. window size

The first set of experiments we describe measures the time
taken to respond to Select and Join query invocations with
increasing input window sizes. Figure 7a shows the response
time per query for selection queries with equality predicates,
and Fig. 7b shows the same metric for selection queries with
interval predicates. Interval predicates were formed by com-
bining two single-relation inequality boolean factors over the
same attribute (the size of the interval is uniformly distributed
in the range [0, 255]). Note that the y-axes on both plots use
a logscale, and the values on the z-axes have a multiplicative
factor of 10,000. In both workloads, the queries have between
one and four predicates.

The response times increase for all three systems with in-
creasing window sizes. For NoMat, this is because of increased
query execution time. For PSoup-P, this is caused by the in-
crease in the length of the bitarray in the Results Structure.
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Fig. 8. Response time for Join queries

For PSoup-C, this is because of the increase in the cardinality
of the results.

As expected, the response time for both workloads under
NoMat is much worse than the other two. PSoup-P performs
worse than PSoup-C by two orders of magnitude for equality
queries because of the need to traverse an entire bitarray of
the size of the maximum input window for each query, irre-
spective of the size of the result. For the same reason, the per-
formance of PSoup-P does not change between equality and
inequality queries, while the response times for both the No-
Mat and PSoup-C solutions are higher for inequality queries
than equality queries — the former because of greater data index
traversal, the latter because of larger result sets. The perfor-
mance of PSoup-P and PSoup-C is comparable for inequality
queries.

Figure 8 shows the response time for two-table inequality
Join queries with varying input window size. In this case, the
y-axis uses a linear scale, and the z-axis shows the window
size for each table of the join. The result size aggregated over
all queries is proportional to the square of the window size.
The range of the window size is therefore much smaller than
for Selection queries. The response time for NoMat is about
two orders of magnitude worse than that of the PSoup systems.
PSoup-P is less than an order of magnitude worse than PSoup-
C. For example, at a window size of 576, the response time
for PSoup-P is 29.98 ms, while for PSoup-C it is 8.54 ms.

We conclude from this experiment that, as expected, sys-
tems that perform background computation and store the re-
sults offer better response times.

5.2.3 Response time vs. #interval predicates

The next experiment we describe measures the response time
for inequality Selection queries as we vary the number of con-
joined interval predicates in the query. The queries contain
one interval predicate over each attribute that appeared in the
SQC. The input window size was fixed at 2'% (the second
largest window size shown in Fig. 7 for Selection queries) for
all the queries. The results are shown in Table 2.
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Table 2. Response time: selection with interval predicates

Response time (in milliseconds)

#Interval predicates NoMat PSoup-P  PSoup-C
1 0.3940  0.0465 0.0565
2 0.4905  0.0240 0.0210
4 0.8255  0.0130 0.0035

As expected, both of the PSoup solutions again outperform
NoMat by between one to two orders of magnitude (according
to the number of interval predicates in the query). An inter-
esting point to note is that while the response time for NoMat
increases with the number of conjoined interval predicates due
to the greater amount of computation required, the response
times for PSoup-P and PSoup-C decrease significantly. The
behavior of NoMat is explained by the increasing complex-
ity of the queries that have to be executed upon invocation
by the user. The relative performance of the PSoup imple-
mentations is explained by the cost of result construction in
the two systems. Whereas PSoup-C constructs its results by
dereferencing pointers to the data tuples stored in its linked
list and then copying the tuples, PSoup-P has to pay the extra
cost of first retrieving the references to the data tuples using
the Data SteM’s index over physicallDs. The fact that both of
their response times reduce with increasing number of ANDed
interval predicates is because of the higher selectivity of the
resulting queries and the correspondingly smaller result sizes.

Another interesting point is the switch in the relative per-
formance of PSoup-P and PSoup-C as we go from one to two
interval predicates. This is explained as follows. For queries
with one interval predicate, the selectivity of the query is
poor so that the relative inefficiency of linked-list traversal
in PSoup-C compared to bitarray traversal in PSoup-P out-
weighs the fact that fewer elements have to be traversed. With
increasing numbers of interval predicates, however, the selec-
tivity increases and the difference in the average size of the
result sets and the input window (2!%) becomes pronounced
enough to dominate the relative costs.

In conclusion, this experiment shows that NoMat per-
forms more work with increasing numbers of boolean factors.
Both PSoup implementations have comparable performance
for fewer boolean factors, but PSoup-C’s performance im-
proves dramatically due to the reduction in result sizes for
more selective queries.

5.2.4 Data arrival rate vs. #SQCs

We now turn our attention to the maximum data arrival rates
supported by PSoup with varying numbers of inequality Se-
lection query specifications in the system. We do not consider
NoMat for this experiment. We consider two possible imple-
mentations of both PSoup-P and Psoup-C: one each with and
without predicate indices (referred to as Shrd and Unshrd, re-
spectively). The comparison of PSoup-P and PSoup-C high-
lights the effect of lazy vs. active maintenance of results on
the data arrival rates. The difference in the performance of
versions of PSoup using predicate indices with those that do
not use them highlights the savings in computation achieved
through the use of predicate indices.
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Fig. 9. Data arrival rate for selection queries

A fully loaded server either keeps the query results current
or accepts new data. The relative costs of the two activities
therefore help us determine the maximum data rate that can
be supported by the system for a given number of stored query
specifications. The window size for all the query specifications
in this experiment is fixed at 1000 tuples.

The results for this experiment are shown in Fig. 9. The
y-axis uses a logscale. The PSoup-P_Shrd solution performs
the best and beats the PSoup-P_Unshrd system by an order of
magnitude and the two PSoup-C based solutions by two orders
of magnitude. It is interesting to note that the cost of maintain-
ing the results dominates the cost of incremental computation
upon entry of new data to the extent that it almost does not mat-
ter whether or not we share the computation through indexing
queries for the PSoup-C implementations. This indicates that
if we wish to support high data arrival rates, PSoup-P_Shrd is
the implementation of choice. An interesting result in this ex-
periment is that the speedup achieved by PSoup-P_Shrd over
PSoup-P_Unshrd through the use of query indices increases
with increasing numbers of query specifications. This hap-
pens because the boolean factors of new query specifications
increasingly fall into the old nodes in the predicate index, thus
keeping the computation amount roughly the same.

This experiment confirms our expectation that the decision
not to index Queries, and to maintain query results up to date,
can adversely affect the data arrival rate that can be supported
in the system.

5.3 Summary of results

The first two experiments demonstrate that the partial precom-
putation and materialization of results of queries reduces the
response time upon query invocation. The third experiment
shows us that indexing queries and lazily applying the win-
dows improves the maximum data throughput supported by
the system. The choice between the PSoup-P and PSoup-C
implementations thus depends on the amount of memory we
have in the system (PSoup-C requires more) and whether we
wish to optimize for query invocation rate (PSoup-C) or data
arrival rate (PSoup-P).
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Fig. 10a,b. Join redundancy — composite tuples. a Single-query-
multiple-data (SQMD). b Single-data-multiple-query (SDMQ)

5.4 Removing redundancy in join processing

As mentioned in Sect. 3, the join processing discussed so far
can perform redundant work. In this section, we will describe
the redundancy and show how we overcome it.

5.4.1 Entry of a query specification or new data

Recall from Sect. 3 the production of hybrid structs in the pro-
cessing of new query specifications. The relevant part of Fig. 4,
which detailed the processing of a new Join query (R.a<5 and
R.a>S.b and S.b>1) over streams R and S, is reproduced in
Fig. 10a for convenience. The hybrid structs that are produced
after the query specification probes the R-Data SteM share
the same S-only component (S.b > 1) of the original query.
This boolean factor repeatedly probes the S-Data SteM (once
for each hybrid struct). We can eliminate this redundancy by
combining all the hybrid tuples produced by the probe of the
RS query into the R-Data SteM into a single “single query-
multiple data” composite tuple (Fig. 10a). The shared S-only
component can now be applied exactly once. More interest-
ingly, we can use a sort-merge join based approach to join the
set of predicates with the set of tuples in the S-Data SteM.

A similar situation arises when data are added to the sys-
tem. The hybrid structs produced during the processing of
the new data share many boolean factors. The relevant part
of Fig. 5 is reproduced in Fig. 10b. The identical boolean
factors are executed repeatedly over the same data set in the
S-Data SteM. The “single data-multiple query” composite tu-
ple (Fig. 10b) can be used in conjunction with the sort-merge
join-based approach to apply the composite tuple to the Data
SteM.

5.4.2 Composite tuples in joins

This experiment compares the costs of incremental computa-
tion upon arrival of a new Join query specification over streams
R and S, with and without the use of composite tuples. The
execution path for the new query specification is the same as
was shown in Fig. 4.

The Join queries are of the form: (R.a RELOPI cl) AND
(R.a RELOP2 S.b) AND (S.b RELOP3 c2). To isolate the effect
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Fig. 11. Probe times with and without composite tuples

of the composite tuple from the other steps involved in join
processing, we only measure the cost of step 5 of the join
processing shown in Fig. 4. After executing steps 1 through
3 of Fig. 4, the query predicates are of the form (R.a_value
RELOP2 S.b) AND (S.b RELOP3 c2). The latter boolean factor
is shared across all hybrid structs. We now compare the cost
of probing the S-Data SteM with the composite tuples against
the cost of probing it with the individual hybrid tuples.

By varying RELOP2 and RELOP3, we create three different
workloads. In the first, we set RELOP3 to be “equals” (Eq)
and RELOP2 to be one of the inequalities (Ineq). In the second
workload, we reverse this. In the final workload, we set both
to be inequalities.

The results are shown in Fig. 11. The legend in the plot
reflects the choices for RELOP2/RELOP3 (Equality or Inequal-
ity), and whether composite tuples were used (Composite)
or not (Separate). Note that the y-axis uses a logscale. For the
Eqg/Ineq workload, the shared boolean factor is an equality and
is therefore highly selective (because of the uniform distribu-
tion of the data). Hence, in both approaches, it is applied first,
before any other boolean factors are used to probe the data.
The solution using the composite tuple probes the data with
this factor exactly once, effectively halving the total number
of boolean factors that eventually probe the data. It is there-
fore approximately twice as efficient as the other approach.
For the Ineq/Eq workload, it does not help much to apply the
shared inequality factor first. However, the composite-tuple-
based approach using a Sort-Merge join of the boolean factors
and data still outperforms the other approach using Nested
Loops because most of the boolean factors are equality fac-
tors and Sort-Merge is a more efficient algorithm for equijoins
than Nested-Loops. In the Ineq/Ineq workload, however, both
the shared and the individual boolean factors are inequalities.
Sort-Merge is not a good algorithm for inequality joins; there-
fore, the Nested-Loops index join solution is preferred.

5.5 Experiments on real data traces

We validated the results over synthetic streams by repeating
the tests over real traces from traffic sensors laid out along
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Table 3. Schema for traffic data trace

Attribute Type Range
sensordatetime  timestamp  ’01-11-01,03:59 to
’01-12-06,00:35
lane integer 1-8
stationid integer 1-9
speed float 0-100
10° : : : : : :
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Fig. 12. Response-time for selection queries

Bay Area freeways by CalTrans (http://www.dot.ca.gov/). The
schema for the data is shown in Table 3:

These data differ from the synthetically generated data
in the range of values that the different attributes can take.
Also, while the distribution of values for the attributes sen-
sordatetime, lane, and stationid are uniform (all the sensors
report values periodically with the same frequency), the speed
attribute is observed to be approximately modal, with the ex-
treme values (very slow and very fast) being rare.

We ran the same tests over these data as we did over the
synthetic data. We present the results of some of these tests
below.

5.5.1 Response time vs. window size

We reran the experiment presented in Sect. 5.2.2 over the real
data described above to study the response time of query in-
vocations with changing window sizes. We only ran the test
for Selection queries, whose Standing Query Clauses (SQCs)

were of the form:
Select *

From traffic_stream
Where lane = c1 A stationid = c2 N\ speed > c3

The constants in the boolean factors were chosen uni-
formly at random from the domain of values for that attribute.
The results for the above experiments are shown in Figs. 12.
As before, the y-axis is logscale, and the z-axis is linearly
scaled by a factor of 10, 000.
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Fig. 13a,b. Response-time for select queries. a Window size = 1000.
b Window size = 10000

This plot mirrors the trend of Figs. 7a and b. PSoup-C still
offers the best response times, while NoMat, which does no
background processing, has the poorest response times.

5.5.2 Data arrival rate vs. #SQCs

In this experiment, we repeated the tests described in
Sect. 5.2.4 to measure the usefulness of query indices in shar-
ing the computation of different SQCs. We also measured the
cost paid by PSoup-C for actively maintaining the current in-
put windows on the Results Structure.

The SQCs are the same as described in Sect. 5.5.1. As in the
experiment on synthetic data, the data were fed to the query
processor as fast as it could be consumed. The experiment
was conducted for window sizes of 1000 and 10000 tuples.
The plots for the test are shown in Fig. 13. In both the plots,
the y-axis is logscale.

Again, the trend of the plots is the same as in Fig. 9. The
PSoup-P solutions support higher maximum data arrival rates
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than the corresponding PSoup-C solutions. Also, the use of
query indices speeds up the application of the data to the
standing queries. An interesting difference in the plots for the
two window sizes is the crossover seen in Fig. 13a between
PSoup-P_Unshrd and PSoup-C_Shrd. This suggests that for the
experiment with window size 1000, the result sizes are small
enough so that at a certain stage the cost of actively maintain-
ing the current window for the results in PSoup-C_Shrd are
less than the price paid for not sharing the computation of dif-
ferent SQCs in the PSoup-P_Unshrd solution. As we increase
the window size to 10, 000 tuples, the cost of maintaining the
windows always dominates the cost of computing the SQCs,
thus removing the crossover point.

6 A note on aggregation queries

To this point, we have only discussed SPJ queries, but PSoup
also supports aggregates such as count, sum, average, min,
and max.

Ideally, we would like to share the data structures used
in computing aggregates across repeated invocations of all
SELECT-PROJECT-JOIN-AGGREGATE queries over streams, just
as we do in the case of SELECT-PROJECT-JOIN queries. How-
ever, it is only possible to share these data structures across
queries that have the same SELECT-PROJECT-JOIN clause.

We demonstrate the above claim using example queries
that compute the Max of the results of a SELECT-FROM-
WHERE query. First, we explain the basic approach to com-
puting the Max over different windows using the same data
structure. Consider Fig. 14, which shows a ranked n-ary tree
over all the data in a SteM.

The leaves of the tree are ordered by time of insertion into
the SteM (i.e., insertions always occur at the rightmost node
of the tree). Each node is annotated with the Max of all the
elements under the subtree rooted at that node.

Now, let us invoke query A on the system when the current
window is [t;, ¢;]. The first common ancestor of the end points

of the window is the root 7. Let ¢, and ¢, be the children of r
that need to be followed to reach ¢; and ¢;. Let the rightmost
leaf under the subtree rooted at c,, be t;, and the leftmost leaf
under the subtree rooted at ¢, be ¢;.

Max[r,ti, t;] = Max(Max[cp, ti, tx], annotations of all children
of r between ¢, and cq, Maz|cq, i, t;]).

This is a recursive expression and can be computed in
O(logn) time by following the nodes of the tree down to ¢;
and ¢;. In the figure, the thick edges show the paths traversed
in this recursion in the specific case where [;, ;] = [ts, t20];
the maximum is 22.

Now consider query B. It has a different SELECT-FROM-
WHERE clause from query A, and the values 20, 15, 19, 22,
and 21 are not to be considered computing query B. This tree
can therefore not be used directly to compute query B. The
problem is that the leaves in the tree match the results of
the SELECT-FROM-WHERE clause of query A but not query
B. Therefore, we must maintain a separate structure for each
in the query SteM. Sharing occurs only between different in-
vocations of the same query.

7 Conclusion

In conclusion, we have described the design and implementa-
tion of a novel query engine that treats data and query streams
analogously and performs multiquery evaluation by joining
them. This allows PSoup to support queries that require ac-
cess to both data that arrived prior to the query specification
and also data that appear later. PSoup also separates the com-
putation of the results from their delivery by materializing the
results: this allows PSoup to support disconnected operation.
These two features enable data recharging and monitoring ap-
plications that intermittently connect to a server to retrieve
the results of a query. We also describe techniques for sharing
both computation and storage across different queries.

In terms of future work, there is much to be done. Psoup is
currently implemented as a main-memory system. We would
like to be able to archive data streams to disk and support
queries over them. Disk-based stores raise the possibility of
swapping not only data but also queries between disk and
main memory. Swapping queries out of main memory would
effectively deschedule them and could be used as a schedul-
ing mechanism if some queries were invoked much more fre-
quently than others. In this paper, we have only briefly touched
upon the relation of registered queries in PSoup to material-
ized views. We intend to further explore the space of materi-
alized views over infinite streams, especially under resource
constraints. The current implementation of PSoup allows the
client only to retrieve answers corresponding to the current
window. We intend to relax this restriction and allow clients
to treat PSoup more generally as a query browser for temporal
data.
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