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ABSTRACT

We study the problem of power-conserving computation of
order statistics in sensor networks. Significant power-reduc-
ing optimizations have been devised for computing simple
aggregate queries such as COUNT, AVERAGE, or MAX over
sensor networks. In contrast, aggregate queries such as ME-
DIAN have seen little progress over the brute force approach
of forwarding all data to a central server. Moreover, battery
life of current sensors seems largely determined by communi-
cation costs — therefore we aim to minimize the number of
bytes transmitted. Unoptimized aggregate queries typically
impose extremely high power consumption on a subset of
sensors located near the server. Metrics such as total com-
munication cost underestimate the penalty of such imbal-
ance: network lifetime may be dominated by the worst-case
replacement time for depleted batteries.

In this paper, we design the first algorithms for comput-
ing order-statistics such that power consumption is balanced
across the entire network. Our first main result is a dis-
tributed algorithm to compute an e-approximate quantile
summary of the sensor data such that each sensor trans-
mits only O(log®n/e) data values, irrespective of the net-
work topology, an improvement over the current worst-case
behavior of 2(n). Second, we show an improved result when
the height, h, of the network is significantly smaller than n.
Our third result is that we can exactly compute any order
statistic (e.g., median) in a distributed manner such that
each sensor needs to transmit O(log® n) values.

Further, we design the aggregates used by our algorithms
to be decomposable. An aggregate () over a set S is de-
composable if there exists a function, f, such that for all
S = 51 U8y, Q(S) = f(Q(S1),Q(S2)). We can thus di-
rectly apply existing optimizations to decomposable aggre-
gates that increase error-resilience and reduce communica-
tion cost.
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Finally, we validate our results empirically, through sim-
ulation. When we compute the median exactly, we show
that, even for moderate size networks, the worst commu-
nication cost for any single node is several times smaller
than the corresponding cost in prior median algorithms. We
show similar cost reductions when computing approximate
order-statistic summaries with guaranteed precision. In all
cases, our total communication cost over the entire network
is smaller than or equal to the total cost of prior algorithms.

1. INTRODUCTION

We consider the problem of computing complex aggre-
gates over sensor networks in a manner that conserves power
to maximize network lifetime. The dominant consumer of
power in such networks is communication, and thus network
life time is determined by the maximum communication load
at any node. In this paper, we design the first algorithms
for computing order-statistics such that power consumption
is balanced across the entire network.

1.1 Motivation

Sensor networks are large ad-hoc networks of intercon-
nected battery powered, wireless, sensors. Onboard general-
purpose processors make these sensors “smart”, and en-
able them to use their data communication links for self-
configuration. Long-lived batteries and low power consump-
tion provide independence and freedom from maintenance.
This collection of features makes such networks easy to de-
ploy and maintain in difficult environments. Sensor nets
promise a qualitative change in the way we study the real
world, the way we deploy warning systems to protect us
from earthquakes and storms, and the way we will eventu-
ally build self-adapting physical systems.

Physical deployment is only one step towards achieving
this promise. We need also understand how to manage and
use such networks. The primary operation on sensor net-
works is extracting data from the sensors. As such, it has
been argued persuasively [2, 13, 14] that a declarative inter-
face, much like traditional database query languages, is well
suited to data extraction from sensor networks. Commonly,
queries request values that are not simply a list of individ-
ual sensor values, but aggregates, functions that summarize
a collection of observations [13, 2, 11]. Examples of aggre-
gates include MAX, MEDIAN, COUNT, and AVERAGE. A query
defines the information to be extracted from the network,
a query optimizer produces a plan of extraction, and then
the sensors deliver a stream of values that converge toward



a powered basestation at the root of the sensor network.
Queries are directed at a single table representing the en-
tire sensor network. The table does not “exist” in memory,
but logically consists of a growing set of records, one record
for each sensor at each instant in time. Each record con-
tains one column for each type of sensor and/or attribute at
each node. For example, records may contain a column for
sensor-types such as light, sound, or temperature, perhaps
as well as columns for location, or node-id, where possible
and useful'. An aggregate query may request, for example,
the median value of a single column.

A network of sensors differs from standard computing
platforms along many axes. Nodes in the network operate
unsupervised for long periods of time, they may intermit-
tently lose connectivity, and have relatively limited band-
width and computational power. Arguably, the most sig-
nificant difference is that nodes operate under severe power
constraints, requiring applications running on top of the sen-
sor network to be power-aware. A central problem in deploy-
ing sensor networks is thus maintaining battery-life through
power-conservation. Power consumption of current sensors
seems dominated by the cost of transmitting and receiving
messages; computation is comparatively cheap?.

Network lifetime is determined, however, not simply by
the aggregate power consumed by all of the nodes, but by
the mazimum power consumption at any node [14]. The
node that uses the most power will exhaust its battery first.
Typically, the subset of sensors closest to the root server(s)
consume the most power. Unfortunately, these nodes are
also the most critical to maintain network connectivity. If
the nodes near the root are down, they partition the remain-
der of the network from the root, rendering the entire net
useless. This implies that minimizing total communication
cost is insufficient; we must minimize the mazimum power
consumed by, or alternately the maximum communication
load at, any network node. We say the power consumption
is balanced if the load on any two nodes in the network differ
by at most a poly-log factor.

1.2 Our Results

An aggregate @ over a set S is decomposable if there ex-
ists a combining function, f, such that for all S = S; U S2
and S1 NSy =0, Q(S) = f(Q(S1),Q(S2)). In other words,
we can compute a new aggregate over the union of two dis-
joint sets, by simply combining their aggregates, needing no
access to the individual observations in each set. Some ex-
amples of decomposable® aggregates are MAX, COUNT, and
AVERAGE. It is easy to see that these aggregates can be
computed with a maximum communication load of O(1)
data values at each node. In contrast, general order statistic
queries such as MEDIAN or the ith largest element, are not de-
composable, and the best known previous implementations

L“Timestamp” can also be considered a column in this table,
but because of physical resource constraints, records with
non-current timestamps are unlikely to persist in the table
for long.

2Representative power costs can be gleaned from [20, 4, 13,
14]: Including processor cost, each bit requires 4000-4500 nJ
to send. A single instruction on a 5bmW processor running
at 4MHz only consumes 4-5nJ. So transmitting a single bit
costs as much as 800-1000 instructions.

3«Decomposable” is a term used in the sensor-network com-
munity. The corresponding term in database literature
(c.f. [8]) is non-holistic.

impose a worst-case communication load of 2(n) data values
(each node sends all data values in its subtree) [13]. Approx-
imate algorithms with smaller space requirements are known
for streaming data, but have not been adapted to the set-
ting of sensor networks. In this paper, we design algorithms
to compute arbitrary order-statistics, approximately and ex-
actly, with a worst-case communication load of poly-log(n)
data values at any network node.

Our first main result is a distributed algorithm to com-
pute an e-approximate quantile summary of the sensor data
such that each sensor transmits only O(log?n/¢) data val-
ues, irrespective of the network topology. An e-approrimate
quantile summary of an n-element data set is a summary
that allows us to answer any order-statistic query to within
an additive rank error guaranteed to be at most en. Sec-
ond, we show an improved result when the height, h, of the
network is significantly smaller than n. Our third result is
that we can exactly compute any order statistic (e.g., me-
dian) in a distributed manner such that each sensor needs
to transmit O(log®n) values. The fact that our algorithms
perform well independent of topology is important in prac-
tice, because node placement in sensor networks results in
highly irregular topologies [6].

Further, we design the aggregates used by our algorithms
to behave like decomposable and non-holistic aggregates (in
which the aggregate is smaller than the underlying set). Sig-
nificant power-reducing optimizations have been devised for
non-holistic decomposable aggregates [13]. The most im-
portant optimization for non-holistic decomposable aggre-
gates is simply that aggregation can occur in the network,
reducing the communication cost. Nodes combine their chil-
dren’s aggregates and forward a single aggregate, rather
than forwarding messages for every descendant in their sub-
tree. Other optimizations increase error-resilience by scaling
the aggregate by 1/k and sending to each of k parents, others
reduce communication cost by inhibiting communication if
the aggregate of a subtree is “close” to a guess passed down
from the root, and others increase coverage by using cached
prior aggregates to recover from loss of subtrees. Thus, by
designing our algorithms to use decomposable aggregates,
we can directly benefit from all existing optimizations.

Simple aggregate queries such as COUNT, AVERAGE, or
MAX over sensor networks have constant size decomposable
aggregates, and all the above optimizations can be applied
with great effect. In contrast, aggregate queries such as ME-
DIAN have seen little progress over the brute force approach
of forwarding all data to a central server, and then locally
computing the median value. We present here a power-
efficient algorithm for computing approximate quantile sum-
maries of the whole data set. The summary algorithm is im-
portant because we can use it to convert any computation
currently implemented by shipping all observations to the
basestation to be more efficient and decomposable, at the
price of approximate rather than exact results. However,
our exact quantile query algorithm (e.g. median) demon-
strates how one can use the approximate summary to get
exact results while still gaining in efficiency.

Although the result of a query over a sensor network is
typically a stream of values, we analyze the cost of sending
only a single value back to the basestation. The optimiza-
tions described above, and others, can be applied to our al-
gorithm to reduce the cost of subsequent values in the stream

however they cannot be applied to the conventional im-



plementation of median and quantile summary algorithms.
Thus, analyzing the cost of a single value is a conservative
measure, adopting a worst-case scenario for our algorithm.

1.3 Sensor vs. Streaming Computation

Computing responses to queries over sensor streaming data
bears obvious similarities to computing the same responses
over data streams, an area that has received great attention
in recent years. Both attempt to answer questions about
ephemeral data that does not lie in memory, cannot be di-
rectly accessed, and may be delivered to processors in or-
ders we cannot control.  Motwani et al [18] provide an
overview of issues and progress in managing data streams.
Madden and Franklin [12] provide a good introduction to
sensor streaming data.

Nevertheless significant differences separate the two, and
results over data streams cannot, in general, be directly
applied to streaming sensor data. First, when sensor val-
ues change slowly enough, sensor networks can use multiple
passes over the data. Second, uniformly sampling values
from a sensor network with unknown topology is complex:
sampling nodes near the leaves are more expensive than
sampling near the root, sampling rate should correspond
to density — but density is unknown, and loss of a single
message can eliminate the values of an entire subtree. Sen-
sor networks are inherently parallel, and no single processor
observes all of the values in the stream. To compare sets
of values observed in disjoint subtrees of the network, one
either pays both communication and memory costs, or else
aggregates the values in one subtree before seeing the values
in the other, thereby discarding information. It is easy to see
that the sensor net model is at least as hard as the streaming
model. Space-efficient computation of a quantile summary
in the streaming model corresponds to a communication-
efficient computation of quantile summary in the sensor net
model when the communication topology is a linear chain.
The message sent up by the ith node to its parent can be in-
terpreted as the quantile summary after ¢ observations and
vice versa. Thus, any topology-independent algorithm in the
sensor net model can be immediately applied to the stream-
ing model, but the converse is not true.

14 Reated work

Prior algorithms for in-network aggregation that balance
power-consumption across the network do exist for sensor
networks, but only for simple aggregates [13, 21]. How-
ever, there the balanced power property falls out naturally
(and trivially) because most such aggregates are constant
size (e.g. COUNT, AVERAGE, or MAX). Aggregates that bal-
ance power consumption are discussed even in sensor net-
works that are not addressed using database-like declarative
queries [22], but here, too, balanced power consumption is
a by-product of constant size aggregates.

The issue of power consumption of individual nodes as
bottleneck is mentioned, but not specifically addressed, by
Madden et al in [13]. In later work on TinyDB, Madden
et al [14] address the issue directly, but not algorithmically.
Rather, users can specify the desired lifetime of the network
through the QUERY LIFETIME clause, and Tiny DB computes
the sample interval necessary to guarantee that each node
will last for that lifetime. The sample interval of the entire
tree is limited by the sample rate of the nodes near the root.
For non-trivial aggregates, algorithms with balanced power

consumption could support finer sample granularity for a
given lifetime.

There has been little work, to our knowledge, on balanced
power-consumption algorithms for order statistics. [13] cat-
egorizes MEDIAN as holistic, and therefore unoptimizable.
Similarly, Zhao et al [22] does not consider optimizing me-
dians, because they are not decomposable. Nevertheless,
these unoptimizable aggregates are considered desirable by
users, who felt the simple summarizations like average and
count were too limited [10]. For similar reasons, [15] pro-
poses tackling median and other more generalized aggrega-
tion predicates in future work.

Hellerstein et al discusses some of these more general ag-
gregates in [10]. In particular, they describe an implemen-
tation of a multi-resolution histograms that provide approx-
imate summaries of the distribution of sensor readings, with
successively finer resolution buckets at the cost of additional
rounds of communication. This work is based on wavelet
histograms[16], but unlike the quantile summary algorithms
reported here, they do not provide any guarantees on accu-
racy, despite the existence of wavelet histograms with error
guarantees for streaming data [7].

Dobra et al use sketches to approximately answer com-
plex aggregate queries over streaming data [5]. [1] discusses
using sampling to obtain a small set representing a larger
database, and operating on the reduced set to obtain quick
but approximate answers. Several implementations of quan-
tile summaries exist for streaming data [9, 17, 3]. In this
paper we chose to extend the currently most space-efficient
deterministic implementation of quantile summaries, GK [9],
that uses O(log(en)/e) space in the streaming model. The
individual quantiles summaries in the summary sets used
in this paper share their representation (maintaining rmin()
and 7Tmaez () for each stored observation). It may be equally
possible to extend MRL summaries (Manku, Rajagopalan
and Lindsay [17]) or CM sketches [3] to sensor networks

both have decomposable summaries, and algorithmically
may be simpler to combine without loss of precision or blowup
in space. CM seems easier to extend (presumably you need
only ensure that each node chooses the same set of In(1/4)
hash functions, and the same set of log(n) dyadic sums, and
trivially adding the corresponding terms when merging the
summaries of each child). However, the resulting summary
only has probabilistic accuracy guarantees, and the space
requirements are worse by a factor of at least log(1/(ed)).
The extension to MRL is not straightforward: the order
and number of COLLAPSE operations will be constrained
by the topology of the network. The impact on the space
and accuracy of the algorithm is unclear.

Finally, our multi-pass algorithm for computing exact or-
der statistics (such as medians) using approximate sum-
maries with narrower and narrower ranges builds on the
foundational work of Munro and Paterson on multi-pass se-
lection and sorting [19].

2. PRELIMINARIES

Throughout this paper we assume that the sensor net-
work is a tree. In the first sensor networks, nodes attached
themselves to the network as close to the root as possible,
resulting in shallow routing trees. Today, more sophisti-
cated algorithms attempt to self-organize the routing tree in
a more balanced manner. Tomorrow, sensor network rout-
ing trees may also take underlying physical features into ac-



count. Consequently we make no specific assumptions about
the network topology other than it is a tree.

We use n to denote the larger of the number of network
nodes and the number of data points in our observation set.
An order-statistic query over a data set S takes as input
an integer r € [1..|S|] and outputs an element of rank r in
S. We say that the order-statistic query is answered with
e-accuracy if the output element is guaranteed to have rank
within r+4-en.

Following [9], a quantile summary for a set S is an ordered
set Q@ = {q1,q2,...,qe} along with two functions rming and
rmaxg such that

(1) 1 <gq2...<qgeand g € Sforl1<i<L

(ii) For 1 < i < ¥, each ¢; has rank at least rming(¢;), and
at most rmaxg(g;) in S.

(iii) Finally, ¢1 and g¢ are the smallest and the largest ele-
ments, respectively, in the set S, that is, rming(q1) =
rmaxg(q1) = 1, and rming(qe) = rmaxg(qe) = |S|.

We say that a summary @ is an e-approzimate quantile
summary for a set S if it can be used to answer any order
statistic query over S with e-accuracy, that is it can be used
to compute the desired order-statistic within a rank error of
at most €|S|. The proposition below describes a sufficient
condition on the function rming and rmaxg to ensure an
e-approximate summary.

ProrosITION 1. ([9]) If a quantile summary satisfies
the condition that for 1 < i < £, rmaxq(¢i+1) — rming(q;) s
at most 2¢|S|, then it is an e-approzimate summary.

In what follows, whenever we refer to a quantile summary
as e-approximate, we assume that it satisfies the conditions
of Proposition 1.

3. APPROXIMATE ORDER STATISTICS

We now design an algorithm to compute e-approximate
quantile summaries for any € > 0, such that each node trans-
mits O(log®n/e) data values irrespective of the underlying
topology. We then present a more sophisticated variation of
our main algorithm that exploits the height of the under-
lying topology, say h, to compute e-approximate summaries
with only O(log nlog(h/€)/€) data values transmitted by any
node. Finally, we observe that a simplification of our main
algorithm achieves e-accuracy with only a transmission load
of O(h/e) at each node. This is of interest when the com-
munication topology is a well-balanced tree, say, with height
O(logn).

The high-level idea underlying our main algorithm is to
compute quantile summaries in a bottom-up manner. Each
node in the tree creates a set of O(logn) quantile summaries
that collectively summarize the data contained in its sub-
tree. It sends these summaries to its parent node, which
then suitably merges together the quantile summaries from
each of its children into its own set of local summaries, and
sends merged summaries upwards to its own parent. The
process continues until summaries arrive at the root which
then merges together all received summaries into a single
summary for the entire data set.

3.1 TheMain Algorithm

We now describe in detail the structure of the sets of quan-
tile summaries and the procedure for merging them. For
ease of exposition, we will assume throughout that all data
values are distinct. Our algorithms apply even when data
values are not distinct.

3.1.1 Initial Quantile Summaries

Each node initially computes an €/2-approximate sum-
mary of any observations gathered by its sensor. This is
done by simply sorting the set S of observations locally, and
choosing, elements of rank 1, €| S|, 2¢|S], ..., |S|. The result-
ing summary @ has at most (1/e+ 1) elements and satisfies
the property that for any two consecutive elements ¢;, q;+1
in the summary, rmaxq(gi+1) — rming(g;) is at most €|S]|.
By Proposition 1, it follows that @ is €/2-approximate.

3.1.2 Quantile Summaries at Inter mediate Nodes

We describe here the structure of the set Q, of sum-
maries sent up by each node v of the tree. Let Q, =
{Q.,Q2, ..., QF} where each Q7 is a quantile summary cov-
ering a set of n’, data values. Let class(Q%) = |lognl], and
let n, denote the total number of data values covered by the
subtree rooted at node v. The set @, satisfies the following

three properties:

(a) Zle nd = ny.

(b) For any 1 <i < j <k, the data values covered by Q!
and Q) are disjoint.

(c) Finally, for 1 <i < j < k, class(Q}) # class(QJ).

An immediate consequence of the last property above is
that k <logn.

3.1.3 Merging Quantile Summaries at Intermediate
Nodes

We now describe how a node u in the tree merges to-
gether quantile summaries received from its children nodes,
say v1, V2, ..., Up, along with quantile summary of data values
locally gathered by it. At a high-level, the procedure works
by repeatedly combining together quantile summaries of the
same class and replacing them with a new quantile summary
until no two summaries have the same class. This is refered
to as the combine operation. Once combine is no longer ap-
plicable, we apply a prune operation to each resulting quan-
tile summary so as to ensure that no summary contains more
than B + 1 elements where we set B = logn/e. The opera-
tion slightly reduces the accuracy — an €’-approximate sum-
mary becomes (¢’ + 1/(2B))-accurate after we apply prune.
After this phase, all summaries, at most one of each class,
are forwarded by u to its parent node in the tree.

The Combine Operation Let Q' = {z1,2,...,7,} and
Q” = {y1,92,..-, Y} be two quantile summaries. The op-
eration combine(Q’, Q”) produces a new quantile summary
Q = {z1, 22, ..., Za+b} by simply sorting the union of the el-
ements in two summaries, and defining new rank functions
for each element as follows. W.l.o.g. assume that z; cor-
responds to some element z, in Q’. Let ys be the largest
element in Q” that is smaller than z, (ys is undefined if no
such element), and let y; be the smallest element in Q” that
is larger than z, (y: is undefined if no such element). Then



. N _ ) rming/(z,) if ys undefined
rming(zi) = { rming/ (z,) + rmingr (ys) otherwise

rmaxg(z;) = { rmaxq (z,) + rmaxQu(z

rmaxg/ (zr) + rmaxgr (y:) — 1 otherwise

LEMMA 1. Let Q' be an e appmmmate quantile summary
for a multiset S’, and let Q be an € —appro:mmate quantile

summary for a multiset S”. Then combine(Q’, Q ) produces
an €-approximate quantile summary Q for the multiset S =

S'US" where e = max{¢ ¢ }.

PROOF. Let n/ and n’ respectively denote the number of
observations covered by Q' and Q”. Consider any two con-
secutive elements z;, zi+1 in Q. By Proposition 1, it suffices
to show that rmaxg(zi+1) — rming(z;) < QE(n, + n”). We
analyze two cases. First, z;,2z;+1 both come from a single
summary, say elements x,, z,+1 in Q’. Let ys be the largest
element in Q” that is smaller than z, and let y; be the small-
est element in Q” that is larger than x,41. Observe that if
ys and y; are both defined, then they must be consecutive
elements in Q”.

rmax(zi+1) — rming(z;) <
[rmaxgy (zr41) + Tmax (y¢) — 1]
— [rminQ/ (zr) + rming (ys)]
< [rmaxgs(zr41) — rmings (zr)] +

[rmaxQu (yt) — rmingn (ys) — 1]
< 2E(nl + n”).

Otherwise, if only ys is defined, then it must be the largest
element in QN; or if only y; is defined, it must be the smallest
element in Q”. A similar analysis can be applied for both
these cases as well.

Next we consider the case when z; and z;11 come from
different summaries, say, z; corresponds to x, in Q' and
zi+1 corresponds to y: in Q”. Then observe that z, is the
largest element smaller than 1; in Q' and that y; is the
smallest element larger than z, in Q”. Moreover, Tr41 is
the smallest element in Q' that is larger than v, and y;_1
is the largest element in Q” that is smaller than z,. Using
these observations, we get

rmaxg(zi+1) —rming(z;) <
[rmaxQu (y¢) + Tmax (Trg1) — 1]

—[rming/ (xr) + rmin (yt—1)]

IN

[rmaxQu (yt) — rmin (yt—1)] +

[rmaer (Tr41) — rmingy (zr) — 1]

< 2€(n/ + n”).

O
COROLLARY 1. Let Q be a quantile summary produced
by repeatedly applying the combine operation to an initial
set of summaries {Q1,Q2,...,Qq} such that Q; is an €;-
approximate summary. Then regardless of the sequence in
which combine operations are applied, the resulting summary
Q is guaranteed to be (max?_, € )-approzimate.

s) if y; undefined

Proor. By induction on ¢q. The base case of ¢ = 2 fol-
lows from Lemma 1. Otherwise, ¢ > 2, and we can partition
the set of indices I = {1,2,...,q} into two disjoint sets Iy
and I3 such that @ is a result of the combine operation ap-
plied to summary Q' resulting from a repeated application
of combine to {Qi|i € I}, and summary Q" results from
a repeated application of combine to {Q;|i € I>}. By in-
duction hypothesis, Q' is max;er, €;-approximate and Q”
is max;er, €;-approximate. By Lemma 1, then () must be
maxXier,ul, € = MaX;es €;-approximate. [

The Prune Operation The prune operation takes as in-
put an €’-approximate quantile summary Q' and a parame-
ter B, and returns a new summary @ of size at most B + 1
such that Q is an (¢’ + (1/(2B)))-approximate quantile sum-
mary for S. Thus prune trades off slightly on accuracy for
potentially much reduced space. We generate @Q by query-
ing @' for elements of rank 1,|S|/B,2|S|/B, ..., |S|, and for
each element ¢; € @, we define rming(¢;) = rming/(¢:), and
rmaxq(¢;) = rmaxg/ (¢i).

LEMMA 2. Let Q' be an €' -approzimate quantile summary
for a multiset S. Then prune(Q’) produces an (¢ +1/(2B))-
approximate quantile summary Q for S containing at most
B + 1 elements.

PrOOF. For any pair of consecutive elements ¢;, ¢;+1 in Q,
rmaxq(gi+1) — rming(g:i) < (5 + 2¢€')|S|. By Proposition 1,
it follows that @ must be (¢’ + 1/(2B))-approximate. []

3.1.4 Merging Quantile Summaries at the Root

Once the root receives quantile summaries from all its
children, it combines together all summaries, irrespective of
their class, and then applies prune operation to the resulting
summary.

3.1.5 Overall Analysis

The total amount of data transmitted by any node is
bounded by O(Bk) where k is the number of distinct classes
at the node. As noted earlier, k is bounded by logn. Thus
if we set the parameter B= log n/e, to get an overall upper
bound of log? n/e on the maximum size of transmission by
any node. Our goal now is to show that the resulting quan-
tile summary at the root is guaranteed to be e-approximate.

LEMMA 3. For any node u in the tree, a class i quantile
summary in the set Q. has error at most ¢; = €/2+(i/(2B)).

Proor. We will prove by induction on the height that for
any node u in the tree, a class ¢ quantile summary in the set
Q. has error at most €; = ¢/2 + (i/(2B)). The base case is
easy to verify. Now suppose that the hypothesis holds for all
nodes with height less than j. Consider a node u at height
j with children v1,vs,...,vp. Let Q1,Q2,...,Qq be the re-
sulting summaries just before the prune operation becomes
applicable at node u. Consider a summary ), obtained by
combining summaries Q1,..., Q5 in some arbitrary (valid)
order. If d = 1, then Q; is identical to one of the summaries
at a child node of u and prune operation will not alter this
summary. By induction hypothesis, the summary satisfies
the claim since its class remains unchanged. If d > 2, then
class(Q¢) > class(Q) for 1 < a < d since each applica-
tion of the combine operation increases the class size by one.
Prior to the prune operation, we know by Corollary 1 that



the summary Q¢ must be € = max;<,<q €4-approximate.
After we apply the prune operation, by Lemma 2, the new
summary is (¢’ + 1/(2B))-approximate. [J

LEMMA 4. The quantile summary computed at the root is
e-approximate.

ProoFr. We consider two cases. Suppose the root receives
a quantile summary of class logn. In this case, by the def-
inition of class, entire data set is represented in this single
summary, and there are no other quantile summaries re-
ceived by the root. By Lemma 3, a class logn summary is
e-approximate, and since incoming summaries are already
pruned, this summary is unaltered at the root and the theo-
rem holds. Otherwise, each incoming summary has class at
most logn—1, and by Lemma 3, all incoming summaries are
guaranteed to be (e — 1/(2B))-approximate. The quantile
summary eventually generated by the repeated application
of combine at the root is thus (e — 1/(2B))-approximate by
Corollary 1. Finally, by Lemma 2, an application of prune
increases the error by 1/(2B), resulting in an e-approximate
summary. [

Summarizing the above analysis, we get the following re-
sult.

THEOREM 1. There is a distributed algorithm to compute
an e-approximate quantile summary with a maximum trans-
mission load of O(log®n/e) at each node.

Sensor networks generally have irregular topologies, and
we need to resort to class in order to bound the number
of prune operations. However, if the height of the tree, h,
is wery small then a simpler and more efficient algorithm is
possible.

THEOREM 2. There is a distributed algorithm to compute
an e-approximate quantile summary with a mazrimum trans-
mission load of O(h/e€) at each node.

PROOF. At each node we combine all the data into a sin-
gle summary @Q’, which we prune to h/e elements. Each
time we apply prune (at most h times) we increase €' by
€/2h. Thus, if summaries at the leaves have precision €/2,
we are guaranteed that summaries are e-approximate when
they reach the root, with a maximum communication cost
of only O(h/e). O

3.2 AnlImproved Algorithm

We now refine the main algorithm above to exploit in-
formation about the communication topology, namely, its
height h. If the height of the topology is o(n), as in the
case of many realistic topologies, the new algorithm gives
stronger performance guarantees. However, if h is much
smaller than n, e.g. O(logn) as is the case for balanced
trees), then the O(h/€) algorithm described in Theorem 2 is
the best algorithm to use.

The idea is to introduce an additional operation, called
reduce which ensures that no node in the tree sends up more
than O(log(h/€)) quantile summaries. The reduce operation
is applied after the combine and the prune operations, just
before a node is ready to forward its summary set to its
parent. It increases the error in one of the summaries by
€/2h. Since the operation is applied at most once at each
node along the path to the root, the cumulative error as a
result of this operation is at most €/2.

The input to reduce is a set Q, = {Q1,Q2,...,Qr} of
quantile summaries such that for 1 < i < k, class(Q;) <
class(Qit+1). Output of reduce is a new set Q; of quantile
summaries where Q. = Q, if k < log(8h/¢). Otherwise,
Q, ={Qj, ..., Qr—1, Q1 } where j is the smallest index such
that class(Q;) > class(Qx) — log(8h/e), and Qj}, is a new
summary. In other words, we absorb the first j — 1 sum-
maries into Q. We now describe how this absorption is
done:

(a) Each summary @Q; such that 1 <3 < j, is first replaced
by a new 2-element summary, containing the small-
est and the largest elements represented by it. The
function rmin and rmax remain unchanged for these
elements.

(b) We then combine these modified summaries into Qy
just as in a combine operation even though the sum-
maries have different classes. This produces a new
summary Qj, containing at most B + 2(j — 1) < 3B
elements, for any choice of B > log(n).

To analyze the error introduced by this step, suppose the
class of the summary Q is «, that is, Qi represents at least
2% observations. Then total size of observations represented
by Q1, ..., Qj—1 is at most €2%/2h. As a result of the opera-
tions (a) and (b) above, we can introduce at most an error
of €/2h in Qy (for instance, if all observations represented
by Q1,Qz2,...,Q;_1 fall between 2 consecutive elements in

Q)

THEOREM 3. There is a distributed algorithm to compute
an e-approximate quantile summary with a maximum trans-
mission load of O((lognlog(%))/€) at each node.

PrOOF. We run the main algorithm presented in Sec-
tion 3.1 along with an application of reduce before each
broadcast of quantile summaries by a node to its parent.
We slightly change some parameters of the algorithm: ini-
tial summaries are computed to be €/4-approximate and B
is chosen to be logn/4e. Following the analysis in Subsec-
tion 3.1.5, we know that the summary computed at the root
is €/2-approximate with this setting of parameters if there
is no reduce operation along the way. But each application
of reduce increases the error by €/2h, bounding the cumula-
tive error due to reduce to be €/2. Thus the final summary
at the root is guaranteed to be e-approximate. Finally, the
bound on the maximum transmission load immediately fol-
lows from our choice of B and that the reduce operation
ensures that no node sends more than O(log(%)) summaries,
with size of each summary bounded by 3B. [

4. EXACT ORDER STATISTICS

We now build on the approximate quantile summary al-
gorithm of the preceding section to design a multi-pass dis-
tributed algorithm that can exactly compute any particu-
lar order statistic. The new algorithm is exact rather than
approximate, computes a specific quantile rather than sum-
marizing all quantiles, requires multiple passes rather than a
single pass, and has an overall transmission load of O(log3 n)
data values.

The basic idea of the algorithm is quite simple. Suppose
we wish to find an element of rank r. In the first pass, the
algorithm computes an e€/4-approximate summary of the en-
tire data set. We then query the summary for elements of
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Figure 1: Total communication cost expended by
worst-case node in the entire network in multiple
passes, while computing the median. ¢ refers to the
precision of the summaries used in each pass to get
the exact result. Finer granularity ¢ increases the
space used in each pass, but reduces the number of
passes. The z-axis is the network diameter; there are
z2 nodes in the network.

rank 7 — (en)/4 and 7+ (en)/4, respectively. Let z and y be
the elements returned by the summary. Since the summary
is €/4-approximate, we know that rank(z) < r < rank(y),
and rank(y) < rank(z) + en. In the second pass, the algo-
rithm broadcasts the elements z and y to all sensors, and
now computes an €/4-approximate summary of only those
data values that are in the interval [z,y]. Along the way,
we also maintain a count of number of observations that
are less than xz, thus computing the exact rank of xz. We
now reset the rank value r to be r — rank(z), and repeat
the entire process again. After p passes, the length of the
interval containing the element of rank r is at most €’n. In
at most p = log, ,.(n) passes, we are guaranteed that the
interval containing element of rank r has length 1, giving us
the element of rank r itself. Any fixed value of € € (0,1)
suffices to bound the total number of passes by O(logn).
Smaller values of € increase the maximum communication
load in each pass while larger values of e increase the total
number of passes, giving us a tradeoff between the number
of passes and the transmission load in each pass. We also
observe that the above algorithm can be terminated after ¢
passes to get an interval of length €'n containing the element
of rank r. Combining with Theorem 1, we get the following
theorem.

THEOREM 4. There is a distributed algorithm to compute
any order statistic exactly with an overall transmission load
of O(log®n) data values at each node. Furthermore, we can
answer any fired order-statistic query to within an accuracy
of 8, with an overall transmission load of O(log® nlog(1/5))
data values.

5. PRACTICAL CONCERNS

In terms of impact on real sensor network implementa-
tions, our work makes two contributions. First, our bal-
anced power algorithms extend network lifetime by reduc-
ing maximum per-node power consumption. Second, cost
can be further reduced because our approximate and exact
order-statistic algorithms are amenable to the general op-
timization techniques introduced in earlier works (e.g. [13]
and [22]) on aggregate queries over sensor networks, such as
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Figure 2: Number of bytes transmitted by worst-
case node in the sensor network, while computing
an e-approximate summary of all the sensor read-
ings. € represents the precision of the final summary.
Smaller es produce more accurate summaries, but re-
quire more communication.

child caching and hypothesis testing.

In order to compare our balanced-power algorithm with
earlier aggregation algorithms, we implemented our e-appro-
ximate quantile summary and exact median computations
on the sensor network simulator of Madden and Stanek
(used in [13, 14, 10]). The median algorithm on that simu-
lator, similar to all we are aware of, ships all observations to
a central server and computes the median there. (Sampling
implementations have been attempted, but are reported to
have extremely inaccurate results).

We simulated sensor networks with a square grid topol-
ogy, varying the diameter of the network. We expect our
algorithm to perform well asymptotically, but it was unclear
whether it would perform well at a small scale. Our mea-
surements show that, after applying some simple optimiza-
tions (described in Appendix A), we always outperform cen-
tralized algorithms in both total and max per-node power.
(Even without the optimizations, our maximum power con-
sumption per-node is lower than the maximum in the cen-
tralized algorithms.)

Our measurements are summarized in Appendix B, but
we briefly show some results here. We chose parameters
that were, in some sense, pessimal for our algorithm. We
chose a grid topology, with a relatively high branching fac-
tor near the root, because this gave the centralized algo-
rithm the benefit from splitting the incoming observations
into as many different paths as possible (our algorithm is
indifferent to topology). We chose to simulate perfectly reli-
able radios, because our summaries can easily recover from
losses (through child caching of summaries), while central-
ized algorithms cannot, without using space proportional
to the size of the tree. Our computation of exact order
statistics requires multiple passes. We allowed the sensor
readings to change arbitrarily between passes (although the
readings were drawn from the original distribution), rather
than change slowly or with any relation to their previous
value. The centralized algorithm is single-pass, and hence
unaffected, but our exact median algorithm requires extra
passes if it finds that it converged to a range that does not in-
clude the median. When measuring the per-node cost in our
multi-pass computation, we capture some worst-case possi-



bilities by post-facto combining the maximum communica-
tion cost in each pass to the same node, even if, in fact, the
node consuming the most power differed between passes. In
our simulation we had every sensor generate a unique value
(although in Appendix B we show how our cost is much re-
duced when the number of distinct values obtained by sensor
readings is smaller than the number of sensors).

Figures 1 and 2 show that even in our pessimistic simula-
tion, the algorithms described here consume less power than
our worst-case analysis and far better than prior implemen-
tations.

6. CONCLUSIONS

We presented the first algorithms for computing exact and
approximate order statistics that balance power consump-
tion over an entire sensor network. In contrast to earlier
approaches that lead to a worst-case communication load
of Q(n) data values on some of the network nodes, our al-
gorithms ensure that no node sends more than poly-log(n)
data values. Our main results hold without regard (or even
a priori knowledge of) the network topology; an important
requirement in sensor networks which have irregular and
dynamically changing topology. We also observe that the
problem of computing communication-efficient approximate
quantile summaries over sensor networks is at least as hard
(and possibly harder) as the problem of computing space-
efficient approximate quantile summaries in the data stream
model. Specifically, the latter problem corresponds to the
special case of the sensor net problem when the communi-
cation topology is a linear chain. We also note here that
our algorithms use decomposable aggregates at each node,
so the computations are amenable to standard in-network
optimizations. Finally, we have shown through simulation
that in practice the algorithms perform substantially better
than prior, centralized, algorithms even over moderate size
networks.
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APPENDI X
A. OPTIMIZING OURIMPLEMENTATION

We here note that several simple optimizations are possi-
ble that are specific to the implementation of our algorithm.
These optimizations improve performance in many cases,
and never affect the worst-case analysis. We describe four
optimizations used in our measurements: summary lists,
value merging, conservative pruning, and early combining.
Summary lists: The quantile summaries used in this paper
require 3 integers per stored observation: the value, rmin,
and rmax. If summarizing the set of observations would re-
quire storing more than one third of the observations, then
we both gain in precision and reduce space by storing the
entire set of observations. This optimization reduces space
mainly in small summaries, but there are many small sum-
maries so the total space reduction is significant.

Value merging: If ¢; is equal to ¢;+1 in summary @, then
we can remove ¢; from @ without losing any information.
We must adjust rming(gi+1) to rming(g;), but can main-
tain rmaxq(g;+1) without modification. This optimization
reduces space only in large summaries, on average, where
the count of covered observations is large compared to the
number of distinct possible values.

Conservative Pruning: The prune operation takes as in-
put a summary Q" and is required to produce as output a
new summary, (@, over the same data set, but with size B+1
and € < ¢ +1/(2B). We can meet the precision requirement
of € but possibly reduce B substantially by means of a simple
optimization. We scan the stored observations in @ and re-
move any observation ¢; if rming(gi—1) + 2¢ > rmaxq(qi+1).
Early Combining: Each prune operation increases € by
a fixed amount, and we have only allocated enough spare
precision to prune each observation logn times. We spec-
ify that our algorithm combines and prunes only summaries
of equal class, thus guaranteeing that any observation will

participate in a prune operation at most logn times. How-
ever, it is equally safe to combine any set of summaries,
provided only that we have enough small summaries to in-
crease the class of the largest summary. If we combine k
summaries together, then this can reduce the space require-
ment because we now represent the k& summaries by a single
summary of at most B + 1 observations.

It is still the case that summaries will only be pruned when
their class increases. It is clear that the class can only
increase at most logn times (by definition, class(Q}) =
llognt |). Therefore we still satisfy both the precision and
space requirements in the worst case, but can gain some
improvements when a node has a large number of children.

A further optimization can be used as part of early com-
bining: relazed epsilon. We know that if the count of ob-
servations covered by a summary Q; is n;, then class(Q;)
can only be increased at most log(n) — log(n;) more times.

. 1 ; .
Therefore we can safely increase € to (1 + 260 Thig
2 log(n)
relaxation of epsilon to increase a number of steps at once
allows conservative pruning to prune more observations dur-

ing early combining.

B. PERFORMANCE MEASUREMENTS

The optimizations described in Appendix A can be di-
vided into two classes. Value merging and summary lists are
two optimizations that lose no information — they maintain
precision of the summaries. All of the other optimizations
listed above are precision-reducing. They discard informa-
tion and deliver summaries with lower precision and lower
cost. Precision-reducing summaries make sense if at any
point in time we notice that the obtained precision is higher
than necessary to meet the pre-specified precision we have
guaranteed the user. In such cases we can shed unnecessary
precision without violating our contract, thereby reducing
communication costs. Without the precision-reducing op-
timizations, when users specify a given precision they may
receive either a summary with the requested precision, or
a more accurate but more costly summary. Enabling these
precision-reducing optimizations makes the former far more
likely.

We measure the relative cost reductions obtained by each
of the loss-free optimizations, while enabling all of the pre-
cision-reducing optimizations.
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Figure 3: Total communication cost over entire net-
work, while computing a .0l-approximate summary,
comparing effect of value merging and summary list
optimizations.

Figure 3 shows the relative benefits of summary lists and



value merging on the total communication costs over the en-
tire network while computing a single summary with .01 pre-
cision. (In this measurement we limit the resolution of the
sensors to produce only 1000 distinct values.) We compute
total costs by summing the per-node costs over all nodes.
Note that the number of nodes in the network grows with
the square of the diameter. There is at least a constant per-
packet overhead transmitted by every node, thus we expect
an O(n) term in the total network computation cost mea-
sured in Figure 3. We see this manifested by the quadratic-
like shape of the curves in the figure.
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Figure 4: Per-node communication cost of most
expensive node, while computing .0l-approximate
summary, comparing effect of value merging and
summary list optimizations.

When we consider the communication costs summed over
the entire network as a whole, then the cost generated by
nodes sending only small summaries dominate, and there-
fore the summary list optimization has significant effect. Al-
though value merging has a significant effect on reducing the
maximum communication cost for the busiest nodes in the
network (as we can see from Figure 4), it has little impact
on the total cost. However, we are more concerned with
bounding the worst-case per-node cost.

Figure 4 compares the two optimization’s effect on worst-
case per-node cost. Value merging has more significant ef-
fect as network size gets large; for small networks summary
lists have a larger relative impact — but the network size
is a far more significant factor than the choice of optimiza-
tion, so the differences are obscured on this graph for small
networks. There is no noticeable penalty for applying both
optimizations, a choice that improves performance for both
small and large networks.

Choice of precision has little effect on total cost, as can be
seen in Figure 5, because many nodes send fewer than 1/e
values, even for small €, that they behave the same regardless
of precision.

However, the effect of precision on maximum per-node
cost can be significant, as can be seen in Figure 6, because
lower precision summaries can be compressed significantly
more as the number of observations covered by the summary
gets large. As expected, for fixed network size, the maximum
per-node cost is proportional to 1/e. (These two graphs were
constructed using both value merging and summary lists).

We would expect the impact of optimizations on median
computations to be very similar to the impact on quantile
summaries, as median is computed by repeatedly computing
quantile summaries over narrower and narrower ranges. To
a large degree this is true as can be seen in Figures 7 and 8.
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Figure 5: Total communication cost summed over
entire network, while computing a single quantile
summary of all the sensor readings. We compare
the costs of different requested precision. ¢ denotes
the accuracy of the resulting summary.
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Figure 6: Per-node communication cost of most
expensive node, while computing an e-approximate
summary of all the sensor readings. We compare
costs for different values of e.

However, in each successive pass the number of values (as
well as the number of distinct values) is reduced by approx-
imately a factor of €, and consequently both optimizations
have a correspondingly larger effect.

However, when we consider the effect of precision on the
median computation we find a significant difference from the
effect on computing individual quantile summaries. When
we compute exact order statistics, including our computa-
tion of median, precision has no effect on the accuracy of
the final result: it is always exact (that is, assuming the un-
derlying data doesn’t change significantly during the com-
putation). Precision only controls communication costs: in-
creased precision increases the cost of each pass in our multi-
pass algorithm, but reduces the number of passes.

We observe that in Figure 9 the maximum per-node cost
increases with precision. Increased precision increases mes-
sage size, but reduces the number of passes. Therefore, in
this case, the per-node cost is dominated by the message
sizes in the earlier passes. This, in turn, implies that max-
imum message size diminishes sufficiently so that we can
ignore the later passes.

However, Figure 10 shows that when considering total
communication cost summed over the entire network, in-
creasing precision reduces, rather than increases, cost. (Note
that the order in the legend is reversed from Figure 9.) This
is because, as we saw in earlier figures, the summed cost
is fairly insensitive to precision. Therefore the number of
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Figure 7: Total communication cost per-node, me-
dian, effect of optimization.
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Figure 9: Total communication cost per-node, me-
dian, effect of precision.

passes is the dominant component in the aggregate commu-
nication cost over the whole network. In this case, increas-
ing precision reduces the number of passes, and therefore
reduces cost. This observation holds within the precision
range of .01 to .20, because increasing precision from .05 to
.01 reduces the mean number of required passes from 3.2 to
2.2. However, finer precision never® reduces the number of
passes below 2, so at some point increasing the precision no
longer reduces the number of passes significantly enough to
offset the increased overhead of the first passes.

4Unless we choose € such that 1/¢ > n.
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Figure 8: Total communication cost total, median,
effect of optimization.
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Figure 10: Total communication cost total, median,
effect of precision.

Given that we are generally more concerned with bound-
ing per-node costs, it is likely that we will always prefer to
choose lower precision intermediate summaries. Neverthe-
less, it is instructive to understand the interaction between
specifying precision and the resulting number of passes. In
practice, many optimizations, for example the ability to sup-
press values from nodes, and/or power-aware routing within
the network, may make this interaction more relevant.



