
633

Sampling From a Moving Window Over Streaming Data

B r i a n B a b c o c k * M a y u r D a t a r * R a j e e v M o t w a n i *t

A b s t r a c t
We in t roduce the problem of sampling from a moving
window of recent items from a data stream and develop
two algorithms for this problem. The first algorithm,
"chain-sample", extends reservoir sampling to deal with the
expiration of data elements f~om the sample. The expected
memory usage of our algorithm is O(k) when maintaining
a sample of size k over a window of the n most recent
elements from the data stream, and with high probability
the algorithm requires no more than O(k log n) memory.

When the number of elements in the window is variable, as
is the case when the size of the window is defined as a time
duration rather than as a fixed number of data elements, the
sampling problem becomes harder. Our second algorithm,
"priority-sample", works even when the number of dements
in the window can vary dynamically over time. With high
probability, the "priority-sample" algorithm uses no more
than O(k log n) memory.

1 I n t r o d u c t i o n

In many applications, the timeliness of data is impor-
tant, and the most recent data is considered to be most
interesting. Outdated data is "expired" and no longer
used when evaluating queries. We consider the problem
of maintaining a uniform random sample of a specified
size k over a "moving window" of the most recent ele-
ments in a data stream. (For an overview of the stream-
ing data model, see [2].) We present memory-efficient
algorithms for this problem under two definitions of a
moving window. A sequence-based window of size n con-
sists of the n most recent data elements to arrive, while
a timestamp-based window of duration t consists of all
data elements whose arrival timestamp is within a time
interval t of the current time.

The problem of how to maintain a sample of a
specified size k over data that arrives online has been
studied in the past. The standard solution is to
use Vitter 's reservoir sampling techniques developed in
[4]. Reservoir sampling works well when the incoming
data contains only inserts and updates but runs into
difficulties if the data contains deletions, as is the case
when data expires. The solution used in [5] is to
periodically regenerate the sample when there have been

~ t , of Computer Science, Stanford University, CA 94305.
E-mail: {babcock ,dat a r , r a j eev}@cs, s tanford , edu. Research
supported in part by NSF Grant IIS-0118173.

tAdditional support provided by a grant from the Ol~wa
Foundation.

too many deletions by an expensive scan of the entire
database. The approach for dealing with deletions in
[6] is to keep counts of the most common data elements
using probabilistic counting rather than attemping to
maintain a random sample.

2 S e q u e n c e - B a s e d W i n d o w s

One algorithm for sampling with a sequence-based mov-
ing window is to maintain a reservoir sample for the first
n data elements in the stream, and thereafter to stop
maintaining the sample except that when the arrival of
a new data element causes an element present in the
sample to expire, the expired element is replaced with
the newly-arrived element. This algorithm maintains
a uniform random sample over a window of the last n
elements while requiring only enough memory to store
k data elements, but it has the disadvantage that it is
highly periodic: if the data element with sequence num-
ber i is included in the sample, then so will be the data
element with sequence number i + cn for all integers
c > 0. This regularity makes this technique unaccept-
able for many applications.

Another simple algorithm is to add each new data
element to a "backing sample" with probability 2ok los n Tt
and generate the sample of size k by down-sampling
from the backing sample. As data elements expire they
are removed from the backing sample. An argument
using Chernoff bounds shows that the size of the backing
sample will be between k and 4cklogn, except with
probability dn -~. With high probability, the algorithm
will both keep a large enough backing sample to supply
the desired sample of size k and also use only O(klogn)
memory.

The expected memory usage of the previous al-
gorithm is O(klogn); a novel technique that we call
"chain-sample" improves this to O(k) while preserving
the same high-probability upper bound of O(k log n).
(The chain-sample algorithm described below generates
a sample of size 1. To produce a sample of size k, main-
tain k independent chain-samples. 1)

TMaintaining k independent samples of size I results in a with-
replacement sample of size k. Sampling without replacement
can be simulated by maintaining enough additional independent
samples to ensure that with high probability there will be at

634

In the "chain-sample" algorithm, when the i th
element arrives it is chosen to become the sample with
probability 1/Min(i, n). If the i th element is chosen as
the sample, the algorithm also selects the index of the
element that will replace it when it expires (assuming
tha t it is still present in the sample when it expires).
This index is picked uniformly at random from the
range i + 1 . . . i -t- n, representing the range of indexes of
the elements that will be active when the i th element
expires. When the element with the selected index
arrives, the algorithm stores it in memory and chooses
the index of the element that will replace it when it
expires, etc., building a chain of elements to use in case
of the expiration of the current element in the sample.

The expected length of the chain of elements when
the element in the sample is the i th oldest non-expired
element is given by the recurrence:

TIll

T[i + 11

---- 1
i

= I + I ~ T [j] -
n

j~-I

which bounds the expected length by T[n] < e.
We can also derive an O(logn) high-probability

upper bound on the memory usage for a single chain.
The number of possible chains of elements with more
than x data elements is bounded by the number of
partitions of n into x ordered integer parts, which is
(~). Since each such chain has probability n -=, the
probability of any such chain occuring is less than
(:) n -x, which by Stirling's approximation is less than
(3)e =. When x = O(log n) this probability is less than
n -c for constant c.

3 T i m e s t a m p - B a s e d W i n d o w s

The techniques described in the previous section will not
work for timestamp-based windows because the number
of data elements in the moving window may vary over
time. We have developed an algorithm we call "priority-
sample" for use with timestamp-based windows. As
each data element arrives, it is assigned a randomly-
chosen priority between 0 and 1. The element selected
for inclusion in the sample is the "active" (non-expired)
element with the highest priority. (To maintain a
sample of size k, generate k priorities P l . . . P k for each
element and choose the element with the highest p~ for
each i.)

The only data elements that we need to store in
memory are those for which there is no element with
both a later t imestamp and a higher priority, since only

I'6~-UK--distinct data elements a m o n g the samples. Assuming that
/c <~< n the n u m b e r of addi t iona l samples required is small .

these elements can ever be used in the sample. We can
easily maintain a linked list of all elements with this
property, ordering the linked list by decreasing priority
and increasing timestamp.

The linked list maintained by the algorithm is
analogous to the right spine of a "treap" where the
timestamps are fully ordered and the priorities are
heap ordered. Therefore, by the argument in [1],
the expected length of this list when there are n
active elements is H(n) , the n th harmonic number.
Furthermore, an application of the Chernoff bound on
the harmonic distribution (see [3]) demonstrates tha t
the probability tha t the length of the list will exceed
2e lnn + 1 when there are n active elements is less
than 2(n/e)-Cln(c/e). Thus O(klogn) is both the
expected memory usage of "priority-sample" and also
a high-probability upper bound on the memory usage.
Note tha t although the memory requirements for the
"priority-sample" algorithm are expressed in terms of
the maximum number of elements n that are active
at the same time, the algorithm does not require prior
knowledge of the value of n.

4 Acknowledgements

The authors thank Adam Meyerson and Sergey Brin for
helpful suggestions.

R e f e r e n c e s

[1] C. R. Aragon and R. G. Seidel, Randomized Search
Trees, Proc. of the 30th IEEE Syrup. o~ Foundations
of Computer Science, 1989, pp. 540-545.

[2] S. Babu and J. Widom, Continuous Queries over Data
Streams, ACM SIGMOD Record, 30.3 (2001), pp. 109-
120.

[3] K. Mnlmuley, Computational Geometry: An Introduc-
tion through Randomized Algorithms, Prentice Hall,
Englewood Cliffs, New Jersey, 1994.

[4] J. S. Vitter, Random Sampling with a Reservoir, ACM
Trans. on Mathematical Software, 11(1985), pp. 31-35.

[5] P. B. Gibbons and Y. Matias and V. Poosala, Fast
Incremental Maintenance of Approximate Histograms,
Proe. of the 23rd VLDB Conference, 1997, pp. 466-475.

[6] Y. Matias and J. S. Vitter and M. Wang, Dynamic
Maintenance of Wavelet-Based Histograms, Proc. of
the 26th VLDB Conference, 2000, pp. 101-110.

