Maintaining Stream Statistics over Sliding Windows

(Extended Abstract)

Mayur Datar* Aristides Gionis'

Abstract

We consider the problem of maintaining aggregates and
statistics over data streams, with respect to the last N
We refer to this model as the

We consider the following basic

data elements seen so far.
sliding window model.
problem: Given a stream of bits, maintain a count of the
number of 1’s in the last N elements seen from the stream.
We show that using O(%log® N) bits of memory, we can
estimate the number of 1’s to within a factor of 1 +e¢. We
also give a matching lower bound of Q(%log2 N) memory
We

extend our scheme to maintain the sum of the last N

bits for any deterministic or randomized algorithms.
positive integers. We provide matching upper and lower
bounds for this more general problem as well. We apply our
techniques to obtain efficient algorithms for the L, norms
(for p € [1,2]) of vectors under the sliding window model.
Using the algorithm for the basic counting problem, one
can adapt many other techniques to work for the sliding
window model, with a multiplicative overhead of O(%log N)
These

include maintaining approximate histograms, hash tables,

in memory and a 1 + ¢ factor loss in accuracy.
and statistics or aggregates such as sum and averages.

1 Introduction

For many recent applications, the concept of a data
stream, possibly infinite, is more appropriate than a
data set. By nature, a stored data set is appropriate
when significant portions of the data are queried again
and again, and updates are small and/or relatively
infrequent. In contrast, a data stream is appropriate

~ *Department of Computer Science, Stanford University, Stan-
ford, CA 94305. Email:datar@cs.stanford.edu.Supported in
part by NSF Grant 11S-0118173 and Microsoft Graduate Fellow-
ship.

tDepartment of Computer Science, Stanford University, Stan-
ford, CA 94305. Email:gionis@cs.stanford.edu.Supported in
part by NSF Grant I1S-0118173.

tMIT Laboratory for Computer Science,
ogy Square, NE43-373, Cambridge,
Email:indyk@theory.lcs.mit.edu

545 Technol-
Massachusetts 02139.

§Department of Computer Science, Stanford University, Stan-
ford, CA 94305. Email:rajeev@cs.stanford.edu.Supported in
part by NSF Grant I1S-0118173 and a grant from the Okawa
Foundation.

Piotr Indyk?

Rajeev Motwani®

when the data is changing constantly (often exclusively
through insertions of new elements), and it is either
unnecessary or impractical to operate on large portions
of the data multiple times. One of the challenging
aspects of processing over data streams is that while the
length of a data stream may be unbounded, making it
impractical or undesirable to store the entire contents of
the stream, for many applications! it is still important
to retain some ability to execute queries that reference
past data. In order to support queries of this sort
using a bounded amount of storage, it is necessary
to devise techniques for storing summary or synopsis
information about previously seen portions of data
streams. Generally there is a tradeoff between the size of
the summaries and the ability to provide precise answers
to queries involving past data.

We consider the problem of maintaining statistics
over streams with regard to the last N data elements
seen so far. We refer to this model as the sliding window
model. We identify a simple counting problem whose
solution is a prerequisite for efficient maintenance of a
variety of more complex statistical aggregates: Given a
stream of bits, maintain a count of the number of 1’s in
the last N elements seen from the stream. We show that
using O(1 log? N) bits of memory, we can estimate the

number of 1’s to within a factor of 1 4+ ¢ . We also give

a matching lower bound of (1 log? N') memory bits for
any deterministic or randomized algorithm.

We extend our scheme to maintain the sum of the
last N positive integers. We provide matching upper
and lower bounds for this more general problem as well.
We apply our techniques to obtain efficiently algorithms
for the L, norms (for p € [1,2]) of vectors under the
sliding window model. Using the algorithm for the
basic counting problem, one can adapt many other
techniques to work for the sliding window model, with a
multiplicative overhead of O(% log N) in memory and a
1+ € factor loss in accuracy. These include maintaining

TFor example, in order to detect fraudulent credit card trans-
actions, it is useful to be able to detect when the pattern of recent
transactions for a particular account differs significantly from the

earlier transactional history of that account.

approximate histograms, hash tables, and statistics or
aggregates such as sum and averages.

1.1 Motivation, Model, and Related Work:
Several applications naturally generate data streams.
In telecommunications, for example, call records are
generated continuously. Typically, most processing is
done by examining a call record once, or operating
on a “window” of recent call records (e.g., to update
customer billing information), after which records are
archived and not examined again. Cortes et al [2]
report working with AT&T long distance call records,
consisting of 300 million records per day for a 100
million customers. A second application is network
traffic engineering, where information about current
network performance (e.g., latency and bandwidth) is
generated online and is used to monitor and adjust
network performance dynamically [7, 14]. Tt is generally
both impractical and unnecessary to process anything
but the most recent data.

There are other traditional and emerging applica-
tions where data streams play an important and natural
role, e.g., web tracking and personalization (the streams
are web log entries or clickstreams), medical monitoring
(vital signs, treatments, and other measurements), sen-
sor databases, and financial monitoring, to name but a
few. There are also applications where traditional (non-
streaming) data is treated as a stream due to perfor-
mance constraints. In data mining applications, for ex-
ample, the volume of data stored on disk is so large that
it is only possible to make one pass (or perhaps a very
small number of passes) over the data [10, 9]. The objec-
tive is to perform the required computations using the
stream generated by a single scan of the data, using only
a bounded amount of memory and without recourse to
indexes, hash tables, or other precomputed summaries
of the data. Another example is that data streams are
generated as intermediate results of pipelined operators
during evaluation of a query plan in an SQL database—
without materializing some or all of the temporary re-
sult, only one pass on the data is possible [3].

In most applications, the goal is to make decisions
based on the statistics or models gathered over the
“recently observed” data elements. For example, one
might be interested in gathering statistics about packets
processed by a set of routers over the last day. Moreover,
we would like to maintain these statistics in a continuous
fashion. This gives rise to the sliding window model:
Data elements arrive at each instant and expire after
exactly NV time steps; and, the portion of data that is
relevant to gathering statistics or answering queries is
set of the last V elements to arrive. The sliding window
refers to the window of active data elements at any time

instant.

Previous work [I, 5, 11] on stream computa-
tions addresses the problems of approximating fre-
quency moments and computing the L, differences of
streams. There has also been work on maintaining his-
tograms [12, 8]. While Jagadish et al [12] address the
off-line version of computing optimal histograms, Guha
and Koudas [8] give a technique for maintaining near op-
timal time-based histograms over streaming data. The
queries that are supported by histograms constructed in
the latter work are range or point queries over the time
attribute. In the earlier work, the underlying model is
that all the data elements seen so far are relevant. We
believe that the sliding window model is perhaps more
important since for most applications one is not inter-
ested in gathering statistics over outdated data. Main-
taining statistics like sum/average, histograms, hash ta-
bles, frequency moments, and L, differences over slid-
ing windows is critical to most applications. To our
knowledge, there is no previous work addressing these
problems for the sliding window model.

1.2 Summary of Results: We focus on the sliding
window model for data streams. We formulate a
basic counting problem whose solution can be used
as a building block for solving most of the problems
mentioned earlier.

Problem. [BASICCOUNTING] Given a stream of data
elements, consisting of 0’s and 1’s, maintain at every
time instant the count of the number of 1’s in the last
N elements.

It is easy to verify that an exact solution requires
O(N) bits? of memory. For most applications it is
prohibitive to use Q(N) memory. For instance, consider
the network management application where a large
number of data packets pass through a router every
second. However, in most applications it suffices to
produce an approximate answer. Thus, our goal is to
provide a good approximation using o(/N) memory.

In Section 2, we provide a solution for BAsic-
COUNTING which uses O(%log2 N) bits of memory

(equivalently O(1log N) buckets of size O(log N)) and
provides an estimate of the answer at every instant that
1s within 1 + € factor of the actual answer. Moreover,
our algorithm does not require an a priori knowledge of
N and caters to the possibility that the window size can
be changed dynamically. Our algorithm is guaranteed
to work with O(log” N) memory as long as the window
size is bounded by N. The algorithm takes O(log N)

?Note that we measure space complexity in terms of number

of bits, rather than number of memory words.

worst-case time to process each new data element’s ar-
rival, but only O(1) amortized time per element. Count
queries can be processed in O(1) time. The algorithm
itself is relatively simple and easy to implement.

Section 3 presents a matching lower bound. We
show that any approximation algorithm (deterministic
or randomized) for BAsICCOUNTING with with relative
error 1 + ¢ must use Q(1 log? N) bits of memory. This
proves that our algorithm is optimal in terms of memory
usage.

In Section 4 we extend the technique to handle
data elements with positive integer values, instead of
just binary values, referred to as the Sum problem.
We provide matching upper and lower bounds on the
memory usage for this general problem as well. Then,
in Section 5 we show we can use our techniques along
with the sketching techniques of Indyk [11] to efficiently
maintain the L, norms (for p € [1,2]) of vectors under
the sliding window model.

Section 6 provides a brief discussion of the appli-
cation of the BASICCOUNTING and SUM algorithms to
adapting several other problems in the sliding window
model, such as maintaining histograms, hash tables, and
statistics or aggregates such as averages/sums. The re-
duction of these problems to BASICCOUNTING entails a
multiplicative overhead of O(% log N) in memory and a
1 + € factor loss in accuracy. We also discuss problems
such as Min/Max and Distinct Values.

2 Algorithm for BasicCOUNTING

Our approach towards solving the BasSicCOUNTING
problem is to maintain a histogram that records the
timestamp of selected 1’s that are active in that they
belong to the last N elements. We call this histogram
the Exponential Histogram (EH) for reasons that will
be clear later. Before getting into the details of our
algorithms we need to introduce some notation.

We follow the conventions illustrated in Figure 1.
In particular, we assume that new data elements are
coming from the right and the elements at the left are
ones already seen. Note that each data element has an
arriwal time which increments by one at each arrival,
with the leftmost element considered to have arrived
But, in addition, we employ the notion
of a timestamp which corresponds to the position of
an actwe data element in the current window. We
timestamp the active data elements from right to left,
with the most recent element being at position 1.
Clearly, the timestamps change with every new arrival
and we do not wish to make explicit updates. A simple
solution is to record the arrival times in a wraparound
counter of log N bits and then the timestamp can be
extracted by comparison with counter value of the

at time 1.

current arrival. As mentioned earlier, we concentrate
on the 1’s in the data stream. When we refer to the
k-th 1, we mean the k-th most recent 1 encountered in
the data stream.

We will maintain histograms for the active 1’s in the
data stream. For every bucket in the histogram, we keep
the timestamp of the most recent 1 (called timestamp),
and the number of 1’s (called bucket size). When the
timestamp of a bucket expires (reaches N + 1), we are
no longer interested in data elements contained in it,
so we drop that bucket and reclaim its memory. If a
bucket is still active, we are guaranteed that it contains
at least a single 1 that has not expired. Thus, at any
instant there is at most one bucket (the last bucket)
containing 1’s which may have expired. At any time
instant we may produce an estimate of the number of
active 1’s as follows. For all but the last bucket, we add
the number of 1’s that are there in them. For the last
bucket, let C' be the count of the number of 1’s in that
bucket. The actual number of active 1’s in this bucket
could be anywhere between 1 and C', so we estimate it

to be C'/2. We obtain the following:

Fact 2.1. The absolute error in our estimate is at most
C/2, where C is the size of the last bucket.

Note that for this approach the window size does not
have to be fixed a-priori at N. Given a window size S,
we calculate the expiry time and do the same thing as
before except that the last bucket is the bucket with the
largest timestamp that is less than the expire time.

2.1 The Approximation Scheme: We now define
the Exponential Histograms and present a technique to
maintain them, so as to guarantee count estimates with
relative error at most ¢, for any ¢ > 0. Define k = [H,
and assume that % is an integer; if% is not an integer we

can replace % by [%] without affecting the basic results.

As per Fact 2.1, the absolute error in the estimate
is C/2, where C' is the size of the last bucket. If C; is
the size of the i-th bucket, we know that the true count
is at least 1—1—2?:11 C;, since the last bucket contains at
least one 1 and the remaining buckets contribute exactly
their size to total count. Thus, the relative estimation
error at most Cp, /2(1 4+ Zj:ll C;). We will ensure that
the relative error is at most 1/k by maintaining the
following invariant:

bucket
< m,

INVARIANT 2.1. At all times, the sizes

Cy,...,Cy are such that: For all j
have Cy/2(1+ I € < &

we

Let N’ < N be the number of 1’s that are active
at any instant. Then the bucket sizes must satisfy

INncreasing time

—_——

Timestamps 7 6 5 1

Arrival time 41 42 43 44 45 49 50

Elements ... O 1 1 1 O O O 1 O 1 O O 1 O 1 1.

~—

Window of active elements

—

Data elements that will be seen in future

—_—

INncreasing ordering of data elements,

Current time instance

histogram buckets, active 1's

Figure 1: An illustration for the notation and conventions followed.

S, C; > N'. In order to satisfy this and Invariant 2.1
with as few buckets as possible, we maintain buckets
with exponentially increasing sizes so as to satisfy the
following second invariant.

INVARIANT 2.2. At all times the bucket sizes are non-
decreasing, 1.e., C1 < Cy < -+ < Cpy < Cpy. Fur-
ther, the bucket sizes are constrained to the following:
{1,2,4,.. .,2’”/}, for some m' < m < log % + 1. Let
2" be the size of the last bucket; then, for every bucket

size other than the size of the last bucket, there are at
most % + 1 and at least % bucket of that size.

Let C; = 2" be the size of the j-th bucket. If
Invariant 2.2 is satisfied, then we are guaranteed that
there are at least % buckets each of sizes 1,2,4,...,27~1!
which have indexes less than j. Consequently, C; <

%(1 + 23;11 C;). Tt follows that if Invariant 2.2 is
satisfied then Invariant 2.1 is automatically satisfied.
If we maintain Invariant 2.2, it is easy to see that to
cover all the active 1’s, we would require no more than
m < (5 + 1)(log(2 + 1) + 1) buckets. Associated
with bucket is its size and a timestamp. The bucket
size takes at most log N values and hence we can
maintain them using loglog NV bits. Since a timestamp
requires log N bits, the total memory requirement of
each bucket is log N+loglog N bits. Therefore, the total
memory requirement (in bits) for an EH is O(% log? N).
It i1s implied that by maintaining Invariant 2.2, we
are guaranteed the desired relative error and memory
bounds.

The query time for EH is O(1). We achieve this by
maintaining two counters, one for the size of the last
bucket (L.AsT) and one for the sum of the sizes of all
buckets (TOTAL). The estimate itself is TOTAL minus
half of LAsT. Both counters can be updated in O(1)
time for every data element. The following is a detailed
description of the update algorithm.

Algorithm Insert:

1. When a new data element arrives, calculate the new
expiry time. If the timestamp of the last bucket
indicates expiry, delete that bucket and update the
counter LAST containing the size of the last bucket
and the counter TOTAL containing the total size of the
buckets.

2. If the new data element is 0 ignore it; else, create a
new bucket with size 1 and the current timestamp, and
increment the counter TOTAL.

3. Traverse the list of buckets in order of increasing sizes.
If there are g + 2 buckets of the same size, merge the
oldest two of these buckets into a single bucket of double
the size. (A merger of buckets of size 2" may cause the
number of buckets of size 2"t! to exceed §—|— 2, leading
to a cascade of such mergers.) Update the counter LAST
if the last bucket is the result of a new merger.

Ezrample. We illustrate the algorithm for a few steps.
Assume that % = 2 and that the current bucket
sizes from left to right are 32, 16, 8, 8, 4, 4, 2, 1,
1. When a new 1 arrives, the older 1’s are merged and
the bucket sizes become 32, 16, 8, 8, 4, 4, 2, 2, 1.
After two more 1’s arrive, the merging cascades up to
the buckets of size 8, and we get buckets of sizes 32,
16, 16, 8, 4, 2, 1.

Merging two buckets corresponds to creating a
new bucket whose size is equal to the sum of the
sizes of the two buckets and whose timestamp is the
timestamp of the older bucket. A merger requires
O(1) time. Moreover, while cascading may require
O(log %) mergers upon the arrival of a single new
element, standard arguments allow us to argue that the
amortized cost of mergers is O(1) per new data element.
We obtain the following theorem:

THEOREM 2.1. The EH algorithm maintains a data
structure which can give an estimate for the BAsic-
COUNTING problem with relative error at most € using at

most (% + 1)(log(% +1) + 1) buckets, where k = [1].
The memory requirement is log N + loglog N bits per
bucket. The arrwal of each new element can be pro-
cessed in O(1) amortized time and O(log N) worst-case
time. At each time instant, the data structure provides
a count estimate in O(1) time.

If instead of maintaining a timestamp for every
bucket, we maintain a timestamp for the most recent
bucket and maintain the difference between the times-
tamps for the successive buckets then we can reduce the
total memory requirement to O(klog? %)

3 Lower Bounds

We provide a lower bound which verifies that the EH
Algorithm is optimal in its memory requirement. We
start with a deterministic lower bound of Q(k log? %)

THEOREM 3.1. Any deterministic algorithm that pro-
vides an estimate for the BASICCOUNTING problem at
every time instant with relative error less than % for

some integer k < 4/ N requires at least %log2 % bits
of memory.

The proof argument will go as follows. We will show
that there are a large number of arrangements of 0’s and
1’s such that any deterministic algorithm which pro-
vides estimates with small relative error has to differ-
entiate between every pair of these arrangements. The
number of memory bits required by such an algorithm
must therefore exceed the logarithm of the number of
arrangements. The above argument is formalized by the
following lemma.

LemMmA 3.1. For k/4 < B < N, there exist L =

og X
(154)[1 g5 arrangements of 0’s and 1’s of length

N such that any deterministic algorithm for Basic-
COUNTING with relative error less than % must differ-
entiate between any two of the arrangements.

Proof. We partition a window of size N into blocks
of size B,2B,4B,...,2/B from right to left, for (j =

|log &| — 1). Consider the i-th block of size 2'B and
subdivide it into B contiguous sub-blocks of size 2*. For
each block, we choose % sub-blocks and populate them
with 1’s, placing 0’s in the remaining positions. In every

block, there are (;Z) possible ways to place the 1’s, and
therefore the total number of distinct arrangements is
log N/B
I = (kj?4)L g N/ J
We now argue that any deterministic algorithm for
BasicCOUNTING with relative error less than % must
differentiate between any pair of these arrangements.

In other words, if there exists a pair of arrangements
Az, Ay such that a deterministic algorithm does not dif-
ferentiate between them, then after some time interval
the two arrangements will have different answers to the
BasicCOUNTING problem and the algorithm will give
a relative error of at least % for one of them. To this
end, we will assume that the algorithm is presented with
one of these L arrangements of length N, followed by a
sequence of all 0’s of length V.

Refer to Figure 2 for an illustration of a pair
of arrangements that should be differentiated by any
deterministic algorithm with relative error less than %.

Consider an algorithm that does not differentiate
between two of the above arrangements A, and A,.

We will use the numerical sequences zg, z1,...,%; and

Yo, Y1,-.-,Y;, for j = Uog%J — 1, to encode the
two arrangements. The i-th number in the sequence
specifies the choice of the k/4 sub-blocks from the i-th
block which are populated with 1’s. The two sequences
must be distinct since the two arrangements being
encoded are distinct. Let d be an index of a point where
the two sequences differ, i.e., 4 # y4. Then the two
arrangements have a different choice of k/4 sub-blocks
in the d-th block. Number the sub-blocks within block
d from right to left, and let A be the highest numbered
sub-block that is chosen for one of the arrangements (say
Az) but not for the other (A,).Consider the time instant
when this sub-block h expires. At that instant, the
number of active sub-blocks in block d for arrangement
Az is ¢, where ¢ + 1 < k/4, while the number of
active sub-blocks in block d for A, is ¢+ 1. Since the
arrangements are followed by a sequence of 0’s, at this

time the correct answer for A, is c2d+%(2d—1), while for

Ay the correct answer is (c+1)29 + %(2‘1— 1). Thus, the
algorithm will give an absolute error of at least 291 for
one of the arrangements, which translates to a relative
error of % at that point in time. |

To prove Theorem 3.1, observe that if we choose

B = \/Nk then logL > %log2 % We also extend
the lower bound on the space complexity to randomized
algorithms. The proofs for the following two theorems
are omitted. They follow easily from Yao’s Minimax
Principle [13] and Lemma 3.1.

THEOREM 3.2. Any randomized Las Vegas algorithm

for BAsicCOUNTING with relative error less than %, for

some integer k < 4/ N, requires at least %log2 % bits
of memory.

THEOREM 3.3. Any randomized Monte Carlo algo-
rithm for BASICCOUNTING problem with relative error
less than %, for some nteger k < 4+/N, with prob-

rel error > 1/6

7

Ay

\ Block 2

"Block 1 Block O

m=

4, k/4 = 2.

Figure 2: A pair of arrangements that should be differentiated by any deterministic algorithm with relative error

less than 1/8.

ability at least 1 — § (for § < %) requires at least

6k—4 log? % — log(1 — &) bits of memory.

4 Beyond 0’s and 1’s

Consider now the extension of BASICCOUNTING to the
case where the elements are positive integers:

Problem. [SuM] Given a stream of data elements that
are positive integers in the range [0...R], maintain at
every time instant the sum of the last NV elements.

We assume that log R = o(N). This is a realis-
tic assumption which simplifies our calculations. We
generalize EH to this setting as follows. View the ar-
rival of a data element of value v as the arrival of v
data elements with value 1 all at the same time and
employ the same insertion procedure as before. Note
that the algorithm in Section 2 does not require distinct
timestamps, they are only required to be nondecreasing.
While earlier there could be at most N active 1’s, now
there could be as many as N R. As before, let k = [%]
The results in in Section 2 imply that the EH will re-
quire at most (% + 1)(log(¥ + 1) + 1) buckets. Now,
each bucket will require log N + log(log N + log R) bits
of memory to store the timestamp and the size of the
bucket. Note that there are N distinct timestamps at
any point (as before), but that the bucket sizes could
take on log N +log R distinct values. Thus, the number

of memory bits required is O(2(log N + log R)(log N)).
The only catch appears to be that we need Q(R) time

per insertion. The rest of the section is devoted to de-

vising a scheme that requires only O(%g%) amortized

time and O(log N + log R) worst case time per inser-
tion. Note that if R = O(poly(N)) then the amortized
insertion time becomes O(1) and the worst case time

becomes O(log N).

Let S be the total size of the buckets at some time
instant. For j = log(%—l— 1), let ko, k1,...,k; be a
sequence in which k; denotes the number of buckets of
size 2°. Then, S = Zgzo k;2°. By Invariant 2.2, we have
[<k <l+1 fori<j and 1 < k; <1+ 1, where
l = % > 1. Given [> 1 and S, a sequence kg, kq,..., k;
satisfying the above conditions is called an [-canonical
representation of S. The algorithm represents every
valid sum in its [-canonical form. We claim that the
l[-canonical representation of any sum .S is unique and
can be computed in time O(log S).

LEMMA 4.1. The l-canonical representation of any pos-
itwe number S is unique.

Proof. We give a proof by contradiction. Assume that
k = (ko,k1,... k) and k' = (kg, k7,... k%) are two
distinct [-canonical representations of S. Without loss
of generality, assume that j < j'. Let d be the smallest
index where the sequences differ. We have d < j since
it cannot happen that they agree on all the indices less
than or equal to j and the second sequence has nonzero
components for indices greater than j, given that they
have the same sum.

Casel (d < j): Since | < kg, ki) <1+ 1, we have
| Z?:O kl?l _Z?IO k£2l| = 2d' HOWeVeI', | Zg:d+1 kl?l -
Z{:d-u k12| = 29! for some ¢ > 0, which is a
‘Z?:O k£22| = 0
Case2 (d = j): The sequence k/ must have nonzero
indices greater than j, otherwise the two representations

cannot give the same sum. Moreover, it cannot happen
that k; < k}, since otherwise k' will have a strictly

greater sum. Thus, k; > k} and k; < [+ 1. Since k] is
not the last index, we have k7 > [. Therefore |k} —k;| <

contradiction since | 7_, k;2" —

1, which implies | Egzo kiQi—ZgIO k12¢| < 27. However,
Zf§j+1 21 > 2J+1 which gives a contradiction. |

The following procedure computes the [-canonical
representation of S in time O(log S).

Procedure [-Canonical: Given S find the largest j
such that 27 < %—}—1 andlet S = S—(2/ —1)l. If ' > 27,
find m such that m27 < S' < (m+1)27 and set k; = m;
we are guaranteed that m < [. Let S=5 —m2 <2

Let bg,...,b;_1 be the binary representation of S. Set
ki =14b; fori < j.

Given S and [, the [-canonical representation of
S tells us the exact positions of all the 1’s where the
buckets will start. Note that since multiple 1’s “belong”
to the same data element, we may have multiple buckets
starting at a single data element, implying that multiple
buckets could have the same timestamp. The following
observation is critical to the incremental maintenance of
the buckets. The algorithm in Section 2 guarantees that
if a certain data element (which in that case was some
active 1) is not “indexed” at a certain time interval then
it will never be “indexed” in the future. By “indexed”
we mean that it is the first element of some bucket and
hence its timestamp is maintained as the timestamp
of that bucket. As time progresses, buckets may get
merged and some data elements may not be indexed
any more. However, it never happens that an element
that was not indexed at some time gets indexed later.

The preceding observation allows us to devise the
following scheme to incrementally maintain the buckets
with small amortized update time. Let us assume
that we know the buckets at a certain time instant.
We think of each data element as series of 1’'s. We
buffer B new elements separately and maintain the
sum for these elements; that is, the EH is not updated
for B steps. During this period, any query can be
answered using a combination of the EH and the buffer
sum. When the buffer gets full, we first delete any
expired buckets in the EH. After the expired buckets
are deleted, let S7 be the sum of the sizes of the active
buckets. Let Sy be sum of the elements in the buffer.
We calculate the [-canonical (I = %) representation of
S1 + S5 to determine the positions of the new buckets.
This requires O(log(S1 + S2)) = O(log N + log R) time
since S; + S2 = O(NR). We then create the new
buckets using the timestamps and values of the elements
in the buffer, and the timestamps and sizes of the old
buckets. The total time required to process the B
elements in buffer is O(B + log N + log R), since O(B)
time suffices to maintain the buffer sum and the number
of buckets in the new histogram is O(log N + log R).
Since the time required to construct the new histogram

is O(log N + log R + B), the amortized update time
per element is O(1 + @%@ﬁ). Choosing B =

O(log N) makes the amortized update time O(ll%g%)

and worst case time O(log N 4 log R). The buffer needs
O(log N (log N +log R)) memory bits, which is the same
as the memory requirement of the EH. Note that if
R is poly(N) then the amortized update time is O(1)
and worst case time is O(log N). We have obtained

a memory upper bound of O(%(log N + log R)(log N'))
bits, as summarized in the following theorem.

THEOREM 4.1. The generalized EH for the SUM prob-
lem maintains a data structure which provides esti-
mates with relative error at most € using at most (% +
1)(log(¥ + 1)+1) buckets, where k = [1]. The mem-

ory requirement is log N + log(log N + log R) bits per
bucket. The arrival of each new element can be pro-
cessed in O(%g%) amortized time and O(log N + log R)
worst case time. At each time instant, the data struc-
ture provides a sum estimate in O(1) time.

We now prove a lower bound of Q(l(logN +
log R)(log N)) bits. If log N = Q(log R) then the lower
bound from Section 3 applies. Thus, we only need to
consider the case when R > N. We will assume that
log R < %; in fact we assume log R = o(N). Con-
sider the following arrangements. We break the win-
dow of size N into log R blocks, each of size L%J.

Consider the i-th block, for 0 < 7 < logR. We

choose k/4 of the L%

ement with value 2¢ there, setting all other elements
to 0. By an argument similar to the one in Sec-
tion 3, any deterministic algorithm with relative er-
ror less than % must differentiate between any two of
these arrangements. The total number of these arrange-

log R
N/kl;va) € > ()%1083. The number of

| positions and place an el-

4N
klogR

ments 1s (

memory bits required is at least %logRlog(kfong) =

Q(L(log N + log R)(log N)). We assume that R > N

and that log R = O(N?) for some § < 1. Note that the
lower bounds also apply for randomized algorithms that
provide an approximate answer.

5 Computing L, norms for vectors

We now extend the EH technique and combine it with
the sketching technique from Indyk [11] to compute the
L, norms of vectors in the sliding window model. As-
sume that the window is broken into smaller contiguous
buckets. These are numbered right to left and are de-
noted by By, Bs, ..., By,. Consider a function f, defined
over the intervals, with the following properties:

P1: f(B;) >

P2: f(Bi) < poly(|Bil).

P3: (Bl + Bz) > f(Bl) + f(Bz) with B1 + B? the
(@)

concatenation of adjacent buckets B; and Bs.

P4: f(B1+ B2) < C¢(f(B1) + f(B2)), where C; > 1 is

a constant.

P5: The function f(B) admits a “sketch” which re-
quires g¢(|B]|) space and is composable, i.e., the
sketch for f(B; + Bz) can be composed efficiently

from the sketches for f(B1) and f(Ba).

If the function f admits these properties then we can
efficiently estimate it for sliding windows using the EH
technique. We maintain buckets with the following
two invariants; we also associate with every bucket a
timestamp and the sketch.

INVARIANT 5.1. f(Bny1) < szl f(Bi).

7 izt f(Bi).

Observation 1: We estimate the function f for the
current window by composing the sketches of all but
the earliest (leftmost) bucket. The leftmost bucket may
have certain expired data elements along with a suffix
of data elements that are active. Let B, be the part
(suffix) of the leftmost bucket that is active and was
ignored (did not contribute to the estimate). Let B,
be the concatenation of the all the other buckets whose
sketch we compose using the sketches of the individual
buckets. Then B; + By is the current window and the
exact answer is f(By + By). However we estimate the
answer as f(By); thus, we always underestimate. The

F(BetBy)=f(By) by P1 and P3.

INVARIANT 5.2. f(Bpy2) + f(Bny1) >

relative error E,. 1s

f(Bo+By)
Also we have
B, < EtB-ioy (P1,P3)
C B By))—=f(By

< Gl)J}{Jéy))) (By) (P4)
_ C;f(Bx)
= %““f‘l
< Csf(Bry1) +Cf— (P1,P3)

Doy F(B)
< % +Cp—1 (Invariant 5.1)
Observation 2: Invariant 5.2 and property P2 imply
that the number of buckets will be O(klog N), where N
is the size of the window. Thus, the memory required to
maintain the time-stamp and sketches for all the buckets
will be O(klog N (log N + g¢(N))).

Hence, if we maintain the invariants along with
the timestamp and the sketches, we can estimate the

. . . c?
function f with relative error 0 < E, < 2L 4+ Cy — 1
using O(klog N (log N + g¢(N))) memory bits. We can
maintain the invariants along with the timestamp and
sketches as new data elements are added. The algorithm
to do this is very similar to that for EH.

1. When a new data element arrives, calculate the new
expiry time. If the timestamp of the last bucket
indicates expiry, delete that bucket.

2. Create a new bucket with just the new data element.

3. Traverse the list of buckets from right to left. If Invari-
ant 5.2 is violated for a pair of buckets (Bny1, Bnt2),
merge them into a new bucket B, ;. The sketch for
this bucket is composed from the sketches for Bn41 and
Br42. We may need to do more than one merge.

We argue that the algorithm maintains Invariant 5.1
and Invariant 5.2. Adding a new bucket does not violate
Invariant 5.1, as we only increase the size of the suffix.
Whenever Invariant 5.2 is violated, the two buckets

involved satisfy (f(Bnt2) + f(Bnt1) < + >0y f(Bi)).
When we merge them, property P4 guarantees that

f(B,1) < ﬁzzl . f(B;) and hence Invariant 5.1 is

valid for the new bucket B, , ;. The algorithm may need

to do a lot of merges, as many as the number of buckets
(O(log N))). However, the amortized time is O(1). We
omit details dealing with the fact that the function f
for a window of size 1 may be greater than 1 although
bounded by some constant R.

THEOREM 5.1. A function f with properties P1-P5
can be estimated over sliding windows with relative error
0< E, < SL+C;—1 using O(klog N(log N +g;(N)))

bits of memory

5.1 L, Norms: We now argue that L, norms (for
p € [1,2]) of vectors under a restricted model admit
the properties P1-P5 and hence can be efficiently
computed for sliding windows. Consider the restricted
model [11] in which each data element is a pair (7, a),
where i € [d]=0...d— 1 and a € 0... M represents an
increment to the ith dimension of an underlying vector.
Every window B represents a vector and its L, (B) norm

Ciera | Xiayen alP)r.
Note that the case p = 1 is the same as the Sum
problem. We denote (L,)? by f, and estimate f,, for

p € [1,2]. The function f, clearly admits properties
P1-P4. For P5, f,(B) admits a sketching technique
which requires O(log M log(1/8)/¢%) memory bits per
sketch and is composable. The technique also requires
O(log M log(d/&)log(1/8)/é?) random bits which are
common to all sketches. (See Theorem 2 in [11].) The
sketches for computing the function are not exact. They

is given by L,(B) =

provide an approximation with relative error less than
€ with probability 1 — §. However, by setting the
accuracy parameter € correctly we can make sure that
our algorithm also works in an probabilistic manner and
has relative error at most %—1— 1+¢€, where € is a function
of €.

This proves that under the restricted model we can
compute (L,)P with relative error at most 2 +14¢ using
O(klog N (log N + log M log(1/8)/é?%)) bits of memory.
The estimate 1s probabilistically approximately correct.
Note that computing (L,)? with small relative error
translates to computing L, with a small relative error.

5.2 Lower Bounds: The BASICCOUNTING and SUM
problems are the special cases of computing L, norms,
where the underlying vector has a single dimension.
Thus, the lower bounds for these problems apply to the
problem of computing the L, norm. Note that the upper
bounds obtained in this section match the lower bounds.
The L, norm for p = 0 is defined as the distinct value
problem and we deal with this problem in Section 6.

6 Applications

We briefly discuss how the EH algorithm for Basic-
COUNTING can be used as a building block to adapt
several techniques to the sliding window model with a
multiplicative overhead of O(% log N) in memory and a
1 + € factor loss in accuracy. The basic idea is that to
adapt to the sliding window setting a scheme relying on
exact counters for positive integers, use an EH to play
the role of a counter. A counter would have required
Q(log N) memory bits, while EH requires O(% log? N)
memory bits and maintains the count within 1+ ¢ error.

6.1 Hash Tables: This is the simplest case. Every
data element gets hashed to a bucket. Instead of
maintaining a counter for each bucket, we use the EH
to maintain approximate counts of the number of data
elements hashed into the bucket from the last N data
elements in the stream. This works if we are required to
maintain only the count of elements in each hash bucket.

6.2 Sums and Averages: In Section 4, we showed
to maintain the sum of positive integer data elements
using the generalized version of the EH. This requires
O(L1og N(log R + log N)) bits of memory. Since main-
taining sum would require log N + log R bits the multi-
plicative overhead is O(1log N). Maintaining averages
is similar.

6.3 Histograms: Given the bucket boundaries in
a histogram, we can maintain the sum, average, and
other statistics corresponding to each bucket using the

generalized EH. Finding the optimal bucket boundaries
to optimize the memory requirement i1s an orthogonal
problem. Also equi-width histograms are a natural
choice of histograms for which the bucket boundaries
are fixed. Note that unlike the histograms discussed
in [8] these are not time-based histograms, but instead
could be based on any attribute of the data.

6.4 Min and Max: We prove a lower bound for
the memory requirement of an algorithm that maintains
min or max over a sliding window. The lower bound
is based on a counting argument like the one used
to prove the lower bound for BAsicCOUNTING. Let
the data elements be drawn from a set of R distinct
numbers. Consider all nondecreasing arrangements of
N numbers. The number of such arrangements is
(N;R). Any deterministic algorithm that gives the
correct answer at every time instant must differentiate
between any two such arrangements. This is because
the two arrangements will have a different minimum at
the first place that they differ from left to right. The
lower bound on the number of memory bits required
is then log (NJ‘\F,R) > Nlog(R/N). This lower bound is
also valid for any randomized algorithms by arguments
similar to the one in Section 3. If R = poly(N) then
the lower bound says that we have to store all of the
last N elements. The easiest way to maintain the exact
minimum over sliding windows is to maintain a list
of pairs (value, timestamp) such that both the value
and the timestamp are strictly increasing. This scheme
has a worst-case space requirement of O(N log R) bits.
However, if the data elements arrive in a random order,
the expected space complexity will be O(log N log R).

6.5 Distinct Values: dIt is easy to adapt the tech-
nique of Flajolet and Martin [6] to estimate the number
of distinct elements in the last N data elements. Their
probabilistic counting technique maintains a bitmap of
size O(log R), where R is an upper bound on the num-
ber of distinct values in the data set. In the case of
sliding windows, R < N and a bitmap of size O(log N)
suffices. We also maintain with each bit a timestamp
of size O(log N). Whenever a bit is (re)set by a data
element we update the timestamp to that of the data
element. This enables us to keep track of the bits that
were set by the last N elements. Consequently, we can
estimate the number of distinct elements with an ex-
pected relative accuracy of O(\/%) using O(mlog? N)
bits of memory. Note that the lower bound for Basic-
COUNTING problem applies to the Distinct Value prob-
lem. Given an instance of BASICCOUNTING problem we
can create an input where a 0 is mapped to 0 while every
1 is mapped to some distinct value (the arrival time of

the element for instance). Then the number of Distinct
Values is one more than the number of ones. This reduc-
tion shows that the lower bounds for BAsicCOUNTING
problem apply to the Distinct Value problem.

References

(1]

[10]

[11]

[12]

[13]

[14]

N. Alon, Y. Matias, M. Szegedy. The space complexity
of approximating the frequency moments. In Proc.
Twenty-Fighth Annual ACM Symposium on Theory of
Computing, 1996.

C. Cortes, K. Fisher, D. Pregibon, A. Rogers. Han-
cock: a language for extracting signatures from data
streams. In Proc. 2000 ACM SIGKDD, pp. 9-17, 2000.
S. Chaudhuri, R. Motwani, V. R. Narasayya. On
random sampling over joins. In Proc. 1999 ACM
SIGMOD, pp. 263-274, 1999.

M. Fang, H. Garcia-Molina, R. Motwani, N. Shivaku-
mar, J.D. Ullman. Computing iceberg queries effi-
ciently. In Proc. 24th International Conference on Very
Large Data Bases (VLDB), 1998.

J. Feigenbaum, S. Kannan, M. Strauss, M.
Viswanathan. An Approximate L1-Difference Al-
gorithm for Massive Data Streams. In Proc. 40th
Symposium on Foundations of Computer Science,
1999.

P. Flajolet, G. Martin. Probabilistic Counting. In
Proc. 24th Symposium on Foundations of Computer
Science, 1983.

C. Fraleigh, S. Moon, C. Diot, B. Lyles, F. Tobagi.
Architecture of a passive monitoring system for back-
bone IP networks. Technical Report TR00-ATL-101-
801, Sprint Labs, 2000.

S. Guha, N. Koudas, K. Shim. Data-Streams and
Histograms. To appear in Proc. Thirty- Third Annual
ACM Symposium on Theory of Computing, 2001.

S. Guha, N. Mishra, R. Motwani, L. O’Callaghan.
Clustering data streams. In Proc. 2000 Annual IEEE
Symp. on Foundations of Computer Science, pages
359-366, 2000.

M. R. Henzinger, P. Raghavan, S. Rajagopalan. Com-
puting on data streams. Technical Report TR 1998-
011, Compaq Systems Research Center, Palo Alto, Cal-
ifornia, May 1998.

P. Indyk. Stable Distributions, Pseudorandom Gen-
erators, Embeddings and Data Stream Computation.
In Proc. 41st Symposium on Foundations of Computer
Science, 2000.

Jagadish, Koudas, Muthukrishnan, Poosala, Sevcik,
Suel. Optimal Histograms with Quality Guarantees.
In Proc. 24th International Conference on Very Large
Data Bases (VLDB), 1998.

R. Motwani, P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

Netflow Services and Applications. Whitepaper, Cisco
Systems, 2000. Available at

http://www.cisco.com /warp/public/cc/pd/iosw
/ioft /neflct /tech /napps_wp.htm.

