=

On Computing Correlated Aggregates
Over Continual Data Streams’

Johannes Gehrke
Cornell University

johannes@cs.cornell.edu

ABSTRACT

In many applications from telephone fraud detection to net-
work management, data arrives in a stream, and there is a
need to maintain a variety of statistical summary informa-
tion about a large number of customers in an online fashion.
At present, such applications maintain basic aggregates such
as running extrema values (MIN, MAX), averages, standard
deviations, etc., that can be computed over data streams
with limited space in a straightforward way. However, many
applications require knowledge of more complex aggregates
relating different attributes, so-called correlated aggregates.
As an example, one might be interested in computing the
percentage of international phone calls that are longer than
the average duration of a domestic phone call. Exact com-
putation of this aggregate requires multiple passes over the
data stream, which is infeasible.

We propose single-pass techniques for approximate com-
putation of correlated aggregates over both landmark and
sliding window views of a data stream of tuples, using a
very limited amount of space. We consider both the case
where the independent aggregate (average duration in the
example above) is an extrema value and the case where it
is an average value, with any standard aggregate as the de-
pendent aggregate; these can be used as building blocks for
more sophisticated aggregates. We present an extensive ex-
perimental study based on some real and a wide variety of
synthetic data sets to demonstrate the accuracy of our tech-
niques. We show that this effectiveness is explained by the
fact that our techniques exploit monotonicity and conver-
gence properties of aggregates over data streams.

1. INTRODUCTION

In many applications from telephone fraud detection to
network management, data arrives in a stream, and online
decisions are made based on a “recently observed” portion

*Work of Johannes Gehrke supported in part by a gift from
Microsoft Corporation and an IBM Faculty Development
Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SIGMOD 2001 May 21-24, Santa Barbara, California, USA
Copyright 2001 ACM 1-58113-332-4/01/05 ...$5.00.

Flip Korn
AT&T Labs—Research

flip@research.att.com

13

Divesh Srivastava
AT&T Labs—Research

divesh@research.att.com

of the stream. For example, telephone call records are gen-
erated for each call, at the end of the call. The stream of
generated call records may be used by applications such as
telephone fraud detection, which examines this stream for
various patterns of potentially fraudulent calling behavior.
As another example, router interfaces are periodically polled
by network operators using SNMP to get a variety of per-
formance data. The stream of polled SNMP data is then
used by network monitoring and management applications
to determine if an interface is down, router is inaccessible,
etc.

The large volume of stream data (hundreds of millions of
phone call records from tens of millions of customers per
day; tens of millions of SNMP records from tens of thou-
sands of router interfaces per day, etc.), and the online na-
ture of the various applications that operate on such data,
makes 1t imperative for the applications to compute and
maintain a variety of statistical summary information in an
online fashion. At present, such applications maintain basic
aggregates such as running averages, standard deviations,
etc., that can be computed over data streams with limited
storage in a straightforward way. However, more complex
aggregates are often desired, especially when exploring cor-
relations between attributes of tuples in the data stream,;
this application scenario allows users to specify ad hoc com-
plex aggregates as the data stream flows by, and to request
that results be computed and reported periodically. For ex-
ample, for each telephone customer, what percentage of calls
longer than the average duration are international calls? Or,
for each router interface, how often is the total outbound
traffic within, say, 50% of the maximum outbound traffic?

Correlated aggregates [6, 5, 4] provide a natural mech-
anism for the flexible composition of standard aggregates,
that are useful for such applications. For example, COUNT{z :
z > 0.5%MAX(x)} operates on a multiset of = values, and com-
putes the number of z values that are within 50% of the max-
imum z value in the multiset. Similarly, MAX{y : z < AVG(z)}
operates on a multiset of (z,y) tuples, and computes the
maximum ¥y value obtained from tuples where the x value is
less than the average z value in the set; this value may not be
the maximum y value in the entire multiset. Prior work [6,
5, 4] has considered only the exact computation of corre-
lated aggregates over finite data sets. In general, this exact
computation requires multiple passes over the data set. The
first pass is needed to determine the independent aggregate
(average duration of calls, or the maximum outbound traffic,
in our applications). The second pass is needed to determine
the dependent aggregate (percentage of calls longer than the

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

(previously computed) value, or the number of times the to-
tal traffic is within 50% of the (previously computed) value.
For data streams of large volume, such exact computation is
not feasible, and providing a quick approximate answer will
have to suffice. The problem of efficient approximate compu-
tation of correlated aggregates over data streams is the focus
of this paper, and we make the following main contributions:

o We classify correlated aggregates over data streams,
based on their scope and the nature of the independent
aggregate.

We illustrate via examples that two natural alterna-
tives for the scope are landmark windows, and sliding
windows. Landmark windows identify certain land-
marks in the data stream, and the aggregate value
at a point is defined with respect to the tuples from
the immediately-preceding landmark until the current
point; for example, correlated aggregates on a daily
basis, or from the point where a user requested the
computation of an ad hoc aggregate. Sliding windows
are typically of a fixed width, and the aggregate value
at a point is defined with respect to the tuples that pre-
cede this point and are within this width; for example,
correlated aggregates over the previous 60 minutes.

We consider both the case where the independent ag-
gregate is an extrema value (MIN, MAX) and the case
where it is an average value; any standard aggregate
can be used as a dependent aggregate.

e Since correlated aggregates typically cannot be com-
puted exactly in a single pass (equivalently, the exact
computation of correlated aggregates in a single pass
requires an unbounded buffer size), it is natural to ex-
pect that the accuracy of a single-pass, approximate
computation of correlated aggregates directly depends
on the additional “buffer” space available for main-
taining an estimate of the aggregate value.

Histograms have been used widely both in the research
literature and in commercial DBMSs for quickly esti-
mating approximate statistics about underlying data
domains, in limited space. Hence, the use of tradi-
tional histograms, with few buckets (depending on the
buffer space available per aggregate), is a viable straw-
man for our problem. We observed two limitations of
the use of standard histograms with respect to our
problem:

— First, at a point during the stream computation,
we may be interested only in a focused small, sub-
interval of the entire range of values from the
underlying domain. Since traditional histogram
techniques (equiwidth, equidepth, etc.) allocate
buckets over the entire range of values in the do-
main, they often waste buckets allocating them
to regions that cannot (or are unlikely to) affect
subsequent results.

— Second, the region of interest (e.g., the tuples
whose & values are less than AVG(z)) may shift
while the data stream is passing by. Traditional
work on histograms has not addressed this issue,
to the best of our knowledge.

14

These two issues motivate us to seek novel solutions
to the problem of accurately maintaining histogram
information over a stream of data records, which can
effectively deal with a dynamically changing (shifting,
contracting, expanding) region of interest.

o We propose single-pass techniques for the approximate
computation of correlated aggregates that adapt the
histogram bucket boundaries to a dynamically chang-
ing region of interest in one of two ways, over both
landmark and sliding window data streams of tuples:
(i) a wholesale approach that can change each and ev-
ery bucket boundary in response to a change in the
region of interest; and (ii) a piecemeal approach that
is more conservative and changes bucket boundaries
only when absolutely necessary.

We show how properties of the independent aggregate
(monotonicity of extrema, and convergence of average)
can be used effectively for the approximate computa-
tion of correlated aggregates, over landmark window
data streams.

Over sliding windows, our techniques need to deal with
the simultaneous inclusion of a data tuple and exclu-
sion of another data tuple, in efficiently computing
the correlated aggregate. We achieve this by combin-
ing the approach we use for cumulative data streams
with novel incremental mechanisms for approximately
maintaining extrema aggregates in a sliding window.

e We complement our algorithmic analysis with an ex-
tensive experimental study based on some real and
some synthetic data sets to demonstrate the accuracy
of our techniques for approximate computation of cor-
related aggregates. The main conclusions of our study
are as follows:

— Use of focused histograms to estimate correlated
aggregates over data streams is demonstrably su-
perior, in a large variety of cases, to the use of
traditional histograms.

— A simple “piecemeal” strategy, which maintains
uniformly-spaced bucket boundaries in its region
of interest, and changes bucket boundaries only
at the extremities of the region, when the region
of interest changes, is the strategy of choice across
a wide variation in window scopes, nature of ag-
gregate, and type of data stream.

The principal consequence of our study is that we have a
robust approach for the approximate computation of the im-
portant class of correlated aggregates over streaming data.
To the best of our knowledge, ours is the first work on
evaluating this important class of aggregates over stream-
ing data.

2. PROBLEM DEFINITION

2.1 DataStreams

Consider a relational schema R with attributes X, ...

y Xk
where attribute X; has dom(X;). We call att(R) def dom(R)

def dom(X1) x - -- X dom(Xy) the attribute space of R. Let R

be a relational schema with attribute space att(R). We call

a function O : N — att(R) an ordering of R. A sequence is
a tuple S(R, O) where R is a relational schema and O is an
ordering of R. Given a sequence S(Rs, Os), we also refer to
the natural numbers as positions, and we use S[i] for Os(1),
the record at the ith position.

Our model of computation is similar to the model intro-
duced by Henzinger, Raghavan, and Rajagopalan [19]. Tt
contains a single input sequence S;, and a single output se-
quence Sout, and the model has as single parameter m, the
amount of space available. Computation in our model pro-
ceeds in steps, and each computation step consists of three
substeps. Consider the ith computation step. In the first
substep, we read Sin[i] from the input sequence S;n into a
memory location; in the second substep, we perform an un-
limited amount of computation in memory; and in the third
substep we write into the th position of the output sequence
Sout[i]. We call an algorithm for our model of computation a
stream algorithm. Thus, our algorithms map input streams
into output streams, which could be used for further pro-
cessing.

We consider stream algorithms for aggregate computa-
tions. A stream aggregale has three components: A scalar
aggregate function AGG : 2B — R, a scope function scope :
N — 2N and a selection predicate P. Given an input se-
quence Sin, a stream aggregate operator Agg(AGG, scope, P)
returns the sequence S,y such that

Sout[1] AGG{Sin[7]- X1 | 5 € scope(i) A

P(Sin[4], Sin[scope(i)])}

where S;n[scope(i)] Lef {Sin[j] | J € scope(i)} and X; is an
attribute of R.

Three particular types of scope functions are especially
interesting. We call the scope function fScope : N — 2N
such that fScope(i) = {1,...,1} for 1 € N a full window
scope, and we call the scope function swScope,, such that
swScopey (i) = {max(1,i—w+1), max(1l,i—w+2),... ,i} a
sliding window scope of size w. A full window scope is just a
special case of a landmark window scope. A landmark win-
dow scope takes as input a landmark set S = {s1,s2,...}.
Given such a set S and a position 2, ImScope(S, 1) = {s;, s;+
1,...,1— 1,1}, where s; is the largest position in S that is
< 1 where S is understood from the context. We omitted
and simply use ImScope(i). In this paper, we concentrate
on sliding window scopes and on landmark window scopes.

Consider the stream aggregate operator Agg(AGG, scope,
P). If the selection predicate P does not contain any aggre-
gate function, then we call Agg a level O stream aggregate
operator. Recursively, let Agg be a level 1 stream aggregate
operator. Then Agg'(AGG', scope’, P') is alevel i+1 stream
aggregate operator if

= AGG'{Sin[j]. X1 | J € scope'(i) A

Our notion of the level of a stream aggregate lets us relate
stream aggregates to regular queries over a static relation.
A level 1 stream aggregate can be evaluated over a static
relation in at most 7 + 1 scans. Note that our notation of a
level 1 stream aggregate is purely syntactic. There are level
1 stream aggregates that have equivalent level 0 aggregates
for any 1. Establishing such equivalences is outside the scope
of this paper.

Consider the following application scenario from the tele-

Sout [2]

15

communications industry. Our data stream contains infor-
mation about phone calls, captured in the following schema:

CallDetail (origin, dialed, time, duration, isIntl)

The attributes origin and dialed contain the originating
and destination phone number of the call, respectively; the
attributes time and duration denote the start time and du-
ration of the phone call, respectively; the attribute isIntl
indicates whether the call was an international phone call.
We are interested in computing the following stream aggre-
gates.

Example 1: At any point in time, we would like to compute
the number of international calls over the last two months
that took longer than 10 minutes. This is an example of a
level O stream aggregate with a window scope of two months.
With respect to our notation, this stream aggregate can be
expressed as follows:

Sout[1] COUNT{S;n[j].origin | j € swScope(i) A

Sin[7]-isIntl = 1 A S;,[j].duration > 10},

where swScope is the appropriate sliding window scope that
restricts relevant records from the input sequence S;, to the
last two months. [

Example 2: At any point in time, we would like to find
the number of international calls this year that were longer
than the average call duration. Note that if CallDetail
were a regular relation, then evaluation of this query would
require two passes over the (materialized) relation. In the
first pass, we would compute the average call duration d,
and then in the second pass we would compute the number
of international calls that have a duration longer than d.
This is an example of a level 1 stream aggregate with a
landmark window scope; the landmark set consists of the
beginnings of each year. With respect to our notation, this
stream aggregate can be expressed as follows:

Sout[1]

COUNT{S;n[j].origin | j € ImScope(i) A
Sin[j]-isIntl =1 A S;n[j].duration
> AVG{Sin[k].duration | k € ImScope(i)}},

where ImScope is the appropriate landmark window scope
that restricts relevant records from the input sequence S;,
to the current year. [

Example 3: At any point in time, we would like to find
the number of international calls whose duration was within
10% of the call with the longest duration with respect to
the last two weeks. This is an example of a level 1 stream
aggregate with a window scope of two weeks. With respect
to our notation, this stream aggregate can be expressed as
follows:

Sout[1]

COUNT{S:n[j].origin | j € swScope(i) A
Sin[7]-isIntl =1 A Sin[j].duration
> 0.9 MAX{S;n[k].duration | k € swScope(i)}},

where swScope is the appropriate sliding window scope that
restricts relevant records from the input sequence S;, to the
last two weeks. [

If the amount of available space m is infinite, then we can
compute Sy exactly for any stream aggregate through the

following simple algorithm: At step i, we read Sin[t] into
memory location M[i]. We then compute the exact value
of the stream aggregate Sou:[i] using the copy of the input
stream being stored and store the output in Sou:[t]. The
focus of this paper is on algorithms for computing stream
aggregates with a given constant amount of space.’

In this paper, we focus on level 1 stream aggregates for
a relational schema R(X,Y’) with two numerical attributes.
Specifically, we consider stream aggregates of the form:

Sout[1] AGG-D{Sin[5].Y | j € scope(i) A
P(Sinlj]- X, AGG-I{Sin[k]. X | k € scope(i)})},

where AGG-D and AGG-I are aggregate functions, scope is
a scope function, and P is a simple boolean selection predi-
cate. We call AGG-D the dependent aggregate, and we call
AGG-T the independent aggregale.

As concrete instantiations, we concentrate in this paper
on the following three types of stream aggregates:

e The independent aggregate is either MIN or MAX. An
example instantiation of a stream aggregate operator
produces records of the output sequence S,,: that are
computed as follows:

Sout[1] AGG-D{Sin[7].Y | 7 € scope(i) A
MIN{S:n[k]. X | k € scope(i)} <
Sin[7]- X <
(1+¢€) MIN{Sin[k].X | k € scope(i)}}.

e The independent aggregate is AVG. An example in-
stantiation of a stream aggregate operator produces
records of the output sequence S,y that are computed
as follows:

Sout[1]

AGG-D{Sin[5].Y | j € scope(i) A
Sin[g]- X > AVG{Sin[k]. X | k € scope(i)}}.

2.2 Propertiesof Aggregate Functions

Let us introduce some properties of stream aggregate op-
erators. These properties motivate our algorithms in Sec-
tion 3. We call a stream aggregate Agg(AGG, scope, P)
monotonic if

Vi € N & Souefi+1] < Sowe[i] V Vi € Nt Sour[i + 1] > Sou[d]

We will see later that some stream aggregates under land-
mark scope with MIN or MAX as the independent aggregate
are monotonic. However, this is not the case when AVG is
the independent aggregate. In this case, we can give tight
confidence bounds on the difference between the currently
computed value of the aggregate and the (theoretical) ex-
pected value p of the underlying distribution, depending on
the step 2. Define

i def 1 Z Sinls], %Z(Sm[]] _ ﬁi)2
=1

'If we assume that our algorithms use only a constant
amount of space, we neglect here the logarithmic growth of
the number of bits that results from computations on very
long input sequences. Such sequences require our algorithms
to run for many steps and potentially require the storage of
very large numbers that grow beyond the precision possible
by 32 or 64 bit architecture. We will disregard this loga-
rithmic growth in our space considerations since we do not
believe that it is important in practice.

16

After the 1th step, the running value of the average is given
by pi;. Then, by the standard central limit theorem for i.1.d.
random variables,

Vi — 1)

o

= N(0,1),

as ¢t — 0o, where = denotes convergence in distribution, and
N(0,1) denotes a random variable with normal distribution,
mean 0 and variance 1. Thus for large values of 1, we know
that for € > 0

i -

Pl —] <) 2 (2

where ® is the standardized normal probability distribution.

2.3 Quality Measures

Since our focus is on complex stream aggregates that can-
not be computed exactly with a constant amount of space,
we need to quantitatively differentiate between our approx-
imation strategies proposed in Sections 3 and 4. Both for
landmark scope and for sliding window scope, we would like
our algorithms to approximate the exact value as well as pos-
sible at every position 1 of the stream. Let Agg(AGG, scope,
P) be a stream aggregate. Define the value of the stream of
exact answers Segzqct at step 1 as follows:

Sezact[i] © AGG{Sin[j].Xi | j € scope(i) A P(Sin, j, scope)}.

Given the exact answer of the aggregate computation, we
can define the root mean-squared error RMSFE,, at step n
as follows:

RMSE, < [—L _
|scope(1)|

> (Soutli] = Sexactls])2.

JEscope(t)

3. LANDMARK WINDOW ALGORITHMS

In this section we describe algorithms that maintain corre-
lated aggregates for data streams over a landmark window.
Our algorithms exploit the monotonicity and convergence
properties discussed in Section 2. We then present some
experimental results on real and synthetic data streams to
validate the effectiveness of our algorithms.

3.1 Description

Here we propose algorithms for maintaining correlated
aggregates over landmark-based windows, where the inde-
pendent aggregate is either an extrema or AVG. Our focus
is on (one-sided) correlations such as COUNT{y : z < (1 +
€) * MIN(z)} and COUNT{y : = > AVG(z)}, although it is
straightforward how to extend our techniques to deal with
two-sided correlations such as COUNT{y : (AVG(z) —¢) < z <
(AVG(z) + €)}. For exposition, we describe the case where
COUNT is used as the dependent aggregate; our techniques
easily extend to the case where SUM is the dependent aggre-
gate.

Our solution involves the use of histograms as a sum-
mary data structure for the incoming data tuples Sin[i].
The histograms contain an ordered set of m adjacent buck-
ets ordered by abscissae over the x-axis, and are of the
form {(v1, f1),(v2, f2),. .., (Um, fm)). Aggregates are ap-
proximated from the histograms in a straightforward way,
by estimating the overlap with the existing buckets. The

approximation error in correlated aggregates comes from
the truncation of a single bucket (the bucket containing
(1 4+ €) * MIN(z); the bucket containing the mean for AVG).
Some assumption (e.g., local uniformity) is required to es-
timate the number of data tuples in a subrange of a single
bucket; however, upper- or lower-bounds can be reported
based on counting or discarding the entire bucket, respec-
tively. It is beneficial to allocate most of the space to buckets
in the region where approximation error is expected. We
exploit the properties described in the previous section to
design appropriate strategies to do this. In particular, we
exploit the monotonicity of extremas when MIN or MAX is
the independent aggregate, and the Central Limit Theorem
when AVG is the independent aggregate.

At any given moment, our histogram buckets are tuned
for up-to-the-moment data tuples from the stream. How-
ever, an existing bucket allocation can degrade from the
given partitioning policy (uniform, quantiled) with the ar-
rival of new tuples. We describe two bucket reallocation
strategies to compensate for this: wholesale and piecemeal.
The wholesale approach completely revises the set of buckets
from scratch at each step based on a new partitioning; the
reallocation requires the use of some form of interpolation
(e.g., based on uniformity). The piecemeal approach tries
to preserve the existing bucket infrastructure while staying
consistent with the given bucketing policy, to reduce the
approximation error resulting from repeated application of
interpolation based on the uniformity assumption. For each
reallocation approach, we discuss two bucket partitioning
policies: the first partitions buckets uniformly, whereas the
second tries to maintain quantiles.

3.1.1 Sketch of Our Algorithms

Our algorithms follow the outline given in Figure 1. The
subroutines InitializeHistogram and ReallocateHistogram dif-
fer based on which independent aggregate is supplied. Also,
the conditions for which they are applied are different. First,
we describe what these subroutines are for extrema; then we
describe what they are for AVG.

Landmark Window Algorithm:
Input: data stream and aggregate query
Output: result stream
H « InitializeHistogram(m);
for 2 =1 to w do
read tuple S;,[1];
if (condition,) then H « InitializeHistogram(m);
if (conditionz) then ReallocateHistogram(H);
add tuple to appropriate histogram bucket;

Figure 1: Landmark Window Algorithm

3.1.2 Extrema as the Independent Aggregate
Let [a, b] represent the running range predicate, e.g., [a,b] =

[min, (1 + €) * min]. Given a new minima (or maxima), the
range shifts to [a’,b]. InitializeHistogram is invoked when
condition; is satisfied, which occurs when (b' < a) for the
case of MIN, and (a’ > b) for the case of MAX. When this oc-
curs, we can reinitialize the histogram and toss out all the tu-
ples seen up to that point without incurring any approxima-

17

tion error. ReallocateHistogram is invoked when conditions
is satisfied, which occurs when (a’ # a) or (b’ # b). When
this occurs, we can truncate the histogram; the resulting
approximation error is not cumulative. Figure 2 illustrates
the conditions for MAX.

Initialize Histogram: Given the first m tuples S;,[7] that ar-
rive, we determine the range [a,b] from the S;,[i]. X -values.
However, some of these tuples may be outside this range,
so we can purge them from memory. We continue to read
tuples, monotonically shifting the range [a, b] based on the
arriving z-values, until exactly m tuples remain after the
purges.

Partition Histogram: Uniform partitioning is straightforward:
a

let v, =a+ 7% %.
Reallocate Histogram: There are two general approaches for
reallocating buckets. In the wholesale approach, we dis-
tribute frequences from the old histogram partitioning to the
new one; each new frequency is determined by a weighted
linear combination of old frequencies. Figure 3(a) gives the
pseudocode. In the piecemeal approach, when a new range
[a’,b'] causes some buckets to be truncated, we reallocate
the space for new buckets in a manner that best preserves
the partitioning policy. Figure 3(b) gives the pseudocode.

Quantiles: In the InitializeHistogram step, we simply sort
the first m incoming tuples by z-value. In PartitionHis-
togram, to get quantiles we start with (v;, f;) and determine
(U;,?), where f = # z;nzl f; based on local uniformity as-
sumptions. In the piecemeal approach, buckets can quickly
become unbalanced. Our strategy for preserving the quan-
tiles involves occasional merging and splitting of buckets,
and is similar to the techniques used in [14]. We periodically
check to see when two adjacent buckets can be merged at
the same time as a single bucket split. If there is a net gain
in improvement, then we perform this merge-split “swap”.
A merge operation takes two adjacent buckets, (v;, f;) and
(vj+1, fi+1), and creates a new bucket (vj, fj + f;41); a split
operation takes a bucket (vj, f;) and creates two buckets

(v, %J) and (vj41, %J) We use the variance of the fre-
quencies, which is the standard measure of “goodness” for
a quantiled partitioning [14]: Var(H) = %z] (f, = f)?

where f= L3 f;.

A [
a b a

(a) condition;

N\
N

N
N

b b
(b) conditions

A A
a

Figure 2: Conditions when (a) InitializeHistogram
and (b) ReallocateHistogram are called.

3.1.3 ave asthe Independent Aggregate

Assume that currently the query range is [fin, max], where

WholesaleReallocate:
Input: old histogram Hoa = {(vj, f;)} in [a,b]
Output: new histogram Hpew = {(vi, fz)} in [a', V]
Hpew + PartitionHistogram(Hoa);
if (a' < a) then
while (v, < v;) k + +;
else
while (vj < vg) 7+ +;
while (j < m) and (k < m) do
' min {v;yq1,v —max {v;,v
Sk = f» Tl T (i)
if (vigr > v541) 7+ 4
else k + +;

PiecemealReallocate:
Input: old histogram Hoa = (vj, f;) in [a,b]
Output: new histogram Hyew = (vy, f7) in [a’,b']
k + j such that b’ € [vj,v;41];
vy =b';
keep buckets ((v1, f1), ..., (vk, fx));

split remaining buckets according to max widths;

1

Figure 3: Wholesale and Piecemeal Algorithms

n = %Z? Sin[i].X is the running mean from tuples S;n[7]
that have arrived up to step n. The arrival of a new tu-
ple may cause fin41 to shift from fi,. However, the Central
Limit Theorem gives us some indication of the behavior of
Hn41. In particular, it tells us to expect that fin41 will
remain within the range [fin — a—\/;b_, Ln + 3—\/7;_] with 68% prob-
ability.> Thus, we keep histogram buckets at (min, (G, —
a—\/’;_l), cooy (Hn+ 6—\/’;_1), max) where the bucket locations in be-
tween are determined by the partitioning policy. Initialize-
Histogram is invoked once initially, but condition; is null.
ReallocateHistogram is invoked when conditions is satisfied,
which occurs whenever the mean shifts.

Initialize Histogram: Read the first m tuples Si[t] and com-
pute fi, = # > Sinll]. X

PartitionHistogram: We consider two strategies: one that
partitions the subinterval [f, — G—\/T;L—, Hn+ G—\/T;L—] uniformly, and
one that partitions the interval according to the quantiles of
the ngrmal distribution with mean i, and standard devia-
tion C—\/T;L_

ReallocateHistogram: The subroutines for the wholesale and
piecemeal approaches are very similar. The only difference
is that the reallocation of bucket frequences occurs within
the subinterval [, — U—\/T;_, On + U—\/T;L_]

Quantiles: The details are the same as for extrema.

3.2 Experiments

We ran an extensive set of experiments to understand the
following questions:

e How useful is it to use a summary data structure (in

2While our discussion uses a confidence interval of one stan-
dard deviation, this is a tunable parameter.

18

this case histograms) to maintain correlated aggregates
as opposed to employing a “memoryless” algorithm?
We ascertain the answer to this question by investi-
gating the behavior a simple heuristic compared to
histogram-based methods.

e How do our proposed methods compare with known
histogram techniques, in particular, equiwidth and equi-
depth histograms? We demonstrate the impact of de-
signing methods that specifically deal with the focused
subranges involved in answering correlated aggregates,
rather than for the a priori fixed ranges that existing
histogram methods consider.

o Which approaches work well for our techniques? We
have considered two general strategies, wholesale and
piecemeal, and within each we have considered uniform
and quantiled bucketing policies.

First we explain the experimental setup. Then we consider
the answers to these questions in the context of the subsec-
tions that report on the accuracy for extrema and AVG as
the independent aggregate.

3.21 Experimental Setup

Data: We used two real data sets: USAGE, usage data
of 20K customers from AT&T; and MGCTY, lat/long of
65K road crossings in Montgomery County, MD.* We also
used two synthetic data sets: ZIPF, a Zipfian distribution of
points with A = 7; and MULTIFRAC, a binomial multifrac-
tal obeying the “80-20 law”.* The real data sets are ordered
the way they were originally obtained; the synthetic data
sets were generated in random order.

Queries: We tested correlated queries with both monotonic
and non-monotonic independent aggregates. In particular,
for monotonic aggregates we used MIN as the independent
aggregate with the predicate £ < (1 4 €) * MIN(z). For non-
monotonic queries we used AVG as the independent aggregate
with the predicate © > AVG(z). We used COUNT and SUM as
the dependent aggregates in both cases.

Quality Measure: To measure the accuracy, we used the
formula given in Section 2:

n

S (Soutli] = Seaacilil)?

=1

RMSE, = 1

n

Competing Methods: As a frame of reference, we used
two simple heuristics to maintain a running independent ag-
gregate value and either (i) reset the count or (ii) continue
to add to the existing one, when a new extrema value is en-
countered; this gives a lower- and upper-bound on the exact
count, respectively. Among the existing methods, we com-
puted “true” equiwidth and equidepth histograms, which re-
quired a single pass and multiple passes, respectively, at each
time step. Clearly, this is not feasible in practice — we have
given them an unfair advantage.® For our techniques, we
consider both the wholesale and piecemeal strategies, each

? Available at http://www.esri.com/data/online/tiger.
“Recent studies of network traffic data have shown that they
are modeled well using multifractals [11].

5Note that the recent single-pass approximate quantile al-
gorithms of [2, 20, 21] are designed for offline computation
and, in any case, would likely give less accurate results than
an exact equidepth histogram.

with uniform and quantiling partitioning policies. We call
our methods wholesale-uniform, wholesale-quantile,
piecemeal-uniform, and piecemeal-quantile.

3.2.2 Accuracy for Independent Extrema

We computed correlated aggregates of the form COUNT{y :
z < (14€)*MIN(z)} and SUM{y : z < (1 +¢€) *x MIN(z)} over
real and synthetic data sets. Figure 4 plots the correlated
COUNT at different time steps of a landmark window along
with the streaming approximations determined by the com-
peting methods, for the data sets USAGE and ZIPF. Similar
plots were obtained for the other data sets but are omitted
due to space constraints. The graphs in Figure 4(a) show
the query answers for all of the methods. There is a clear
separation of the methods. As expected, the simple heuris-
tics give lower- and upper-bounds of the exact query; both
were worse than all other methods. Also as expected, the
equidepth histogram outperforms equiwidth. This was the
case in all the experiments, so we drop equiwidth and report
only the results from the equidepth method in the remain-
ing plots. Note that the equidepth histogram appears to be
diverging from the exact value over time, whereas the pro-
posed methods track it closely. The graph in Figure 4(b)
confirms this, plotting the error for the proposed methods.
Figure 4(c) plots RM SE; for the proposed methods and for
equidepth histograms using ZIPF. In both data sets, all of
our methods give very small RMSE; (less than 5) and ap-
pear to stabilize at a constant approximation error. Figure 5
gives analogous graphs for the case where SUM is the de-
pendent aggregate. Here we see an even greater divergence
between equidepth histograms and the proposed methods.

3.2.3 Sensitivity Analysisfor Extrema

To test the robustness of the methods, we performed the
following experiments. First, we ran queries over the same
data sets with different arrival orders. We tried several ran-
dom permutations of the real data and found the results to
be very similar to those in Figure 4; hence, we omit the plots
for brevity. Then we artificially permuted the data so that
initially only large values occur and there is a sudden large
drop in the running minima. We present the plots from the
USAGE data set with this partially-sorted reverse ordering
in Figure 6. The error for the equidepth method appears to
be increasing whereas it is decreasing for the other methods.
Thus, our methods appear to be the most robust.

We varied the number of histogram buckets and ran the
same experiments. Figure 7 plots the results with 5 buck-
ets for USAGE; equidepth was chosen as a representative
of the competing methods. Again, our methods gave the
best accuracy. Figure 7(b) plots the RMSE for only our
methods. Using 5 buckets rather than 10, we see a sep-
aration of the curves, with piecemeal-uniform perform-
ing the best, the wholesale approaches in the middle, and
piecemeal-quantile performing the worst.

3.24 Accuracy for Independent Average

We computed correlated aggregates of the form COUNT{y :
z > AVG(z)} and SUM{y : z > AVG(z)} over real and syn-
thetic data sets. Figure & plots the exact tracking value
at different time steps of a landmark window along with
the streaming approximations determined by the competing
methods, for USAGE and MULTIFRAC, which were chosen

as representatives of real and synthetic data. The plots in

19

Figure 8(a) tracks the correlated COUNT for all the methods.
Unlike when MIN was the independent aggregate, here we
see that the simple heuristic performs well. This is because
the mean converges early on for these data sets, so the run-
ning average is a good estimate of the true average. Of the
competitors, the equidepth histogram again performed the
best (although not as well as in the MIN case), so we chose
it as a representative in the RMSFE; plots. Our methods
again performed better than equidepth, especially for the
MULTIFRAC data. As Figure 8(c) shows, the RM SE; for
equidepth grows to 180, whereas it remains below 30 for our
methods with sublinear growth. Figure 9 gives analogous
graphs for the case where SUM is the dependent aggregate;
there is an even greater divergence between equidepth his-
tograms and the proposed methods.

3.25 Sengitivity Analysisfor Average

We tested the robustness of the methods using the same
experiments as we did for queries involving MIN as the in-
dependent aggregate. First, we tried several random per-
mutations of the data and found that the accuracy for all
the methods was slightly better (We omit the plot since the
curves looked similar.) This is not surprising — the random
arrival order of tuples helps the mean converge faster, and
many of the methods are based on convergence properties of
the mean. Then we artificially permuted the USAGE data
so that initially only large values occur and there is a sud-
den large drop in values. Thus, the running mean will drop
sharply at that point. Figure 10(a) presents the tracking
value for all the methods; (b) presents the RMSE for equi-
depth and our methods. It is apparent that all methods gave
worse accuracy overall. Our methods did not perform as well
as the true equidepth method, as shown in Figure 10(b), due
to the mean converge assumption built into them; however,
they were clearly superior to equiwidth histograms. We also
tried running the experiments with varying numbers of buck-
ets, but the plots did not reveal any new observations.

4. SLIDING WINDOW ALGORITHMS

For sliding window aggregates, many of the properties dis-
cussed in Section 2 do not hold. In particular, extremas
are not monotonic and confidence intervals about the mean
do not converge like they do in the landmark window case.
Thus, we use some reasonable heuristics in our algorithms.
We describe these and present some experimental results to
validate our techniques.

4.1 Algorithms

First, we give the outline of our algorithms, and then we
describe the details of each method.

411 Sketch of Our Algorithms

Our algorithms all follow the general outline given in Fig-
ure 11. Again, the histograms contain m bins and are of the
form {(v1, f1), (v2, f2), .-e; (Um, fm)). The UpdateExtrema
subroutine requires explanation. Unlike the landmark win-
dow case, where updating an extrema value is trivial, here
the extrema values are non-monotonic because changes can
occur due to both incoming and outgoing tuples. Thus, we
must keep track of some auxiliary information to give good
estimates for the extrema. We propose the following strat-
egy for maintaining extrema values. We partition the sliding
window into fixed-length intervals and keep track of the lo-

Tracking the query result

Query Error

Query Error

- wholesalé-uniform every 100"
“wholesale-quanile” every 100

“piecemeal-uniform
- “piecemeal-quantle'

every 100

every 100

“edepth every 100

- “wholesale-uniform" every 100
“wholesale-quantile” every 100

“piecemeal-uniform" every 100

‘iecemeal-quantile” every 100

rheomEEX

select cnt where min

a

5 g i

oy

o

120

- "wholesale-uniform” evéry 100

"wholesale-guanile" every 100
piecemeal-uniform’” every 100
--m-— 'piecemeal-quantile” every 100
100 |- - edepth"every 100

RMSE

8000 10000 12000 14000 16000 18000 20000 4000 6000

timestep.

(a) tracking value for USAGE

=
2000 4000

8000

10000

timestep

(b) RMSE; for USAGE

12000 14000 16000 18000 20000 5000 10000 15000

timestep

(c) RMSE; for ZIPF

20000 25000 30000

Figure 4: Correlated COUNT with independent MIN over landmark window: (a) tracking the query answer for
USAGE with 10 buckets and ¢ =99; (b) RMSE;; (¢) RMSE; for ZIPF with 10 buckets and ¢ = 1000.

Tracking the query result
700 T

Query Error

Query Error

- "wholesalg-uniform” &very 100"
“wholesale-quanile” every 100
“piecemeal-uniform” every 100

ok

600 - . d
~ "piecemeal-uniform" every 100
- "plecemeal-quantile” every 100

500 -

400 -

select sum where min
RMSE

- “piecemeal-quantle" gyery 100 &
B

a

1.6e+07 T T
-~ "wholesale-uniform" every 100
“wholesale-guantile" every 100
piecemeal-uniform" every 100
piecemeal-quantile” every 100
- “edepth” every 100

14e+07 -~

120407 [

16407 [

80406 [

RMSE

60406 [
40406 [

2406 - .
e

-

L L L L L L olo L L L
8000 10000 12000 14000 16000 18000 20000 0 2000 4000 6000
timestep.

(a) tracking value for USAGE

4000 6000

2000

0
0

8000

10000
timestep

(b) RMSE; for USAGE

12000 14000 16000 18000 20000 5000 10000 15000

timestep

(c) RMSE; for ZIPF

20000 25000 30000

Figure 5: Correlated SUM with independent MIN over landmark window: (a) tracking the query answer for
USAGE with 10 buckets and ¢ =99; (b) RMSE;; (¢) RMSE; for ZIPF with 10 buckets and ¢ = 1000.

cal extrema within each interval. When an outgoing (global)
extrema value departs from the sliding window, we update
the extrema using the remaining local extrema.

Sliding Window Algorithm:
Input: data stream and aggregate query
Output: result stream
H + InitializeHistogram(m);
while stream not empty do
read tuple Sin[1];
UpdateExtrema(Sin [1]);
if (condition) then ReallocateHistogram(H);
add incoming tuple to appropriate bucket;
delete outgoing tuple from appropriate bucket;

Figure 11: Sliding Window Algorithm

41.2 Extrema asthe Independent Aggregate

Here we must keep track of an interval wider than the
interval [a, b] = [min, (1 + €) * min] for the landmark window
algorithm, since the extrema values are non-monotonic over
a sliding window. We propose to place bins at (min, ..., (14
€) * marmin, max), where mazmin is the maximum of the
local minimums. The remaining bucket locations are placed
according to the given partitioning policy.

20

Initialize Histogram: This subroutine is basically the same
as the one for landmark windows.

Partition Histogram: This subroutine partitions the histogram
uniformly in the interval [min, (1+4€)*mazmin], leaving one
extra bucket from the end of this interval to MAX(z).

Reallocate Histogram: This subroutine is similar to the land-
mark window version, except that all but the last bucket are
redistributed. In the case of the piecemeal approach, we ap-
proximately maintain a uniform partitioning of the buckets
in [min, (1 4 €) * mazmin)].

Quantiles: This subroutine is very similar to the landmark
window version, except that all but the last bucket are re-
quantiled.

4.1.3 Average asthe Independent Aggregate

The algorithms are basically the same as the landmark
window versions, except that the confidence interval does
not shrink. Instead, it stays constant at [fin — U—\/%, Dn + U—\/%],
where w is the size of the sliding window.

4.2 Experiments

The experimental setup is very similar to the one used
in the landmark window case. We used the same data sets
and queries. The competing methods are the sliding window
versions of the landmark methods. We used the following

Tracking the query result

2500 T T T T T T
—+— "exact" every 100

---*--- “edepth” every 100

"wholesale-uniform" every 100
*wholesale-quantile” every 100
W‘p\ecemea\-umform” every 100
ipiecemeal-quantie" every 100 4
j
VAN

a8
m-
2000 (- -,

i
i
i
p/
1500 |- 4
i
i
b
i

1000 3 g

select cnt where min

e

0 L ~ L
0 2000 4000 6000

L L L L L
10000 12000 14000 16000 18000 20000

timestep

L
8000

(a) query results

RMSE

Query Error

160 T T

“wholesale-uniform” every 100
'yvbg\ggai—quanu\e" every 100

140 - — "piecemealkuniform” every 100

120 | / i

i LN
;
100 / = x g
- . T
80 [/ T, R
B, .-
r’ .’J T - -
sof [/ S . R
i X TR,
I JUE S
a0t |/ g
i
Koo T
o
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
timestep
(b) RMSE;

Figure 6: Correlated COUNT with independent MIN over landmark window with data in partially-sorted reverse
order: (a) tracking the query answer on USAGE with 10 buckets and ¢ = 99; (b) RMSE;.

Tracking the query result

900
— “'nalve/m\r;/va\s/exac‘t.wnet.cntl‘ every 1Ub '
---%--- "naive/min/vals/edepth.wnet.cnt.5" every 100
800 |- ~-*- "wholesale/min/vals/minws.wnet.cnt.5" every 100 ad 4
8- "wholesale/min/vals/minwsg.wnet.cnt.5" every 100 7
--m— "piecemeal/min/vals/minpm.wnet.cnt.5" every 100 2
700 | ~-° "Piecemealiminivalsiminpma wnet.ct 5" every 100 e
L P 4
Z
al
_ 600 A X b
€ 7 e
) % x
3 500 - 7 g
E / o
Z #
§ 400 & x B
3 £
8 .
3 %
300 q
200 emmeenee x]
w00 X 4
0 1 1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

timestep

(a) tracking value with 5 bins

RMSE

Query Error
14 T — T T T T T
---%--- "wholesale/min/rmse/minws.wnet.cnt.5" every 100
O net.cnt.5” every 100]
a wnet.cnt.5" every 100 SRS
Py - net.cnt.5" every 10, _.——-~"% 4
e
10 A]
*ee * *
sl v e i
- } semmnmnne X
a a
x a a 4
8
a
0 1 1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

timestep

(b) RMSE; with 5 bins

Figure 7: Using fewer buckets: (a) query answer and (b) RMSE; for USAGE data with 5 buckets and e = 99.

quality measure for sliding window aggregates:

n

S (Soutli) = Seaaeli])?

i=n—w

1

RMSE, =

where w is the size of the window.

421 Accuracy for Independent Extrema

We computed correlated aggregates of the form COUNT{y :
z < (14€)*MIN(z)} over real and synthetic data sets, over a
sliding window of size 500. Figure 12 plots the exact tracking
value at different time steps of a cumulative window along
with the streaming approximations determined by the com-
peting methods, for two representative data sets USAGE
and MULTIFRAC. The plots in Figure 12(a) and (c) show
the query result values for all the competing methods. It
is somewhat clear that the best methods are equidepth and
piecemeal-uniform. The plots in Figure 12(b) and (d) con-
firm this, showing the error for the proposed methods along
with the equidepth competitor. In both plots, the RMSE
accuracy of piecemeal-uniform is comparable to that of

21

equidepth histograms. Note that, as we mentioned in Sec-
tion 3, we have implemented a “true” (offline) equidepth
histogram, requiring multiple passes over the data at each
step; which is certainly no more feasible for sliding window
streams than it is for landmark window streams.

The experiments we ran clearly separated out our meth-
ods. The versions of our methods with quantiled partition-
ings performed the worse. Since extrema values are not
monotonic over sliding windows, the frequent and abrupt
changes in bucket frequencies causes the quantiles to be-
come stale quickly, thus rendering the policy useless. On
the other hand, the methods which use uniform partitionings
performed much better, with the piecemeal approach being
superior to the wholesale approach in our experiments.

4.2.2 Accuracy for Independent Average

We computed correlated aggregates of the form COUNT{y :
z > AVG(z)} over real and synthetic data sets, over a slid-
ing window of size 500. Figure 13 plots the exact tracking
value at different time steps of a cumulative window along
with the streaming approximations determined by the com-
peting methods, for two representative data sets ZIPF and

Tracking the query result
14000 T T T T T T 9

Query Error

Query Error

—"edepin” cvery 1

12000

iecemeal-uniform” every 100 p
10000 | = "piecemeal-normal" every 100 o
8000

6000

select cnt where avg
X,

4000 e

2000 4
o 10

unolesale- ot every 100

jholesale-normal” every 100
Wholesale quame” evely 100
‘piecemeal-uniform’” every 100
“piecemeal-quantile” every 100

o <7 Plecemeal quantie" every 100 el

RMSE
8
X

L L L L L L o R L L
8000 10000 12000 14000 16000 18000 20000 0 2000 4000 6000

timestep

(a) tracking value for USAGE

0" L L
0 2000 4000 6000

Figure 8: Correlated COUNT with independent AVG over landmark window:

8000

10000 12000 14000 16000 18000 20000 0
timestep

(b) RMSE; for USAGE

15000 20000 25000

timestep

(¢) RMSE; for MULTIFRAC

5000 10000 30000

(a) tracking the query answer for

the USAGE data with 10 buckets; (b) RMSFE;; (c¢) RMSE; for MULTIFRAC with 10 buckets.

‘Tracking the query result
600000

Query Error

T T T T * 4000 T T
— ot ey -~ "edepth very 100
- ‘nﬂwe/avﬂ/vn\s/&wmm wnet.sum. 10" every 100 *

< 3500 |-~

500000

"whol P
piecemeal-uniform” every o

‘iecemeal-normal” every 100 3000 -

400000

300000 -

select sum where avg

200000

100000 -
s

Query Error

“wholesale-uniform” every 100

20406 T T T
~—xc-- "edepth” every 1 *
X lasale-yaform” every 100 /

186406 [
1.60+06 |- =~ "piecemeal-quantie” every 100
14e+06 [

120406 [

16406 -

RMSE

800000 -
600000 -
400000 - <

200000 - e

4000 6000

2000

o L L L L L L L L 0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 0
timestep

(a) tracking value for USAGE

8000

10000 12000 14000 16000 18000 20000 0
timestep.

(b) RMSE; for USAGE

0

5000 10000 15000

timestep

(¢) RMSE; for MULTIFRAC

25000 30000

Figure 9: Correlated SUM with independent AVG over landmark window: (a) tracking the query answer for the
USAGE data with 10 buckets; (b) RMSE;; (¢) RMSE; for MULTIFRAC with 10 buckets.

MGCTY. The plots in Figure 13(a) and (c) show the query
result values for all the competing methods. The equidepth
was slightly better in both experiments; the plots in Fig-
ure 13(b) and (d) show this. However, the proposed meth-
ods were competitive in both cases. For the ZIPF data, both
wholesale methods were able to correct themselves after ini-
tially starting off with high RM SE;.

The experiment on the real data set shows that the meth-
ods which employ uniform bucket partitioning are somewhat
superior to the quantiled case, as we observed with sliding
window queries with MIN as the independent aggregate. Here
the mean is non-monotonic but, unlike with landmark win-
dows, does not converge over time because it is computed
over a fixed-length interval. Once again, the methods based
on uniform partitioning appear to be more robust, making
them more suitable to handle non-monotonicity.

5. RELATED WORK

Data streams have been of much recent interest [19]. In
particular, algorithms and systems have been proposed for
the computation of approximate frequency moments [1], L'
and L* distance functions [9, 12], and property testing [10].

The maintenance of aggregate queries is a special case of
the problem of incremental view maintenance; in particular,
the maintenance of basic statistical aggregates in the pres-
ence of database updates was considered in [22]. The synop-
sis data structures of Matias et al. [15] consider the approx-
imate maintenance of more fancy aggregates in the presence

22

of updates. In online aggregation, Hellerstein et al. study
the convergence of basic aggregates over finite data sets [18]
and they describe access methods that retrieve records in
random order in order to use statistical estimators based on
independence assumptions. This work has been extended to
online computation of joins [17], online reordering [23] and
to adaptive query processing [3].

There has also been recent work on mining data streams,
such as the construction of decision trees over data streams
[13, 8] and clustering data streams [16]. Recent work by
Alsabti et al. [2] and Manku et al. [20, 21] considers how to
compute the approximate median and other quantiles in a
single pass over a data set.

Correlated aggregates were originally considered in [6, 5,
4]; there the focus is on exact computation over finite data
sets in multiple passes. To the best of our knowledge, there
has not been any prior work on the approximate computa-
tion of this important class of aggregates.

6. CONCLUSIONSAND FUTURE WORK

Effectively dealing with large volumes of streaming data,
generated by applications as diverse as network management
and telephone fraud detection, is a major challenge for the
database community. A fundamental problem in this area is
to compute and maintain a variety of complex aggregates, in
an online fashion. We show that, while computing complex
correlated aggregates exactly is not possible on streaming
data, it is certainly feasible to do so approximately.

Tracking the query result
14000

T T T T T T T
—+— "exact" every 100

“ewidth" every 100 X
- “edepth” every 100 "
“wholesale-uniform" every 100
- "wholesale-normal” every 100
- "wholesale-quantile” every 100
- "piecemeal-uniform” every 100 -
10000 | ‘piecemeal-normal” every 100 <]

12000

8000 - 4

6000 4
2

select cnt where avg
X

4000

2000

X7 =

By = ! I I I
0 2000 4000 6000 8000
timestep

(a) query results

L L L L L
10000 12000 14000 16000 18000 20000

RMSE

Query Error
1000 T T T T T T T
—————— "edepth” every 100
- "wholesale-uniform" every 100
900 | holesale-normal” every 100 e
- “wholesale-quantile” every 100 ™
- "piecemeal-uniform" every 100 P
800 |- --e- “piecemeal-quantile” every 100 Py
-
./.
700 + s
600 - /
500 | /
/
400 /
300 /
/
200 /
100 /
y O — e
- R o
o e
0 T oo e f A L L L L
0 2000 4000 600 8000 10000 12000 14000 16000 18000 20000
timestep
(b) RMSE;

Figure 10: Correlated COUNT with independent AVG over landmark window with data in partially-sorted reverse
order: (a) tracking the query answer on USAGE with 10 buckets; (b) RMSE;.

Query Error
100 T T

“"wholesale-quantile”

90 - “"piecemeal-uniform” 4

[SVER "edepth” -~
80 Pt 4
70 |

60

50 [

RMSE

40 +

30 |

20

10 [y

L L 1 L - L L
8000 10000 12000 14000 16000 18000
timestep

(a) RMSE; for USAGE

o b L L L
0 2000 4000 6000

Figure 12: Correlated COUNT with MIN as independent aggregate over sliding window of size w = 500:

20000

RMSE

Query Error
400 T T

#1 "wholesale-quantile”
piecemeal-uniform"

“edepth” ------ -

300 -

250

200

100

50 i Y

A g T o
10000 15000 20000 25000
timestep

(b) RMSE; for MULTIFRAC

A 7
0 5000 30000

(a) RMSE;

for USAGE with 10 buckets and € = 99; (b) RMSE; for MULTIFRAC with 10 buckets and e = 99.

Our solution to this problem is based on the use of focused
histograms, which require accurate maintenance of summary
information only in small data intervals; what makes the
problem challenging is that these intervals are not known a
priore: they can “move around”, “expand” or “shrink”, de-
pending on the data in the stream. This renders current his-
togramming techniques ineffective. We presented two fam-
ilies of adaptive techniques, which we called wholesale and
piecemeal, for efficiently “tracking” the true values of the
desired correlated aggregates. Experimental results on a va-
riety of real and synthetic data sets confirm the versatility
of these techniques. Piecemeal, in particular, is a simple,
elegant strategy that is extremely effective for a wide range
of window scopes, and different types of aggregates, making
it the strategy of choice.

7. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space

complexity of approximating the frequency moments.
JCSS: Journal of Computer and System Sciences, 58,
1999.

23

[2] K. Alsabti, S. Ranka, and V. Singh. A one-pass
algorithm for accurately estimating quantiles for
disk-resident data. In VIL.DB’97, Proceedings of 23rd
International Conference on Very Large Data Bases,
August 25-29, 1997, Athens, Greece, pages 346-355,
1997.

R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. In Proceedings of the 2000
ACM SIGMOD International Conference on
Management of Data, May 16-18, 2000, Dallas,
Texas, USA, pages 261-272, 2000.

D. Chatziantoniou. Ad hoc OLAP: Expression and
evaluation. In Proceedings of the IEFE International
Conference on Data Engineering, 1999.

D. Chatziantoniou, M. Akinde, T. Johnson, and

S. Kim. The MD-join: An operator for complex
OLAP. In Proceedings of the IEEFE International
Conference on Data Engineering, 2001.

D. Chatziantoniou and K. A. Ross. Querying multiple
features of groups in relational databases. In
Proceedings of the International Conference on Very

Query Error
900 T T

“wholesale-quantile” --------
800 |- "piecemeal-uniform”
"edepth” -~

700 —

600 —

500 B

RMSE

400 - SN N e 4
300 oo g
200/ ,

100 | H |

L
25000

.
15000
timestep

(a) RMSE; for ZIPF

L L L
0 5000 10000 20000

30000

RMSE

Query Error

"wholesale-quantile" --------
"piecemeal-uniform”

"edepth” - -

L L L L
30000 40000 50000 60000

timestep

(b) RMSE; for MGCTY

L L
10000 20000 70000

Figure 13: Correlated COUNT with AVG as independent aggregate over sliding window of size w = 500: (a) RMSE;
for ZIPF with 10 buckets; (b) RMSE; for MGCTY with 10 buckets.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Large Databases, pages 295-306, 1996.

A. Delis, C. Faloutsos, and S. Ghandeharizadeh,
editors. SIGMOD 1999, Proceedings ACM SIGMOD
International Conference on Management of Data,
June 1-3, 1999, Philadephia, Pennsylvania, USA.
ACM Press, 1999.

P. Domingos and G. Hulten. Mining high-speed data
streams. In Proceedings of the Sizth International
Conference on Knowledge Discovery and Data Mining,
pages 71-80, Boston, MA, August 2000. ACM.

J. Feigenbaum, R. Kannan, M. Strauss, and

M. Viswanathan. An approximate L.1-difference
algorithm for massive data streams. In IEEE
Symposium on Foundations of Computer Science
(FOCS), 1999.

J. Feigenbaum, S. Kannan, M. Strauss, and

M. Viswanathan. Testing and spot-checking of data
streams. In Proceedings of the 11th ACM-SIAM
Symposium on Discrete Algorithms, 2000.

A. Feldmann, A. Gilbert, and W. Willinger. Data
networks as cascades: Investigating the multifractal
nature of internet wan traffic. In ACM SIGCOMM,
pages 42-55, 1998.

J. Fong and M. Strauss. An approximate LP-difference
algorithm for massive data streams. In STACS:
Annual Symposium on Theoretical Aspects of
Computer Science, 2000.

J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y.
Loh. Boat-optimistic decision tree construction. In
Delis et al. [7], pages 169-180.

P. Gibbons, Y. Mattias, and V. Poosala. Fast
Incremental Maintenance of Approximate Histograms.
Proceedings of VLDB, Athens Greece, pages 466—475,
Aug. 1997.

P. B. Gibbons and Y. Matias. Synopsis data
structures for massive data sets. In Proceedings of the
Tenth Annual ACM-STAM Symposium on Discrete
Algorithms, pages 909-910, N.Y., Jan. 17-19 1999.
ACM-SIAM.

S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.

Clustering data streams. In In Proceedings of the

24

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Annual Symposium on Foundations of Computer
Science. IEEE, November 2000.

P. J. Haas and J. M. Hellerstein. Ripple joins for
online aggregation. In SIGMOD 1999, Proceedings
ACM SIGMOD International Conference on
Management of Data, June 1-3, 1999, Philadephia,
Pennsylvania, USA, pages 287-298, 1999.

J. M. Hellerstein, P. J. Haas, and H. Wang. Online
aggregation. In J. Peckham, editor, SIGMOD 1997,
Proceedings ACM SIGMOD International Conference
on Management of Data, May 13-15, 1997, Tucson,
Arizona, USA, pages 171-182. ACM Press, 1997.

M. R. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. Technical Report
1998-011, Digital Fqipment Corporation, Systems
Research Center, May, 1998.

G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate medians and other quantiles in one pass
and with limited memory. In L. M. Haas and

A. Tiwary, editors, SIGMOD 1998, Proceedings ACM
SIGMOD International Conference on Management of
Data, June 2-4, 1998, Seattle, Washington, USA,
pages 426-435. ACM Press, 1998.

G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Random sampling techniques for space efficient online
computation of order statistics of large datasets. In
Delis et al. [7], pages 251-262.

C. Olston and J. Widom. Offering a
precision-performance tradeoff for aggregation queries
over replicated data. In A. E. Abbadi, M. L. Brodie,
S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter,
and K.-Y. Whang, editors, VLDB 2000, Proceedings
of 26th International Conference on Very Large Data
Bases, September 10-14, 2000, Cairo, Egypt, pages
144-155. Morgan Kaufmann, 2000.

V. Raman, B. Raman, and J. M. Hellerstein. Online
dynamic reordering for interactive data processing. In
VILDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, September
7-10, 1999, FEdinburgh, Scotland, UK, pages 709-720,
1999.

