
Approximation and Streaming Algorithms for Histogram

Construction Problems∗

Sudipto Guha† Nick Koudas‡ Kyuseok Shim§

Abstract

Histograms are typically used to approximate data distributions. Histograms and related
synopsis structures have been successful in a wide variety of popular database applications
including approximate querying, similarity searching and data mining. Histograms were a few
of the earliest synopsis structures proposed and continue to be popular tools. Typically, the
histograms are used as quick and easy estimates, and thus the slight loss of accuracy can be
offset by fast histogram construction algorithms. A natural question arises in this context: can
we find a fast near optimal approximation algorithm for the histogram construction problem? In
this paper, we give the first linear time (1 + ε)-factor approximation algorithms (for any ε > 0)
for several histogram construction problems. Several of our algorithms extend to data streams.

We also show that our method generalizes to a large number of histogram construction
problems including the use of piecewise small degree polynomials to approximate data. Using
synthetic and real-life data sets, we demonstrate that the approximate histograms have almost
identical quality in many scenarios and offer significant performance benefits.

1 Introduction

Obtaining fast and accurate synopsis of data distributions is a central problem in database query
optimization. Given a query the optimizer tries to determine the cost of various alternative query
plans based on estimates [35]. Histograms were one of the early techniques proposed in this context
to approximate the data distributions [28, 32]. More recently histograms have been used in a broad
range of topics, e.g., approximate query answering [1], mining time series data [27] and curve
simplification [3] among many others. There is a broad taxonomy of histograms which we will not
be able to cover in this paper; the interested readers should refer to [25]. In this paper we will
focus on serial histograms [24, 23] where disjoint intervals of the domain are grouped together and
define a bucket. Each bucket is represented by a single value. Thus a histogram defines a piecewise
constant approximation of the data. Given a query that asks the data value xi at i, the value (say
x̂i) corresponding to the bucket containing i is returned as an answer.

The objective of a histogram construction algorithm is to find a histogram with at most B
buckets which minimizes a suitable function of the errors. One of the most common error measures

∗A preliminary version of this article appeared as Guha, S., Koudas, N. and Shim, K., Data Streams and Histograms
in proceedings of the ACM Symposium on Theory of Computing, 2001. This article also subsumes and improves
Guha, S., and Koudas, N., in proceedings of the IEEE International Conference on Data Engineering, 2002.

†Department of Computer Information Sciences, University of Pennsylvania Email: sudipto@cis.upenn.edu. This
research was supported in part by an Alfred P. Sloan Research Fellowship and by an NSF Award CCF-0430376.

‡Department of Computer Science, University of Toronto Email: koudas@cs.toronto.edu
§School of Electrical Engineering and Computer Science, Seoul National University. Email: shim@ee.snu.ac.kr.

This work was also partially supported through the University Information Technology Research Center (ITRC)
Support Program, Korea.

1

used in histogram construction is
∑

i(xi − x̂i)
2 which is also known as the V-Optimal measure.

This was first introduced by Poosala et. al. in [34]. However since then several proposals have
been introduced optimizing different error measures, e.g., range queries [29, 12, 19], relative error
[8, 20], to name a few. Each one of these has unique benefits relevant to its domain of application.
However the V-Optimal measure continues to be widely popular. This measure is also important
mathematically since it is the square of the `2-distance between the original distribution and the
distribution specified by the synopsis. Also this error measure has been frequently used to optimize
other synopses such as wavelets and discrete Fourier transforms. In this paper we use the popular
V-Optimal measure as a running example to illustrate our ideas. However, the discussion applies
to a broad array of error measures and we indicate a few examples of such generalizations.

As mentioned, histograms are not the only synopsis structures used. Wavelets [31, 12, 8, 15]
and quantile summaries [30, 13] have been used widely as well. There is a broad literature available
on these topics – the references in the above papers contain appropriate pointers, and we omit
further discussion.

In an early paper Jagadish et. al. [26] gave an O(n2B) algorithm for constructing the best
V-Optimal histogram. This algorithm is based on dynamic programming which generalizes nicely
to a wide variety of error measures as well. The quadratic running time is undesirable for large
datasets. The authors of [26] also gave an approximation algorithm that runs in time O(n2B/`)
and uses (B+`) buckets while guaranteeing the quality of the (B+`)-bucket histogram constructed
is no worse than that of the best B-bucket histogram. However even for an extra O(B) buckets
the running time remains quadratic.

Recall that the histograms (or all synopsis structures) provide “rough” estimates for the cost
of operators. A natural question arises in this context: “since the end use of a histogram is to
approximate a data distribution, can we find a linear time near optimal approximation to the best
histogram?” In this paper, we provide such algorithms. The algorithms allow a graceful tradeoff
between the (guaranteed) quality of the histogram and the construction time. More specifically,
we provide several approximation schemes where given a precision parameter ε > 0, the algorithms
return solutions which are at most (1 + ε) times worse than the optimal solution. (See [21, 37] for
discussion on approximation schemes.) We note that the discussion of the “best” error measure is
orthogonal to the goal of this paper.

Our contribution

• We give the first one pass linear time (1 + ε)-approximation algorithm for the histogram
construction problem for a wide variety of error measures. In the context of V-Optimal
histograms, our results provide the best known bounds for approximation algorithms. Our
paper subsumes (as well as improves) our previous paper [18] and improves upon [20] (which
discusses relative error). We also improve the results in [17, 16] although some of the issues
raised in those papers are incomparable to the question of the “best (approximate) histogram
construction algorithm”. We provide a table of the published results in Table 1. The time
and space complexities in the table are reported for V-optimal histograms. We also indicate
if the algorithm generalizes to the broad class of error measures we consider here. The table
is explained in more detail in Section 1.1.

• Our algorithms extend to data streams. The streaming model we consider in this paper as-
sumes that the data items xi are presented one at a time in an increasing order of i. Thus,

2

Paper Error Stream Factor Time (V-OPT) Space

[26] g No Opt O(n2B) O(nB)

[14] g Y/N Opt O(n2B) O(n)

[18] g Yes (1 + ε) O(nBτ) O(Bτ)

[17] g Y/N (1 + ε) O(n + Bτ2 log n) O(n + Bτ)

[11] V,`1 Yes (1 + ε) nτO(1) τO(1)

[16] V Yes (1 + ε) O(n + Bτ2 1
ε2

log2 1
ε
) O(Bτ

ε
log 1

ε
)

[20] g Yes (1 + ε) O(n + Bτ2 log τ) O(Bτ2 log n)

This paper g Y/N (1 + ε) O(n + B3 log2 n + τB2/ε) O(n + B2/ε)

g Yes O(n + Mτ) O(Bτ + M)

Table 1: Summary of results on similar problems. The table follows a decreasing order of running
time (for the V-Optimal measure) with the exception of the result of Gilbert et al. 2002, which
applies to a more general streaming algorithm, see text for more details. The symbol ‘g’ stands for
a general class of error measures, ‘V’ denotes the algorithm is applicable to the V-Optimal error
measure only. τ = min{Bε−1 log n, n} usually τ � n and M = B(Bε−1 log τ + log n) log τ) �
Bτ log τ < Bτ log n. The sequence of improvements in the above table shows how the effects of
the factors B, ε−1 and log n on the running time can be separated. Each of B, ε−1 and log n can
be easily be ∼ 10 (B will likely be larger) and separating their dependence leads to significant
speedup.

for time series and analogous applications, these algorithms are one-pass stream algorithms.
The “Y/N” in Table 1 indicates that the result can be applied to sliding window data streams
because of its (linear) space complexity. However such an algorithm is really an offline algo-
rithm.

• We provide a general framework that extends to a broad class of error measures, including
those considered by Jagadish et. al. [26], e.g., workloads. In particular, we summarize the
main techniques in a theorem which can be used to design approximate histogram algorithms
for alternate measures. We consider several examples, (i) approximation by piecewise linear
segments (as well as degree-d polynomials) (ii) the χ2-test error function (this was proposed,
among others, by [6] in defining dynamic compressed histograms), (iii) sum of absolute errors,
proposed in [34, 31].

• Finally, we demonstrate the effectiveness of the approximation schemes using synthetic and
real life data sets. Since the overall algorithmic technique is the same for different error
measures, we only report on the performance of approximate V-Optimal histograms. The
results confirm that the approximation algorithms are an attractive tool for constructing
accurate histograms faster.

Organization In Section 2 we present definitions and reviews of previous work which are nec-
essary for the remainder of the paper. In Section 3, we present our algorithms and analyses. In
Section 4 we summarize the central properties of the approximation technique and demonstrate its
use in the context of three new examples. In Section 5 we present the results of an experimental
evaluation. Section 6 concludes the paper.

3

1.1 Related work and discussion

Histograms are not the only synopsis structures used. See [10, 31, 12, 8] for excellent overviews
of other synopsis techniques. For other histograms, e.g., range queries, several surveys including a
retrospective exist [25, 33]. We focus on the results mentioned in Table 1.

For frequency histogram construction where xi is the frequency of item i, all the algorithms
except [11] require the frequency histogram to be computed as a preprocessing step. This requires
at least one extra pass, and space versus pass tradeoff results exist. We omit the discussion in
interest of space.

The main thrust of [17] was fast construction of approximate histograms for sliding window
streams and time series. The main issue that arises in such scenarios is that the computation for a
time window on the first n items, i.e., over the interval [1, n], may be useless for the next n items,
i.e., over the interval [2, n + 1]. The main question we addressed in that paper was: “can a data
structure be maintained in the context of sliding window streams such that near optimal histogram
representations can be computed on-demand efficiently ?” We showed that we can maintain a
data structure that requires O(1) update time and allows the construction of an approximate
histogram (whenever required) in O(B3ε−2 log3 n) time. This avoided the O(nB2ε−1 log n) time or
more expensive algorithms that were previously known. This was a significant improvement (for
reasonable B, ε) and quite useful if the histograms were not constructed too often. In hindsight, the
same algorithm gives a better offline algorithm for the original histogram construction problem itself
– the histogram is constructed only once! Sliding window stream problems, along with histogram
construction, have been investigated further in [5].

Notice that the algorithms in [16, 20] and Section 3.5 in this paper assume that we see all the
data before we attempt to compute any histogram. This is different from the algorithm in [18]
(Section 3.2) where a B-bucket histogram is maintained at all times. Note that none of these are
online algorithms since there is no notion of irrevocable commitment, see [4].

The algorithm of Gilbert et. al. [11] applies to a more general model of streaming. It shows
that collecting a number of suitable wavelet coefficients gives us a robust histogram – whose error
does not decrease if we add a few extra buckets. It then uses the robust histogram to construct a
histogram with B buckets. The algorithm uses sketches or distance preserving embeddings along
the lines of [2, 7, 22] to collect the wavelet coefficients. The algorithm in [36] uses a variant of [11]
for multi-dimensional histogram synopsis. Guha et. al. [16] show that the construction of robust
histograms is significantly easier in a simpler model of streaming.

2 Preliminaries

2.1 Problem Statement

Let X = x1, . . . , xn be a finite data sequence. The histogram construction problem is defined as
follows: given some space constraint B, create and store a compact representation HB of the data
sequence using at most B storage, such that HB is optimal under some notion of error EX(HB)
defined between the data sequence and HB. The typical histogram representation collapses the
values xi in a sequence of consecutive points i where i ∈ [sr, er] (i.e. sr ≤ i ≤ er) into a single value
hr, thus forming a bucket br, i.e., br = (sr, er, hr). The histogram HB is used to answer queries
about the value at a point i where 1 ≤ i ≤ n. For sr ≤ i ≤ er, we estimate xi by hr. The histogram
uses at most B buckets which cover the entire interval [1, n], and saves space by storing only O(B)
numbers instead of n values. Since hr is an estimate for the values in bucket br for the query at
a point i for sr ≤ i ≤ er, we incur an error hr − xi. The error EX(HB) of the histogram HB is

4

defined as a function of these point errors.

Problem 1 (Optimal Histograms) Given a sequence X of length n, a number of buckets B,
find HB to minimize EX(HB) under the given error function E.

Jagadish et. al. [26] gave a general technique to compute the optimum histogram in O(n2B)
time and O(Bn) space for several measures. However the resulting histogram is used to approximate
the data, and it is natural question to ask: why should we spend quadratic time to construct such
an approximation? Can we construct a histogram which is nearly optimal in time linear in the size
of input data? Can we also make the approximation “tunable”, i.e., allow faster running times if a
less accurate histogram suffices for the application at hand? These lead to the following problem
formulation:

Problem 2 ((1 + ε)-approximate Histograms) Given a sequence X of length n, a number of
buckets B, and a precision parameter ε > 0, find HB with EX(HB) at most (1 + ε)minH EX(H)
where the minimization is taken over all histograms H with B buckets.

Note We assume that the input values are integers in the range [−R,R]. All algorithms and
techniques in this paper extend to reals by simple scaling provided the minimum non-zero error
of a bucket can be bounded. This is true for any input with bounded precision. Typically the
histograms are used to describe frequency counts and the frequencies are integers at most the size
of the data. We use this fact and assume log R = O(log n).

We will present an O(n) time algorithm for the above approximate histogram construction
problem, which applies to a wide variety of error measures. This is the best possible result since we
have to look at every data point in the input, requiring Ω(n) time for any algorithm. As mentioned
earlier, we will focus on the V-Optimal measure as a running example of the technique.

2.2 The V-Optimal Measure

The most common definition of total error is the sum of squares of the errors at every point i. The
resulting optimal histogram is the well known V-Optimal histogram [34].

Since the intervals corresponding to the buckets do not overlap and every point belongs to
exactly one bucket, we can express the total error as a sum of bucket errors. The total error for a
histogram H with buckets b1, . . . , bB is the sum over all bucket errors

∑

r Sqerror(br). The error
Sqerror for the bucket br defined by the interval [sr, er] and representative hr is:

Sqerror(br) =

er
∑

i=sr

(xi − hr)
2 (1)

The above error is minimized when hr = 1
er−sr+1

∑er

i=sr
xi (i.e. the mean of the values xi for i

in the bucket). After an easy simplification we have:

Sqerror(sr, er) =
er

∑

`=sr

x2
` −

1

er − sr + 1





er
∑

`=sr

x`





2

(2)

5

2.3 V-Optimal Histogram Construction

We now review the V-optimal histogram construction algorithm in [26]. In this problem, given a
sequence of n numbers x1, . . . , xn, we seek to partition the index set {1..n} into B intervals (or
buckets) minimizing the sum of the squared errors in approximating each data point j for 1 ≤ j ≤ n.
From the previous subsection, we know that the data points within each bucket are represented by
their mean value, and the total error is the sum of the errors of each bucket. A basic observation
is that if the last bucket contains the data points indexed by [i + 1, n] in the optimal histogram,
then the rest of the buckets must form an optimal histogram with B − 1 buckets for [1, i]. If
this condition is not true then the cost of the solution can be decreased by taking the optimal
histogram with (B−1) buckets for [1, i] and the last bucket defined on the points in [i+1, n], which
contradicts the optimality of the original solution. Thus if we have found the best possible (B − 1)
bucket histogram approximating [1, i] for all i; we try all of the n − 1 values of i to find the best i
and compute the best B bucket approximation for [1, n]. Before we proceed further, we need the
following definition:

Definition 1 Let Terr[i, k] be the best (minimum) error achieved by a k-bucket histogram rep-
resenting the interval [1, i]. Note that the optimum histogram construction problem is to find a
histogram with error Terr[n,B].

A dynamic programming algorithm follows from the above which is presented in Figure 1. To
compute the error of the bucket [i+1, . . . , j] which is given by Equation (2) we maintain two arrays
Sum and Sqsum, s.t.,

Sum[1, i] =

i
∑

`=1

x` Sqsum[1, i] =

i
∑

`=1

x2
`

We can now compute the error of the bucket Sqerror(i, j) in O(1) time since the partial sums
in Equation (2) reduce to

j
∑

`=i+1

x` = Sum[1, j] − Sum[1, i − 1]

j
∑

`=i+1

x2
` = Sqsum[1, j] − Sqsum[1, i − 1]

Computing each entry of Terr[j,k] requires O(n) time. The algorithm runs in O(n2B) time
because we have to compute O(nB) entries of Terr[j,k].

3 Approximation Algorithms

Histograms are typically used to approximate a distribution. As mentioned earlier, because the
end use of a histogram is to approximate data, it may be desirable to construct an almost optimal
histogram faster than the quadratic (in n) algorithm. However the notion of “almost optimal” has
to be precise for the histogram not to lose its descriptive power. We use the notion of approxi-
mation schemes, i.e., given a precision parameter ε > 0, the approximation algorithm will return
a histogram whose error is (1 + ε) times the error of the optimal histogram. Thus if we desire a
1% approximation to the optimal histogram, we would set ε = 0.01. The running time of the ap-
proximation algorithm will dependent on ε−1 along with other parameters of the problem (namely
B,n). Thus approximation schemes allow us to have a graceful tradeoff between the accuracy

6

Procedure V-OPT()
begin

1. Sum[1, 1] := v1

2. Sqsum[1, 1] := v2
1

3. for i := 2 to n do {
4. Sum[1, i] := Sum[1, i − 1] + vi

5. Sqsum[1, i] := Sqsum[1, i − 1] + v2
i

6. }
7. for j := 1 to n do {
8. Terr[j, k] := ∞
9. for k := 2 to B do

10. for i := 1 to j-1 do

11. Terr[j, k] := min (Terr[j, k],Terr[i, k − 1] + Sqerror(i + 1, j))
12. }
end

Figure 1: V-Optimal histogram algorithm

of the solution and the construction time. We provide fully polynomial approximation schemes1.
There is a large literature concerning the notions of approximation [21, 37] and we omit further
discussion. From a practical consideration, a worst case (1 + ε) approximation guarantee gives us
a more organized starting point to develop a heuristic. We first provide a simple (1 + ε) approxi-
mation algorithm in Section 3.2. This algorithm runs in O(nB2ε−1 log n) time and O(B2ε−1 log n)
space. Subsequently we improve the algorithm to run in linear time. But before proceeding to the
algorithms, let us focus on why we can expect subquadratic approximation algorithms.

3.1 Intuition and Challenges

Consider the VOPT algorithm in Figure 1. We begin with the following:

Observation 1 Sqerror(i+1, j) and Terr[i, k−1] are non-increasing and non-decreasing (both
are non-negative) functions respectively over the values of i.

The simplest proof of the above is to observe that, as i increases, the solution that approximated
the interval [1, i+1] using k buckets remains a valid approximation of [1, i] using k buckets2. Further
that same solution has error at most Terr[i+1, k] on [1, i] because if we discount the contribution of
(i+1) the error cannot increase. But the best possible solution for the subproblem of approximating
[1, i] with k buckets has error Terr[i, k] and hence Terr[i, k] ≤ Terr[i+1, k]. The other property
can be proved analogously.

In light of the above, a natural question arises: “because we are searching for the minimum
of the sum of two functions, both non-negative, one of which is non-increasing and the other non-
decreasing, can we use a more effective search strategy instead of the for loop in lines (10)–(11) of
Figure 1?” The answer, unfortunately, is no. Consider a set of non-negative values v1, . . . , vn; let
f(i) =

∑i
r=1 vr, and g(i) = f(n)−f(i−1). The function f(i) and g(i) are monotonically increasing

and decreasing respectively. But finding the minimum of the sum of these two functions amounts
to minimizing f(n) + vi, or in other words minimizing vi, which has a Ω(n) lower bound. Note
that this does not rule out that over B levels, the cost of the searching can be amortized – but no
such analysis exists to date. The interesting aspect of the example is that picking any i gives us a

1The running time is a polynomial in n, 1
ε
, B as opposed to n

1

ε .
2Note that we are not restricted to storing the mean of the values in a bucket as a representative. But storing

the mean arises as a natural consequence of the optimization, any other choice is suboptimal, which is precisely the
point we are making.

7

T

aa b a b 44322 31

ERR

5 bab 5ab1=1 =n

[i, k−1]

Figure 2: Approximating Terr[i, k − 1] by a histogram

2 approximation (since f(n) + vi ≤ 2f(n) and the minimum is no smaller than f(n)). In essence,
the searching can be reduced if we are willing to settle for approximation.

The central idea is that instead of storing the entire function Terr[i, k − 1], we approximate
the function by a staircase or a histogram as shown in Figure 2. The interval [1, n] is broken down
into τ intervals (ai, bi) to approximately represent the function with a histogram. We have a1 = 1,
ai+1 = bi+1, and bτ = n. Furthermore, the intervals are created such that the value of the function
at the right hand boundary of an interval is at most a factor (1+ δ) times the value of the function
at the left hand boundary3. The parameter δ will be fixed to be ε

2B with ε < 1. Such a partition
always exists, the challenge is to construct it quickly. We can view the VOPT algorithm presented
in Figure 1 as using n buckets to represent the non-decreasing error function Terr[i, k−1] exactly.
But we need much fewer buckets if we approximate the function.

However there is a caveat – we cannot simultaneously approximate Terr[i, k] and assume that
we know Terr[j, k − 1] exactly for all j < i, k > 2. The solution is to find a sequence of intervals
such that the approximation Apxerr[i, k] (of Terr[i, k]) increased by a 1 + δ factor. If we can
show that Apxerr[i, k] is close to Terr[i, k] for all i, k (inductively) – then we can claim an
approximation. This is the algorithm we present next.

3.2 The AHIST-S: An Approximate Algorithm with Small Space

The AHIST-S algorithm presented in Figure 3 incorporates the idea of approximating the error
function. We maintain (B − 1) interval lists implemented through arrays of bounded size, since we
have a bound on the sizes of the lists. Each element of the k-th list will store the index number
y, Sum[1, y], Sqsum[1, y] and Apxerr[y, k] values. We maintain Apxerr[y, 1] = Terr[y, 1] =
Sqerror(1, y), i.e., for representation by one bucket we would compute the error exactly. This
will be the base case of the inductive proof.

Example 1 Consider the sequence of numbers {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19}
and assume B = 2. The Terr[i, 1] values form a nice quadratic increasing function of i for
(1 ≤ i ≤ 16). Assume that δ = 0.99. The possible values of the endpoint of the first bucket is [1, 16].
The algorithm breaks the domain into intervals [1],[2],[3],[4],[5, 6],[7, 8],[9 . . . 11], [12 . . . 15] and [16].
The values stored in the list are the end points {1, 2, 3, 4, 6, 8, 11, 15, 16}. To reiterate, the value

3For readers familiar with histogram construction literature, we are building EquiWidth histograms, but in the
exponent. That is the buckets correspond to equally spaced exponent values of (1 + δ). It is feasible to use actual
EquiWidth histograms if we have an idea of the final error, and we use them in the subsequent algorithm AHIST-L-∆.
We use a combination of both EquiWidth and EquiWidth-in-exponent in algorithm AHIST-B.

8

Procedure AHIST-S()
begin

1. Set up (B − 1) lists Q[k] to store the intervals
2. Sum := Sqsum := 0
3. for j := 1 to n do {
4. Sum := Sum + vj

5. Sqsum := Sqsum + v2
j

6. for k := 2 to B do {
7. Apxerr[j, k] = ∞
8. for i := each end point b of interval list for (k − 1)-th list Q[k − 1] do

9. // Recall Apxerr[j,1] = Sqerror(1, j)
10. Apxerr[j, k] = min (Apxerr[j, k],Apxerr[i, k − 1] + Sqerror(i + 1, j))
11. // a` is the start index of the last interval in Q[k]
12. // b` is the end index of the last interval in Q[k]
13. if (k ≤ B − 1 and Apxerr[j,k] > (1+δ)Apxerr[a`,k]) {
14. // Now, we have Apxerr[j, k], Sum = Sum[j] and Sqsum = Sqsum[j]
15. a`+1 := b`+1 := j
16. Insert a new interval [a`+1,b`+1,Apxerr[j,k],Sum,Sqsum] to Q[k]
17. }
18. else

19. Set b` to j
20. }
21. }
end

Figure 3: The algorithm AHIST-S

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16

"TERR"
"SQERROR"

"APXERR"

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16

"TERR+SQERROR"
"APXERR+SQERROR"

"TERR"
"APXERR"

Figure 4: The case B = 2 and δ = 0.99 for the sequence {1, 2, 3, · · · , 16, 19}.

corresponding to entry 9 or 10 is not stored because those values are approximated by the value corre-
sponding to the entry 11. The comparison of Terr[i, 1],Apxerr[i, 1] and Sqerror(i+1, 17) is pre-
sented in Figure 4. The figure also shows the result of the true sum Terr[i−1, 1]+Sqerror(i, 17)
and the approximate sum Apxerr[i− 1, 1] + Sqerror(i, 17). The true minimum is 119.5 at entry
i = 9 with [1, 9], [10, 17] as the best buckets. We evaluate the sum Apxerr[i−1, 1]+Sqerror[i, 17]
at i ∈ {1, 2, 3, 4, 6, 8, 11, 15, 16} and get the minimum at i = 8 which is 121.556. Thus we get an
approximate solution {[1, 8], [9, 17]}. Notice that the approximate sum is only close to the true sum
(for B=2 it is exactly the same) at the endpoints.

Lemma 1 AHIST-S computes an (1 + ε)-approximate B-bucket histogram.

Proof: We will prove by induction that Apxerr[j, k] ≤ (1 + δ)k−1 Terr[j, k]. The base case is
k = 1. In this case we choose the mean of the values in a bucket as the representative, and so does
the best histogram with one bucket. Therefore Apxerr[j, 1] = Terr[j, 1].

9

Assume that we have proved the statement for all k ′ < k and are considering Apxerr[j, k].
Suppose that the last bucket chosen in the best approximation of the interval [1, j] with k buckets is
[j′, j]. Let the interval stored in the (k−1)th list which contains j ′ be [a`, b`] where a` ≤ j′ ≤ b` < j.
We know that

Terr[j, k] = Terr[j
′

, k − 1] + Sqerror(j
′

+ 1, j)

≥ Terr[a`, k − 1] + Sqerror(j ′ + 1, j) (Terr[·, k − 1] is monotone)

≥ Terr[a`, k − 1] + Sqerror(b` + 1, j)

(j′ ≤ b` < j and Sqerror is non-increasing over subintervals)

≥

(

1

(1 + δ)k−2
Apxerr[a`, k − 1] + Sqerror(b` + 1, j)

)

(3)

(By Induction Hypothesis.)

≥
1

(1 + δ)k−2

(

1

1 + δ
Apxerr[b`, k − 1] + Sqerror(b` + 1, j)

)

(4)

The last equation follows from the fact that both Apxerr[a`, k − 1] and Apxerr[b`, k − 1] were
computed and, by construction, Apxerr[a`, k − 1] ≥ Apxerr[b`, k − 1]/(1 + δ). Therefore we have

Terr[j, k] ≥
1

(1 + δ)k−2

(

1

1 + δ
Apxerr[b`, k − 1] + Sqerror(b` + 1, j)

)

≥
1

(1 + δ)k−1
(Apxerr[b`, k − 1] + Sqerror(b` + 1, j))

(All quantities are non-negative.)

=
1

(1 + δ)k−1
Apxerr[j, k].

The last step follows from the fact that we minimized over b`’s to compute the value of Apxerr[j, k].
This proves the inductive step. Setting j = n and k = B, we get that Apxerr[n,B], which is the
cost of our solution, is at most (1 + δ)B−1 times the true minimum Terr[n,B]. If δ = ε/(2B), the
approximation factor is (1 + ε

2B)B−1, which is at most (1 + ε) for small ε (say ε ≤ 1). This proves
the lemma.

Lemma 2 Let τ = min{Bε−1 log n, n}. The size of a list is O(τ).

Proof: Consider a list of size `+1 which corresponds to the sequence of intervals [a1, b1], . . . , [a`, b`], [a`+1, b`+1].
We know that a1 = 1 and for all u, bu + 1 = au+1. From the algorithm we have

Apxerr[b1 + 1, k − 1] = Apxerr[a2, k − 1] > (1 + δ)Apxerr[a1, k − 1]

Apxerr[b2 + 1, k − 1] = Apxerr[a3, k − 1] > (1 + δ)Apxerr[a2, k − 1]

... >
...

Apxerr[b` + 1, k − 1] = Apxerr[a`+1, k − 1] > (1 + δ)Apxerr[a`, k − 1]

Apxerr[a`+1, k − 1] > (1 + δ)`−1Apxerr[a2, k − 1]

Notice that Apxerr[a1, k − 1] can be zero. But Apxerr[a2, k − 1] cannot be zero, since the first
inequality cannot be satisfied in that case. In that case, Terr[a2, k − 1] ≥ 1

1+εApxerr[a2, k − 1]
by Lemma 1, and is therefore non-zero.

10

Assuming that the input is polynomially bounded integers, the minimum possible nonzero error
in a single bucket occurs in the following setting: the values in a bucket are the same except exactly
one value which differs by 1 from the rest. Without loss of generality4, if the bucket contained s
values, we can assume s−1 values are 0 and one value is 1. In this case the error is (1− 1

s)2+(s−1) 1
s2

which simplifies to 1− 1
s . Now s ≥ 2 (otherwise all values in the bucket are trivially the same!) and

therefore the minimum possible nonzero error Terr[a2, k − 1] is 1
2 . Thus the minimum non-zero

Apxerr[a2, k − 1] is also 1
2 since Apxerr[a2, k − 1] ≥ Terr[a2, k − 1].

The maximum possible value of Apxerr is Sqsum[1, n] which is at most nR2 where R is the
largest value seen. Suppose, for contradiction, that we have ` > 1+2δ−1 ln(2nR2). From the above,

nR2 ≥ Terr[a`+1, k − 1] > (1 + δ)`−1Terr[a2, k − 1] ≥ (1 + δ)`−1 1

2

This means nR2 >
(

(1 + δ)
2
δ

)ln(2nR2)
1
2 . For 1 > x > 0 it is a fact that (1+x)2/x > e. Therefore

the above equation implies 2nR2 > eln(2nR2), which is a contradiction. Thus ` ≤ 1 + 2δ−1(log n +
2 log R). Assuming R, the maximum value, is polynomially bounded in n we get ` = O(δ−1 log n).
This proves the lemma.

Theorem 1 The algorithm AHIST-S computes an (1 + ε)-approximate B-bucket histogram in
O(nB2ε−1 log n) time and O(B2ε−1 log n) space.

Proof: For each data point j and number of buckets k, we perform the minimization over the
endpoint of every interval in the (k − 1)th list. This involves comparing O(Bε−1 log n) numbers
(using Lemma 2). Since j has n possibilities and k has B different values, the total time complexity
is O(nB2ε−1 log n).

From Lemma 2, we need to maintain O(Bε−1 log n) intervals for each interval list. Thus the
space required to store all interval lists is O(B2ε−1 log n).

The time and space complexity expressed as a function of τ = B
ε log n, are O(nBτ) and O(Bτ)

respectively, as described in Table 1.

3.3 Incremental Histograms for Sliding Windows

In this section we summarize the result in [17] where we considered the following problem: “can
a data structure be maintained in the context of sliding window streams such that near optimal
histogram representations can be computed on-demand efficiently ?” As mentioned in the introduc-
tion, this yields an approximation algorithm for the original problem of constructing a histogram.
The main idea we proposed was a “need based strategy”. The algorithm is presented in Figure 5.

Note that the above algorithm does not evaluate all Apxerr[i, k] – but if it did compute them,
it would perform almost the same computation as the previous algorithm AHIST-S. Thus, we can
claim that at most Bε−1 log n elements will be inserted in the kth list 5 as before. To analyze
the running time of the algorithm observe that at most Bε−1 log n binary searches are performed
(one per insertion in the list/queue). Each binary search involves at most log n computations of
Apxerr[c, k]. Each such computation of Apxerr[c, k] will involve a minimization over Bε−1 log n
endpoints whose values are already stored in the (k − 1)th list. Thus the total running time of
CreateQueue[1, n, k] is O(B2ε−2 log3 n). The total time taken by the algorithm is O(B3ε−2 log3 n).

4Adding a fixed value C to all the values within a bucket does not change the error.
5The earlier paper [17] mentions queue; queue and list would mean the same thing for this paper and we would

use them interchangeably.

11

Procedure FixedWindowHistogram()
begin

1. Compute Sum and Sqsum

2. For k=1 to B-1 {
3. Initialize k’th queue to empty
4. CreateQueue[1,n,k]
5. }
6. For i:= end point b` of B − 1th queue {
7. Apxerr[n,B] = min(Apxerr[n,B],
8. Apxerr[i,B − 1] + Sqerror[i + 1, n])
9. }
end

Procedure CreateQueue[a,b,k]
begin

1. If (a > b) return
2. Otherwise If (a == b)
3. insert a at the end of k’th queue
4. Otherwise {
5. Compute t = Apxerr[a, k]
6. /* If k == 1 then these are simply
7. Sqerror[1, a] and Sqerror[1, c]
8. for k > 1 minimize over endpoints i
9. of k − 1’th queue */
10. Perform a binary search to find c such
11. that Apxerr[c, k] ≤ (1 + δ)t and either
12. Apxerr[c + 1, k] > (1 + delta)t or c == b
13. Insert c at the end of k’th queue
14. CreateQueue[c+1,b,k]
15. }
end

Figure 5: Algorithm FixedWindowHistogram

Theorem 2 ((Theorem 1 of [17])) For a sliding window data stream with window size n, we
can output (1 + ε)-approximate B-bucket histogram of the last n points seen using O(B 3ε−2 log3 n)
time per new point.

We omit a discussion of the proof since the result will be improved in the subsequent sections.
The above theorem assumed that we were constructing a histogram for every new point – it is easy
to see that the time complexity of maintaining the data structures is O(1) per new point. If we
construct a histogram only once, after seeing n points, the following corollary is immediate.

Corollary 1 In O(n+B3ε−2 log3 n) time and O(n) space we can construct an (1+ ε)-approximate
B-bucket histogram over a data stream.

We include the algorithm in Figure 5 in our experimental evaluation.

Implementation issues Note that a naive binary search is suboptimal. To see the issue clearly,
consider the sequence of following numbers 1,2,4,8,16,32, 64, 128,256 and δ = 0.5. If we are ensuring
that the numbers have a “gap” of a factor (1 + δ) = 1.5 then all numbers should be chosen. But
a naive implementation will evaluate Apxerr[i, k] for i = 16, decide to go left, evaluate 4 and
subsequently 2 to find the element 1. At this point, it would start repeating the process over the
sequence 2, . . . , 256, which means evaluating Apxerr[i, k] for i = 16 again (assuming we take the
floors while finding the middle element). We spell out the better alternative along with an improved
algorithm.

3.4 The fastest algorithm: AHIST-L-∆

We begin by noting the areas where the algorithm AHIST-S (and the algorithm FixedWindowHis-
togram) can be improved:

1. The most amount of time spent by the previous algorithms is in maintaining the interval lists
when the Apxerr[i, k] values are small. In such a case, the (1 + δ) approximation reduces to
storing many consecutive i’s. In fact, in a pathological example we found that all i = 1 . . . 47

12

were present in the list (the later values stored in the list had larger gaps between consecutive
items).

2. The reverse of the above situation occurs in the bad example noted in the implementation
details of the previous section! In this case, suppose B = 3 and the Apxerr[i, 2] values are
1,2,4,8,16,32,64,128,256. Let δ = 0.03. It is clear that all the values should be present in the
list. However the question to ask is: are all of the Apxerr[i, 2] values necessary ? If we knew
that the error was 20 we do need the value 256. But we do not know that the error is 20 till
we have solved the problem!

To avoid both issues, we create a bootstrap. We first compute a rough estimate, say instead
of 20 we get an upper bound of 80 (factor 4). This is not a good approximation, but allows us
to rule out computing any Apxerr[i, 2] greater than 80 in the example above. The improvement
may appear to be small, but it is not. This is because each item in the k th list uses all the items
in the (k − 1)th list. Reducing the maximum size of the lists by a factor g decreases the running
time by a factor g2. The key idea is a technique in approximation algorithms where we decompose
the problem into two parts. In the inner part of the algorithm we solve the problem assuming a
parameter value is within a “good” range. The outer part searches for the appropriate range and
sets the parameter. Note that for the idea to be successful, if the parameter is not in the good
range then the inner part must be able to discover that as well.

3.4.1 The algorithm AHIST-L-∆

As mentioned, we decompose the problem into two parts. The core part assumes that we have an
estimate ∆ of the error of the optimum histogram. If our estimate ∆ is correct, i.e., there is a
histogram whose error is ∆ then the algorithm will return a histogram of error (1 + ε)∆. If our
estimate is incorrect, then the histogram which is returned can have an arbitrary error. This core
part of the algorithm will be denoted by SUB-AHIST-L-∆.

The outer part, AHIST-L-∆, will try to find ∆. It will first check if there is a solution with zero
error. To achieve that it will invoke SUB-AHIST-L-∆with ∆ = 0. If there is indeed a solution with
0 error, SUB-AHIST-L-∆will return a histogram of error at most (1 + ε)0 = 0 and the problem is
optimally solved.

Assuming that SUB-AHIST-L-∆ did not return a histogram with 0 error, the outer algorithm,
AHIST-L-∆, will invoke SUB-AHIST-L-∆ with the minimum possible nonzero error (which is 1/2
for integer input as discussed earlier). In particular if SUB-AHIST-L-∆ returns a histogram of
error more than (1 + ε)∆ for some ∆ then we know that the optimum error is more than ∆. We
can then raise ∆ to (1 + ε)∆. Thus at some point we would have the optimum answer in the
range ∆ to (1 + ε)∆, and then invoking SUB-AHIST-L-∆ with the later bound will give a (1 + ε)2

approximation. This is the basic idea but the search for the range of the optimum answer can be
improved. We will instead invoke SUB-AHIST-L-∆ with ε = 1 (recall that SUB-AHIST-L-∆ is an
approximation scheme, which allows us to set ε and get an approximation of suitable quality). This
leads us faster to the range in which the optimum error lies, but at the end of the search we have
more slack, i.e., we get a (1 + 1)2 = 4 approximation. From the 4 approximation we will compute
the (1 + ε)-approximation in one step.

The above also would shed some light on what properties we would need for SUB-AHIST-L-∆,
and more importantly, what are the design parameters. The simple guarantee “if there is a his-
togram with error ∆ then we find a histogram of error (1 + ε)∆” does not suffice any more. In
particular, to get the (1 + ε) approximation from a 4 approximation we need SUB-AHIST-L-∆

13

Procedure AHIST-L-∆
begin

1. Create Sum, Sqsum to allow computation of Sqerror() in O(1) time
2. ρ := 1, /* ρ will remain the same throughout this algorithm */

/* check if solution is zero */

3. Cutoff := 0; z := 0
4. E := SUB-AHIST-L-∆(B, Cutoff, ρ, z)
5. if E = 0 return the solution of the above

/* We now begin the search for upper bounding the error */

6. ∆ := 1/2

7. Cutoff := 4∆; z := ∆
2B

/* ε = 1 */
8. E := SUB-AHIST-L-∆(B, Cutoff, ρ, z)
9. while E ≥ 4∆ do {
10. ∆ := 2 ∗ ∆

11. Cutoff := 4∆; z := ∆
2B

/* ε = 1 */
12. E := SUB-AHIST-L-∆(B,Cutoff,ρ,z)
13. }

/* at this point we know that the optimum error is between */
/* ∆, and 2∆. Further, we have a solution of error E */

14. Cutoff := E; /* we do not need to search for larger error */
/* since we already have one of of error E */

15. z := ε∆/(2B)
16. SUB-AHIST-L-∆(B, Cutoff, ρ, z)
end

Figure 6: The AHIST-L-∆

to preserve the following stronger condition: if there is a histogram whose error is at most “Max-
estimate”, given a value z > 0, we will return a histogram whose error is at most the optimum
error plus (B − 1)z. Now from the 4 approximation we can easily get a (1 + ε) approximation
by setting z = ε∆/(B − 1) and Maxestimate = 4∆ (the optimum error is between ∆ and 2∆).
This would explain the settings of the parameters of AHIST-L-∆ as described in the Figure 6; but
before discussing the full algorithm we will add one extra twist to SUB-AHIST-L-∆. We will add
an extra parameter ρ, and SUB-AHIST-L-∆ will achieve the following:

Invariant If there is a histogram whose error is at most “Maxestimate”, given a value z > 0, ρ ≥
1, we will return a histogram whose error is at most ρB−1 times the sum of (B − 1)z and the
optimum error. The running time of course will be a function of ρ, z.

We introduce the parameter ρ because we would require it in the next section to develop a
streaming algorithm. Instead of repeating near identical material (corresponding to ρ = 1 in
AHIST-L-∆ and ρ > 1 later), we present one succinct proof/tool which we can use flexibly. This
explains the choice of the input parameters in the algorithm SUB-AHIST-L-∆.

The main complexity of the proof arises from the introduction of the term z. The issue is that in
SUB-AHIST-L-∆ the evaluation of Apxerr[i + 5, k] may rule out the evaluation of Apxerr[i, k] –
this means that monotonicity of Apxerr[i, k] holds only on the set {i} for which we have evaluated
and stored Apxerr[i, k]. This forces us to be more careful in the inductive proof. We first describe
the algorithm SUB-AHIST-L-∆ in more detail and prove its properties and then subsequently prove

14

the correctness and complexity bounds of the overall algorithm AHIST-L-∆.

3.4.2 SUB-AHIST-L-∆

Our overall goal is to create the intervals similar to those constructed by AHIST-S. This algorithm
evaluated all Apxerr[i, k] for 1 ≤ i ≤ n − 1, 1 ≤ k ≤ B − 1 and only retained those Apxerr[i, k]
which were more than Apxerr[i′, k] stored by a 1 + δ factor (where i′ was the largest element in
the kth list less than i).

Reconsider the dynamic programming table constructed by the optimal algorithm; let Terr[1, 1]
be the bottom left corner and Terr[n,B] be the top right corner. A metaphoric view of the
algorithm AHIST-S could be the following: a “front” which moves from left to right and creates
(approximately) the same table as the optimal algorithm, but only chooses to remember a few
“highlights”. The highlights corresponds to the boundary points which are sufficient to construct an
approximate histogram. One way of conceptualizing the algorithm SUB-AHIST-L-∆ is that we want
to create a similar table, but in this case the front is moving from bottom to top. More formally, all
the Apxerr[∗, k] we want to compute/store are computed before any Apxerr[∗, k+1] is computed.
Note, we immediately have a problem that Apxerr[i, k + 1] may (and in the implementation,
actually does) depend on Apxerr[i′, k] where i′ > i. This is where the old proof of the algorithm
AHIST-S fails and a more subtle argument is required. However note that the “front” of AHIST-S
proceeded left to right and therefore was applicable to streams. This property is lost in the bottom
to top computation.

The algorithm SUB-AHIST-L-∆ is described in Figure 7. The critical component of the algo-
rithm is the procedure CreateBestList which creates the lists.

CreateBestList The invocation of CreateBestList(1, n, k, Cutoff, ρ, z) (see Figure 7) computes
the interval list for the k-th list by proceeding backward from the largest index (i.e., n). The
subroutine ensures is that no element i with Apxerr[i, k] > Cutoff is placed in the list. However
after placing an element, Cutoff is changed.

Initially when CreateBestList() is invoked, we have Cutoff = Maxestimate and no Apxerr[i, k]
with value larger than Maxestimate is considered. After CreateBestList has found one such i
that passes the cutoff, it resets the cutoff to (Apxerr[i, k] − z)/ρ. The z is the additive error
component and ρ is the multiplicative factor mentioned previously. In SUB-AHIST-L-∆ we have
ρ = 1. CreateBestList first checks if Apxerr[start, k] passes the cutoff (i.e., is lower). If not, the
entire interval can be thrown away without adding an element in the list. If indeed Apxerr[start, k]
is below the cutoff, then we know that some Apxerr[i, k] for start ≤ i ≤ end needs to be added
to the list. The goal is to find the largest such i. We divide the interval [start, end] into two
pieces and recurse on the right half. This recursive call may change the cutoff, and when we
return we check if Apxerr[start, k] is below the current Cutoff. We now apply the logic again
– if Cutoff > Apxerr[start, k] then for some i′ ∈ [start,mid] we need to add i′ to the list. We
proceed recursively till mid = start or we have decided that the entire subinterval [start,mid] can
be discarded. If we are at mid = start and Cutoff is still larger than Apxerr[start, k] then we
need to add start to the list. In all cases we return the updated value of Cutoff. Observe, that no
Apxerr[start, k] is evaluated more than once.

The price paid Unfortunately the above comes with a price. The problem arises if we invoke
CreateBestList with z > 0, since for any arbitrary j it is not clear that there is any element b`

in the k-th list such that b` ≥ j. The lists can be empty – more so because we will search for an
appropriate value of ∆. If ∆ is too small, by definition the list will be empty at a j which would

15

have been useful for the histogram. Anecdotally, this issue of the lists running empty has been a
source of many headaches in the implementations. At the same time, the empty list is a “proof”
that our estimate ∆ was too low!.

This naturally leads us to the most interesting lemma in the paper, which at a high level, states
that “if the estimations (for Cutoff, z) were correct, the list cannot run empty, and would have
something useful for us”. Before we proceed, we define some terms that will simplify the notation
of the following discussion.

Definition 2 Let Terr[0, 0] = Apxerr[0, 0] = 0 and Terr[i, 0] = ∞; this defines the “zero
bucket” case. If we are approximating the empty set with buckets, the error is 0, and if the set is
nonempty, the error is ∞. Define Q[0] = {0}. As the reader will notice, this makes the statement
of Lemma 3 vacuously true and allows a simpler base case.

Further let Sqerror(i + 1, j) = 0 if j ≤ i. This is a bucket which is “backward” i.e., the right
boundary is before the left boundary. This is a fictitious bucket and will be removed from the final
solution. These buckets simply mean that the same error can be achieved by a smaller number of
buckets. Note that this is used in the pseudocode as well.

Lemma 3 For all k, j ≥ 1, if MaxEstimate ≥ ρk(Terr[j, k] + kz) then there exists an interval
[a`, b`] in the k-th interval list produced by CreateBestList such that a` ≤ j ≤ b` and Apxerr[b`, k] ≤
ρk(Terr[j, k] + kz).

Proof: The statement of the Lemma is true for k = 0 vacuously, since Terr[j, k] = ∞ >
MaxEstimate.

Let us assume the statement is true for k − 1. Let the last bucket in the best k-bucket approx-
imation of the interval [1, j] be [i + 1, j] where i < j. We have:

Terr[j, k] = Terr[i, k − 1] + Sqerror(i + 1, j) (5)

Now since MaxEstimate > ρk(Terr[j, k]+(k−1)z) from the above equation we have MaxEstimate >
ρk(Terr[i, k−1]+(k−1)z) ≥ ρk−1(Terr[i, k−1]+(k−1)z). Since the condition on MaxEstimate
is satisfied, by the inductive hypothesis we have an interval [a′, b′] with b′ in the (k−1)th list (denoted
by Q[k − 1]) satisfying the following conditions:

a′ ≤ i ≤ b′ (6)

Apxerr[b′, k − 1] ≤ ρk−1(Terr[i, k − 1] + (k − 1)z) (7)

Now, consider the interval [s′, e′] which decided the status of j in the kth list, i.e., Q[k]. There
are two cases to consider:

Case (A): j was inserted, and it must have been that j = s′.

Case (B): The entire interval [s′, e′] containing j was dropped.

But in either case we evaluated Apxerr[s′, k]. In evaluating Apxerr[s′, k] we minimized over
all the elements in u ∈ Q[k − 1] the sum Apxerr[u, k − 1] +Sqerror(u +1, s′). Now b′ ∈ Q[k − 1]
and since we minimized over all u ∈ Q[k − 1], we have:

Apxerr[s′, k] ≤ Apxerr[b′, k − 1] + Sqerror(b′ + 1, s′) (8)

because b′ ∈ Q[k − 1] and we explicitly minimized Apxerr[s′, k]. Observe that we are using the
“generalized” Sqerror(b′ + 1, s′) where Sqerror(b′ + 1, s′) = 0 if s ≤ b′.

16

Now i ≤ b′ (by Equation (6)) and s′ ≤ j (since j ∈ [s′, e′]). We claim that Sqerror(b′ +1, s′) ≤
Sqerror(i + 1, j). There are two possibilities concerning b′ and s′, i.e., b′ < s′ or b′ ≥ s′. If b′ < s′

then we have Sqerror(b′+1, s′) ≤ Sqerror(i+1, j) because [b′+1, s′] is a sub-interval of [i+1, j].
Otherwise if b′ ≥ s′ then by the definition of generalized Sqerror we have Sqerror(b′+1, s′) = 0,
and again 0 = Sqerror(b′ + 1, s′) ≤ Sqerror(i + 1, j) (Sqerror cannot be negative).

From Equations (7), (8) and Sqerror(b′ + 1, s′) ≤ Sqerror(i + 1, j) we get:

Apxerr[s′, k] ≤ ρk−1(Terr[i, k − 1] + (k − 1)z) + Sqerror(i + 1, j)

The above implies:

Apxerr[s′, k] ≤ ρk−1(Terr[i, k − 1] + Sqerror(i + 1, j) + (k − 1)z)

= ρk−1(Terr[j, k] + (k − 1)z) < MaxEstimate (9)

Now the above means that we could not have dropped [s′, e′] if Q[k] was empty. Because when
the list is empty, Cutoff = MaxEstimate, and the above equation contradicts the condition for
dropping [s′, e′]. That means there is an element greater or equal to j in Q[k]. Let b` be the smallest
such element.

If we were in case (A), i.e., we inserted j in Q[k] then b` = j and Equation (9) proves the lemma.
Therefore for the remainder of the proof we can assume that we are in case (B) and we dropped
the entire interval [s′, e′]. That could have only happened if on the last insertion in Q[k] (before
dropping [s′, e′]) we must have set Cutoff such that Apxerr[s′, k] ≥ Cutoff. Let u be the element
for which we set this Cutoff. Therefore Cutoff = (Apxerr[u, k] − z)/ρ. But in this case u is the
smallest element larger than j in Q[k] and u = b`. Thus we have:

Apxerr[s′, k] ≥ Cutoff =
Apxerr[b`, k] − z

ρ

Combined with Equation (9) this implies

Apxerr[b`, k] − z

ρ
≤ Apxerr[s′, k] ≤ ρk−1(Terr[j, k] + (k − 1)z)

which after rearrangement proves the lemma for k. Therefore by induction, the lemma holds for
all k ≤ B.

The above (partially) proves the guarantees on the quality of approximation. We will shortly
see how to use the guarantees. But before that we need to bound the running time. This is achieved
by the following:

Lemma 4 CreateBestList(1, n, k,Maxestimate, ρ, z) runs in O(λ2 log n) time and creates a list of

size O(λ) where λ = min
{

Maxestimate
z , 1

ρ−1 log n)
}

.

Proof: Suppose we executed line (4) for a particular invocation of CreateBestList with the parame-
ters (start, end, k,Cutoff, ρ, z). Then we are guaranteed that, when we return from this invocation,
Cutoff would have decreased (which also means the interval list would have increased by one).
This follows from the fact that if we did not change Cutoff in the recursive calls in the lines (4)–
(10), we cannot return from inside of this loop since we entered the loop under the guarantee that
Cutoff > Apxerr[k, start]. In this case, we will proceed to lines (12) and (13). Between successive
insertions Cutoff decreases by z and a factor of ρ. Immediately, we can see that the list size is at
most O(λ) where λ = min{Maxestimate

z , 1
ρ−1 log n)}. The first part arises from the fact that each

17

insertion into the queue corresponds to a difference of z and the maximum possible value in the
queue is Maxestimate. The second part follows due to the same reasons as Lemma 2, i.e., geomet-
ric increase in factors of ρ and a bound of nR2 on the maximum value. Observe that the bound is
defined as long as we do not simultaneously have ρ = 1 and z = 0.

Let i and i′ be two consecutive items in the list where i is followed by i′, i.e., i′ was inserted
before. Let us focus on calculating the number of invocations of CreateBestList between (and not
including) the two invocations that inserted i and i′. Each of these invocations did not add any
item to the list or change Cutoff (since i and i′ were consecutive in the list). Thus each of these
invocations must have returned from line (3). Otherwise they would have changed the list as we
discussed above. Thus, these invocations did not recursively call CreateBestList. Each of them
took O(1) time excluding an evaluation of Apxerr[i, k]. Further these invocations corresponded
to disjoint intervals.

Consider the binary tree built on [1, . . . , n] – where the nodes correspond to the intervals and
each interval is recursively halved. For each element (interval of length 1), there exists a unique
path in the tree between i and i′. The invocations of CreateBestList between insertions of i′ and
i correspond to the intervals whose parents are in that unique path between i ′ and i. Because the
path is of length at most log n, the number of such invocations between any i′ and i is O(log n).

Putting everything together, we enter O(λ) values in the list, and between each entry we invoke
CreateBestList at most O(log n) times. Overall, we invoke CreateBestList at most O(λ log n) times.
Each call to CreateBestList leads to exactly one evaluation of Apxerr[start, k]. Each evaluation of
Apxerr[start, k] is a minimization over O(λ) values (size of the (k − 1)th list). Thus, to construct
each entire list we take O(λ2 log n) time.

Corollary 2 CreateBestList(1, n, k, (2 + 2ε)∆, 1, ε∆
B−1) takes O(B2ε−2 log n) time and generates a

O(Bε−1) size list.

Lemma 5 If ∆ ≤ Terr[n,B] ≤ 2∆, then SUB-AHIST-L-∆(B, (2 + 2ε)∆, 1, ε∆
B−1) returns a his-

togram which has error at most (1 + ε)Terr[n,B] in O(B3ε−2 log n) time

Proof: Suppose the last bucket of the optimum solution was [i, n] and thus Terr[i, B − 1] +
Sqerror(i + 1, n) = Terr[n,B] ≤ 2∆. By Lemma 3, since Terr[i, B − 1] ≤ 2∆ we get an i ′ ≥ i
in the (B − 1)th list s.t. (note, ρ = 1 and z = ε∆

B−1),

Apxerr[i′, B − 1] ≤ ρB−1 (Terr[i, B − 1] + (B − 1)z) = Terr[i, B − 1] +
ε∆

B − 1

Because i ≤ i′ ≤ n we have Sqerror(i′ + 1, n) ≤ Sqerror(i + 1, n). Adding this to the
equation above we get,

Apxerr[i′, B − 1] + Sqerror(i′ + 1, n) ≤ Terr[i, B − 1] + ε∆ + Sqerror(i + 1, n)

The right hand side is Terr[n,B]+ε∆. Now Apxerr[n,B] ≤ Apxerr[i′, B−1]+Sqerror(i′+1, n)
because we minimize over the elements in the (B − 1)th interval list. Because Terr[n,B] ≥ ∆, we
have

Apxerr[n,B] ≤ Terr[n,B] + ε∆ ≤ (1 + ε)Terr[n,B]

The running time follows from Corollary 2.

18

The performance of AHIST-L-∆ We are now ready to analyze the algorithm AHIST-L-∆
given in Figure 6.

Theorem 3 In O(n+B3(log n+ε−2) log n) time and O(n+B2ε−1) space, AHIST-L-∆ can compute
an (1 + ε)-approximate B-bucket histogram of n points. Furthermore, for a sliding window model
we can compute a histogram of the previous n elements in time O(B3(log n + ε−2) log n).

Proof: The maximum possible values of ∆ is nR2 where R is the maximum number seen anywhere.
Recall, from the introduction that R is assumed to be polynomially bounded and log(nR2) =
O(log n). Unless we have a histogram of zero error, the error is at least 1

2 . So initially we satisfy
that ∆ is a lower bound on the error. If the optimum solution is between ∆ and 2∆, because
ε = 1 is passed to AHIST-L-∆ by Lemma 5 we are guaranteed a (1 + 1)-approximation. Thus,
the solution returned must have cost at most 4∆. If not, then we are guaranteed that no solution
exists below 2∆, and we increase ∆.

If indeed we see a histogram with error E ≤ 4∆, we are guaranteed that it is a 4 approximation
and by Lemma 5 we get a (1 + ε)-approximation. Because ∆ increases by factors of 2, we try at
most log(nR2) = O(log n) values. For each of these invocations we set ε = 1 and the running time
of each is O(B3 log n) which totals to at most O(B3 log2 n) time. In fact we can replace log n by
log of the optimum error.

The last invocation of SUB-AHIST-L-∆ requires O(B3ε−2 log n) time and the total time taken
is O(B3(ε−2 + log n) log n).

In retrospect, setting z = 0 and ρ = 1 + δ = 1 + ε
2B gives us the algorithm FixedWindowHis-

togram.

Implementation Details The computation of Apxerr[start, k] is the bottleneck in the above
algorithm. For ε � 1, the list sizes are large. We first find a quick estimate (which is a 2
approximation, but we do not use this fact) and it allows us not to consider all b` in the (k−1)th list
which have Apxerr[b`, k− 1] larger than our quick estimate. Furthermore we can stop considering
all b` such that Sqerror(b` + 1, start) is greater than our estimate. Both of these yield significant
benefits however we cannot prove that the pruning strategy yields time complexity.

3.5 A O(n) time streaming algorithm: AHIST-B

The algorithm AHIST-S reads one element at a time and uses O(B2ε−1 log n) space and operates
on a data stream. However the running time of the algorithm is O(nB2ε−1 log n). The algorithm
AHIST-L-∆shows that if we were allowed to store O(n) information, the running time is O(n) (for
large n). A natural question in this regard is: “can we get the best of both worlds?” Is there
a streaming algorithm that uses small space (a small polynomial in B, log n and ε−1) and takes
O(n) time (for large n)? We show that we can achieve such a streaming algorithm. This direction
was first studied in [20] in the context of relative error. The basic framework is the same as the
AHIST-S algorithm except that we read a block of M,M � n elements at a time. The central idea
is a function ExtendList which would “extend” the lists after reading each block of M elements.

The idea of the function ExtendList is illustrated in Figure 8. The idea is described in detail in
[20]. We summarize the main points for the sake of completeness, as well as for comparison, since
we improve the algorithm. We maintain the increasing “staircase”, which is the approximation.
Assume that we processed r blocks of data values whose interval is [1, n − M] and we are about
to process the next block of M numbers. This new block, which we are reading, defines the solid
section of the figure and we need to approximate that section into a staircase. There are two issues

19

involved. First, while trying to compute Apxerr[i, k], for an element in the current block the
elements in the (k − 1)th list of the older blocks will take part in minimization. Second, instead of
starting from the first item of the new block, a is set to the start point of the last interval of the
kth list constructed for [1, n − M]. This means that the last entry of the k th list constructed for
[1, n−M] may be dropped. It also means that the intervals need to keep track of the start points as
well as endpoints. We have d n

M e blocks and for each block we spend time O(B3ε−2(log M) log2 n)).
We quote the next theorem (restated in terms of V-Optimal error),

Theorem 4 (Theorem 4.5 in [20]) We can construct a (1 + ε)-approximate B-bucket histogram in
O(n) time and O(B3ε−2(log2 n)(log log n + log B

ε)) space.

Naturally, n > M = B3ε−2(log2 n)(log log n+log B
ε) in context of the above theorem. For more

details and proof, see [20]. In what follows, we show how to improve the above.

3.6 An improved algorithm: AHIST-B

Let us first investigate the algorithm AHIST-L-∆and the places from where the improvement arises,
and if the strategy can be applied to streams. In AHIST-L-∆ the most important factor that af-
fected the running time was the pruning achieved by the “Maxestimate” and Cutoff. Their effect
was twofold. First, we did not compute the values which were large (because of Cutoff). Second,
and somewhat in a less obvious way, we did not compute the values which were too small because
of z. For a small Apxerr[i, k] setting Cutoff = Apxerr[i, k] − z ensures that Cutoff is negative
and no element is added to the list subsequently.

The first idea cannot be implemented in streaming because these values which appear to be
large currently may be useful as more data arrives. We have to compute the entire staircase for all
k and pruning based on this idea cannot apply.

The second idea is also problematic. We cannot define “small” since we do not know the total
error. A small value of Apxerr[i, k] which we have computed may be useful later if the subsequent
blocks have all elements set to 0. The same value would be useless if the later blocks have a very
large variations in numbers (and thus the total error is large).

However the second idea can be applied partially. The kernel of the idea is that “we may have
to compute a small value, but we need not reuse the value as we gather evidence that the value
is less relevant”. The idea is natural, but the question remains: how do we determine if a value
Apxerr[i, k − 1] is relevant?

The answer is that Apxerr[i, k− 1] is used to compute Apxerr[j, k]. Assume that we discover
that Apxerr[j, k] is between 1000 and 2000 and the values of Apxerr[i, k−1] and Apxerr[i ′, k−1]
differ by 1 (say i < i′). While computing Apxerr[j, k] more precisely we need not compute both
Apxerr[i, k−1]+Sqerror(i+1, j) and Apxerr[i′, k−1]+Sqerror(i′ +1, j) – the latter cannot
be larger than the former by more than the difference Apxerr[i′, k − 1] − Apxerr[i, k − 1] since
Sqerror(i + 1, j) is monotone nonincreasing in i.

The main idea For every Apxerr[j, k], instead of minimizing over the entire (k − 1)th list
Q[k − 1], we will create a sublist SubQ[k − 1] and only use these elements. This list SubQ[k − 1]
will be created on the fly from Q[k − 1], based on a 4 approximation of Apxerr[j, k], which we will
derive first. Note that we will keep the Q[k − 1] unchanged since it may be needed later.

20

A less intriguing observation is that if we keep track of the estimate Apxerr[n,B] of the
optimum, where n is the last element of the last block read, we can discard all items in Q[k] smaller
than some small constant times Apxerr[n,B]/B. This simply means that as we gather evidence
that the optimum is simply large, we do not care about the small values. In contrast the idea of
SubQ means that even though we do not know if Terr[j, k] will be useful or not, in approximating
Terr[j, k] we can have Apxerr[j, k] − Terr[j, k] proportional to Terr[j, k] and still maintain an
approximation factor. Observe that this also addresses the first improvement factor of AHIST-L-∆
partially as well. We cannot avoid computing the large values; but while computing the large
values we a greater latitude in approximation. This allows us to perform less work. We reiterate
that this does not mean that we relax the approximation guarantee, but the difference between the
approximate and the optimal solution can be more if the optimal solution was already large. The
improved algorithm is given in Figure 10. The new part is the ExtendBestList function.

ExtendBestList The pseudocode and the main idea is expressed in Figure 9. The array Q[k−1]
is shown on the upper part in Figure 9. We ensure that for two consecutive elements belonging to
the array (endpoints of intervals ending at i and i′) in the array satisfies Apxerr[i, k−1] ≤ Cutoff =
Apxerr[i′, k−1]/ρ. The last element in Q[k−1] corresponds the last element of the last block (say
y) read so far. This setup is similar to AHIST-S. We ensure that the first element u in the array
Q[k − 1] also satisfies Apxerr[u, k − 1] ≥ Optestimate/(4B) where Optestimate = Apxerr[y,B],
since any value smaller than such can be ignored (follows from proof of Lemma 5). This is the
more obvious idea mentioned earlier.

Along with Q[k − 1] we maintain a chain of subelements (indicated by the chain of pointers)
any two consecutive elements a and a′ satisfy Apxerr[a, k − 1] ≤ Apxerr[a′, k− 1]/2 and a′ is the
largest sub-element in Q[k − 1] for which the condition holds 6. Define this list of endpoints to be
G[K − 1]. This can be maintained easily as new elements are added to Q[k − 1] (at the right end).

If we were to use the elements a of G[K − 1] to minimize Apxerr[a, k − 1]+Sqerror(a+1, j)
to get Apxerr[j, k] then we would get a 2 approximation for Apxerr[j, k]. This follows because

we will recursively maintain Apxerr[a, k − 1] to be a close, i.e., (1 + (k−1)ε
2B) approximation of

Terr[a, k − 1]. Now repeating the arguments in the proof of Lemma 5 (setting n = j and B = k
in that proof) we can show that

min
a∈G[k−1]

Apxerr[a, k − 1] + Sqerror(a + 1, j)

is a (1 + (k−1)ε
2B) ∗ 2 approximation. This explains the choice of 2, since we want the product to be

at most 4.
Now we set Cutoff to be this 4 approximation (say = Cjk) of Terr[j, k] and find the largest

index u in Q[k − 1] such that Apxerr[u, k − 1 ≤ Cutoff. We now proceed backward in Q[k − 1] to
find the sequence of elements such that two consecutive p′ and p in that sequence (p′ is chosen first
and p′ > p) satisfies Apxerr[p, k − 1] ≤ Apxerr[p′, k − 1] − zjk where zjk = Cjk/(16B). Thus we
arrive at a set of elements shown as shaded in the lower part of Figure 9. This is the list SubQ[k−1].
This list may or may not have overlap with G[k − 1]. The reader must have noticed the similarity
with the CreateBestList by now – in fact this is the idea, that we run a similar algorithm but adjust
z depending on the j, k we are considering currently. Since Cjk was at most 4Terr[j, k] setting
zjk = εCjk/(16B) ensures that zjk ≤ εTerr[j, k]/(4B). We can now repeat the proof of Lemma 3
and convince ourselves that we approximate Apxerr[j, k] recursively up to a factor (1 + kε

2B).

6The 2 can be changed to any constant σ > 1, but then we would first construct a 2σ approximation to
Apxerr[j, k].

21

Analysis Observe that the size of G[k − 1] is O(log n), because Apxerr[∗, k − 1] of any two
alternate elements in G[k − 1] increase by factor 2 and the maximum value is nR2. Thus we
compute a 4 approximation to Apxerr[j, k] in O(log n) time. Now proceeding backward, we will
only choose at most O(B/ε) elements in SubQ[k − 1]. To identify each item in SubQ[k − 1] we
will need to perform a binary search (exactly the same as CreateBestList), but the size of Q[k − 1]
is O(τ) (as we saw in AHIST-S). We can therefor summarize the discussion as:

Lemma 6 We evaluate each Apxerr[j, k] in O(B
ε log τ + log n) time. Note that in each such

evaluation Sqerror is evaluated O(Bε−1 + log n) times which corresponds to the sum of the sizes
of SubQ[k − 1] and G[k − 1].

Theorem 5 The algorithm AHIST-B takes O(n + Mτ) time and O(Bτ + M) space where τ =
min{Bε−1 log n, n} and M = B(Bε−1 log τ + log n) log τ .

Proof: Over the lifetime of the algorithm, once again we insert at most O
(

τ + d n
M e

)

elements in
every list, since the inserted elements (except the last items in blocks) still grow in their Apxerr

values by a factor of 1 + O(ε
B). Furthermore, for every insertion of an element in the list we have

O(log M) elements evaluated (due to a reason similar to CreateBestList but the size of a block is
M). But now, when we evaluate Apxerr[i′, k] at any point, we can use the bound from Lemma 6.
The total time of insertions in the lists is (considering all B lists)

B(log M)(Bε−1 log τ + log n)
(

τ + d
n

M
e
)

(10)

We need to add O(Md n
M e) = O(n) to the above since that is the time to read the blocks,

create Sum and Sqsum etc. Observe that the overall space requirement is O(M + Bτ). To get the
coefficient of n to be a constant we would like

Bε−1 log τ + log n = O

(

M

B log M

)

If M = B(Bε−1 log τ + log n) log τ we can observe that log M = O(log τ) and the above condition
necessary to set the coefficient of n to a constant is achieved. The running time is O(n + Mτ) and
the space required is O(M + Bτ).

4 Generalizations of the Approximation Techniques

In this section, we will revisit the results in the previous section to generalize our approximation
schemes to cover a broad range of histograms and error measures. Observe that the following
properties are used in our approximation schemes (the first three are required by the optimal
algorithm):

(P1) The error of a bucket Sqerror(i, j) only depends on the i, j and xi, xi+1, . . . , xj .

(P2) The overall error, Terr[n,B], is the sum of the errors of the B buckets.

(P3) We can maintain O(1) information for each element s.t. given any i, j the value of Sqerror(i+
1, j) can be computed efficiently. In the algorithms we maintained Sum,Sqsum values to com-
pute Sqerror(i + 1, j) in O(1) time.

22

(P4) The error is interval monotone, i.e., for any interval [i, j] we have Sqerror(i, j) ≤ Sqerror(i, j+
1) and Sqerror(i, j) ≤ Sqerror(i − 1, j).

(P5) The value of the largest number R (therefore the maximum error) and the minimum nonzero
error is polynomially bounded in n.

The fact that the above properties suffice for the correctness of lemmas and theorems can be
proved by inspection. We now show the most general theorem that can be achieved on the basis of
the algorithms we have seen.

Theorem 6 Suppose we are given a histogram construction problem where the error ET satisfies
the conditions (P1)–(P5) Suppose the error of a bucket EB(i + 1, j) can be computed in time O(Q)
from the records Info[i] and Info[j] each requiring O(P) space. Assume that the time to create the
O(P) structure is O(T) then by changing the function that computes the error given the endpoints
we achieve the following (recall τ = Bε−1 log n):

(i) We can find the optimum histogram in O(nT +n2(B +Q)) time and O(n(P +B)) space based
on the VOPT algorithm.

(ii) In O(nT + nQBτ) time and O(PBτ) space, we can find a (1 + ε) approximation to the
optimum histogram based on AHIST-S.

(iii) In O(nT +QB3(log n+ε−2) log n) time and O(nP) space, we can find a (1+ε) approximation
to the optimum histogram based on AHIST-L-∆.

(iv) In O(nT + MQτ) time and O(PBτ + MQ) space we can find a (1 + ε) approximation to the

optimum histogram based on AHIST-B, where MQ = B(QB
ε + Q log n + B

ε log τ) log(Qτ).

(v) The algorithms (ii) and (iv) extend to data streams where the input x1, . . . , xi, . . . arrive in
increasing order of i.

In the above only part (iv) has a different form than previously seen, this is because the running
time based on Lemma 6 changes to:

B(log MQ)((Bε−1 + log n)Q + Bε−1 log τ + log n)

(

τ + d
n

MQ
e

)

The extra term accounts for the fact that Sqerror() needs O(Q) time instead of O(1). The above
theorem assumes that input items arrive one by one and we preprocess them. The next theorem
applies to the strategy that instead of looking at items one by one, we can preprocess the entire data
(before we embark on histogram construction) in one shot so that we can support some efficient
querying during the process of histogram construction. The theorem is applied in Corollary 3.

Theorem 7 Suppose we are given a histogram construction problem where the error ET satisfies
the conditions (P1)–(P5). Suppose on we can preprocess the input in O(nT) time and O(nP)
space such that the bucket error EB(i + 1, j) can be computed in time O(Q) using the preprocessed
data structure, in O(nT + QB3(log n + ε−2) log n) time and O(nP) space, we can find a (1 + ε)
approximation to the optimum histogram based on AHIST-L-∆.

We consider the following examples (i) approximation by degree d polynomials (ii) χ2-test
error, defined in [6] in defining compressed histogram (iii) sum of absolute error. As indicated in
the introduction, the algorithms carry over to the relative error setting, see [20].

23

4.1 Approximation by Piecewise Degree-d Polynomials

Suppose instead of using a piecewise constant representation we use a piecewise linear representa-
tion. The error is still the sum of squares of the error seen at each point i. The bucket [a + 1, b] is
represented by the polynomial p1(i − a) + p0 where the coefficients are p1 and p0. The error seen
by the bucket is

EB(a + 1, b) =

b
∑

i=a+1

(p1(i − a) + p0 − xi)
2

It is easy to see that the error is interval-monotone. The standard method of finding the best
values of p0 and p1 is to set both partial derivatives, with respect to p0 and p1, to 0 and solve the
resulting equations. The equations are:

b
∑

i=a+1

p1(i − a) + (b − a)p0 =

b
∑

i=a+1

xi

b
∑

i=a+1

p1(i − a)2 +
b

∑

i=a+1

(i − a)p0 =
b

∑

i=a+1

(i − a)xi

If we set b − a = r, the above simplifies to

p1
r(r + 1)

2
+ rp0 =

b
∑

i=a+1

xi

p1
r(r + 1)(2r + 1)

6
+

r(r + 1)

2
p0 =

b
∑

i=a+1

i · xi − a
b

∑

i=a+1

xi

If we store
∑b

i=1 i · xi,
∑b

i=1 xi and
∑b

i=1 x2
i we can find p0, p1 and EB(a+1, b). Thus we can apply

Theorem 6 with P = Q = T = O(1). In case of representation by degree-d polynomials the error
is given by

EB(a + 1, b) =

b
∑

i=a+1









d
∑

j=0

pj(i − a)j



 − xi





2

This sets up (d + 1) linear equations which give us the best p0, . . . , pd, namely (once again, if
r = b − a)



























r

r
∑

i=1

i · · ·

r
∑

i=1

id

r
∑

i=1

i

r
∑

i=1

i2 · · ·

r
∑

i=1

id+1

...
...

. . .
...

r
∑

i=1

id
r

∑

i=1

i2 · · ·

r
∑

i=1

i2d





































p0

p1
...
pd











=































b
∑

i=a+1

xi

b
∑

i=a+1

(i − a)xi

...
b

∑

i=a+1

(i − a)dxi































Thus, we have (d + 1) × (d + 1) system of linear equations set up, which we can solve in O(d3)
time using standard techniques. Observes the number of different coefficients in the matrix on the
left is 2d + 1. The

∑r
i=1 im can be computed if the sum has been computed in time O(m) for the

24

previous m− 1 powers. Thus the coefficients in the matrix can be computed in time O(d2) overall.
The simplest way to compute the right hand side is to express each item into at most O(d) terms
like

∑b
i=1 imxi. Thus, the right hand side can also be computed in time O(d2). In overall O(d3)

time, we can answer EB(a + 1, b) if we store
∑b

i=1 imxi for m = 0, 1 . . . , d and
∑b

i=1 x2
i . In this

case, we have T = P = O(d) and Q = O(d3) and thus we can summarize as follows:

Theorem 8 For constructing the best representation using piecewise degree-d polynomials under
the `2

2 norm (same as V-Optimal measure) Theorem 6 can be applied setting T = P = O(d) and
Q = O(d3).

4.2 The χ2 Error

Under the celebrated χ2 goodness of fit, the error of the hypothesis hi “fitting” the data xj is given

by
(xj−hi)2

hi
. This was suggested by Donkerjovic et. al. [6]. Thus, if we assume that the data can

be approximated by B buckets in which the distribution is uniform (constant), we can try to use
the χ2 goodness of fit to find the best possible buckets that fit the data. The error of the bucket
[a + 1, b] represented by p, is EB(a + 1, b) =

∑b
i=a+1(xj − p)2/p. The total error is

B
∑

i=1

∑

j∈[si,ei]

(xj − hi)
2

hi

The error EB(a + 1, b) is minimized when we have p2 = (
∑b

i=a+1 x2
i)/(b − a), and further we

can prove that EB() is interval monotone. Thus the overall error of a bucket is

EB(a + 1, b) = 2





√

√

√

√(b − a)

b
∑

i=a+1

x2
i −

b
∑

i=a+1

xi





Thus, EB(a + 1, b) can be computed from Sum[i] and Sqsum[i] in O(1) time. We thus get the
following:

Theorem 9 For the χ2-error Theorem 6 is applicable with T = P = Q = O(1).

4.3 The Sum of Absolute Errors

Several researchers, e.g., Poosala et. al. [34], Matias et. al. [31], have proposed that the sum of the
errors |xj − hi| at each point j is a desirable error function in several scenarios. The overall error
with a B bucket histogram in this case is:

B
∑

i=1

∑

j∈[si,ei]

|xj − hi|

The representative of a bucket EB(i + 1, j) in this case is given by the median of the values
xi+1, . . . , xj . The computation of the error is straightforward if along with finding the median,
we also compute the sum of the values above and below the median. It is quite easy to see that
the function EB(i, j) is interval-monotone. The following is straightforward, see [20].

Proposition 1 Given n numbers x1, . . . , xn, we can preprocess the numbers using O(n log n) time
and space such that given any interval [i, j] we can compute the median of the numbers xi, . . . , xj

(as well as the sum of distances from the median) in O(log2 n) time.

25

The algorithm that achieves the above basically follows the merge-sort routine, but maintains
the sorted sublists created corresponding to the different intervals. Given an interval [i, j] we can
decompose the interval into at most 2 log n intervals which cover the interval [i, j] exactly and
corresponds to the intervals defined by the merge-sort tree. Given k sorted lists, we can easily find
an element of rank s in time O(k log n) using a carefully modified binary search. Given the above
and Theorem 7, we get the following corollary.

Corollary 3 For the sum of the absolute errors (`1-error), in O(n log n + B3(log n + ε−2) log2 n)
time and O(n log n) space, we can find a (1 + ε) approximation to the optimum histogram based on
AHIST-L-∆.

5 Experimental Results

We conducted experiments on real-life as well as synthetic data sets to evaluate the performance
gains achieved by the approximation algorithms. Our focus was to demonstrate the effectiveness
of the approximation techniques. Therefore we present the comparisons between the approximate
and optimum algorithms for the V-Optimal error only. We used our implementations of the faster
V-Optimal histogram construction algorithm mentioned in [26].

5.1 Algorithms

We evaluated the various schemes and show the performance figures of the following:

• VOPT represents the V-Optimal histogram construction algorithm [26] presented in Sec-
tion 2.3.

• GK02 represents the algorithm described in [17]. As mentioned in the introduction, this
algorithm was developed for constructing histograms for sliding window streams and was not
designed to be the best in class histogram construction as is the goal of this paper. This
algorithm in particular serves as a foil for demonstration of the benefit of the algorithm
AHIST-L-∆.

• AHIST-L-∆ represents the approximate histogram construction algorithm described in Sec-
tion 3.4. This is the best offline approximation algorithm.

• AHIST-B represents the improved hybrid algorithm in Section 3.5 based on the ExtendBestList
algorithm. This is the best streaming approximation algorithm. We tried block sizes of 256
to 4096 in powers of 2. We made sure that block size was no more than half the number
distinct values of data, i.e., there were always two or more blocks. The algorithms are labeled
as AHIST-B-256, etc.

All experiments reported in this section were performed on 2.0 GHz Pentium-4 machine with
1 GB of main memory, running the Linux operating system. All the methods were compiled using
version 3.2.2 of the gcc compiler.

5.2 Data Sets

Synthetic Data Sets The synthetic data sets allowed us to vary the parameters in a controlled
fashion. We considered one-dimensional synthetic data distribution. The data sets are generated
with Zipfian frequencies for various levels of skew. We varied the skew parameter values between

26

0.3 (low skew) and 2.0 (high skew), the distinct values between 256 (= 28) and 65536 (= 218), and
the tuple count was set to 1,000,000. Note that we did not vary the number of tuples as the time
and space complexities are independent of this.

A permutation step was also applied on the produced Zipfian frequencies to decide the order
of frequencies over the data domain. We experimented with four different permutation techniques
that were used in [9, 8]: NoPerm, Normal, PipeOrgan and Random. The detailed description of
these permutations are presented below:

• NoPerm does not change the order of frequencies produced by the Zipfian data generator,
i.e., smaller values have higher frequencies.

• Normal permutes the frequencies to resemble a bell-shaped normal distribution, with higher
frequencies at the center of the domain.

• PipeOrgan permutes the frequencies in a “pipe-organ”-like arrangement, with higher frequen-
cies at the two ends of the data domain.

• Random permutes the frequencies in a completely random manner over the data domain.

Real Life Data Set To see how effectively AHIST performs, we measured its behavior over
real-life data sets. Because the key aspect of the approximate histogram constructions is improved
asymptotic performance with guaranteed near optimal quality, we needed large datasets. We show
the results for the Dow-Jones Industrial Average (DJIA) data set available at StatLib7 that contains
Dow-Jones Industrial Average (DJIA) closing values from 1900 to 1993. There were a few negative
closing values and some obvious errors (like 100.**,10,100.** for consecutive closings) – we removed
these errors, and focused on the first 16384 values so that we can compare the running time of the
VOPT for this dataset and synthetic data. The dataset is plotted in Figure 11(a). Figure 11(b)
shows the running time of the VOPT algorithm on the datasets at B = 50 when skew was set to
1. For the DJIA data sets, we used the prefixes to create datasets of different sizes. The Figure
establishes that the VOPT algorithm takes similar running times on the same size of data.

5.3 Experimental Results - Synthetic Data Sets

We present some of our experimental results with synthetic data sets for frequency permutation
and settings of Zipfian skew.

5.3.1 The quality of histograms constructed

The most important issue is obviously the quality of the algorithms with respect to the optimum
solution. As expected, the histograms were within (1 + ε) factor of the true error (computed
by VOPT). However, the actual error was significantly less. We show the results in Figure 12.
Subfigure (a) represents the error as the skew was varied, (b) represents the errors as the number
of buckets was varied in the range 10–100. Figure 12(d) shows, that setting ε = 0.1 gave a fairly
accurate histogram already, the quality improved for smaller values. For the rest of the paper we
report the results for ε = 0.1 mostly, except to show explicit dependence on ε.

7http://lib.stat.cmu.edu/datasets/djdc0093.

27

5.3.2 Running times: Skew of data

Figure 13 reports the performance of the algorithms as the skew parameter was varied. All the
algorithms improved as the skew value increased. However in case of VOPT the improvement (drop
in running time) was significantly smaller and much less dramatic compared to the approximation
algorithms. This is expected since for sharply concentrated distribution there are clear notions
of “right” bucket boundaries. The approximation algorithms found these boundaries quickly, and
these boundaries were stored in the queue. The algorithm VOPT, it also stops searching after
finding the “right” boundary – but had to run over at least one bucket entirely to hit the boundary.
The approximation algorithms “jumped” from boundary to boundary and were faster than the
optimal algorithm in running time.

This (drop) was particularly striking in case of the Random permutation. The distributions are
shown in Figure 14, which illustrates the characteristics of the data, and the intuition of “right”
boundaries. Notice that in Figure 13(a) after the dramatic drop, the approximation algorithms
flattened out much more compared to Figure 13(b), (c) (d). This is easy to see - for the Normal,
noPerm and Pipe permutations, for very high skew value two to three buckets capture the distri-
bution. The running time of noPerm was the fastest for all algorithms, including VOPT, since
there was heavy pruning due to the monotonic distribution. Whereas for Random, optimum stays
the same - because of the “random” nature two to three buckets are never sufficient to describe
the data. The approximation algorithms for the random permutation dropped very quickly and
found the important buckets - but did not improve dramatically with large skew since the number
of boundaries did not drop sufficiently faster.

In the rest of the paper we report only the experiments with skew=1, since that appears to be
the median value.

5.3.3 Running times: Dependence on B

The running time of the algorithms are compared as a function of the parameter B. The number of
distinct elements is varied from small value to a large value. We could not run the VOPT algorithm
for n > 16384.

Small n For very small n, n = 256 all the algorithms took a small amount of time – their
running time varied across runs since they were so small. For n = 512 the running times stabilized
for larger B across runs. This is shown in Figure 15(a). Already AHIST-L-∆ was significantly
faster than VOPT. AHIST-B was faster for small values of B. At larger n, Figures 15(b) and
(c), the approximation algorithms began to dominate VOPT. The parameter M was set to n/2 in
these cases – it is smaller than what is suggested by the function of B, ε, log n. Note that all the
approximation algorithms assume that Bε−1 log n (natural logarithm ln) is smaller than n, otherwise
the optimization is no better than VOPT, e.g., B = 30, ε = 0.1 means that n/ log n > 300. This
means n > 2325 and naturally we would see approximation algorithms performing significantly
better at or close to this value of n.

Larger n With larger values of n, the approximation algorithms performed orders of magnitude
better. This is shown in Figure 16.

5.3.4 Running times: Fixed B

We varied the parameter B for all the algorithms. The results are shown in Figure 17. Recall
that at B = 30 we calculated the “crossover” point to be 2325; and we see that for n ≥ 4096 the

28

approximation algorithms are constantly winning.

5.3.5 Effect of ε

The effect of small epsilon, ε = 0.01 is shown in Figure 18, B is fixed at 50. Further results are
shown in Figures 20 and 22, which show how the algorithms AHIST-L-∆ and AHIST-B scaled
with ε. We show the graphs for Random and noPerm only, which are the extremes for VOPT.
Characteristics for Pipe is similar to noPerm, and characteristics for Normal is similar to Random.
Note that AHIST-L-∆ is significantly faster than VOPT in any of these cases. GK02 performed
well compared to VOPT on Random (and Normal) but did worse on noPerm (and Pipe). The
AHIST-B algorithms performed well or just slightly better. Note that the theoretical crossover
point for the approximation algorithms to perform well in this case for B = 30 is 23250 (since ε
is smaller), which explains the issue with noPerm and Pipe. We will show that in case of real
life data, the approximation algorithms performed significantly better at much smaller values of n
compared to the crossover.

5.3.6 Scaling up: AHIST-L-∆

The scale-up experiments for the algorithm AHIST-L-∆ are summarized in Figure 19. Due to lack
of space we show the results for the parameter Skew = 1, and Normal permutations only, the
behavior is similar for alternate settings of the skew value and the permutation. The sub-figure (a)
shows how the program behaved as B increased. Interestingly, initially (for small B) the running
time of AHIST-L-∆ depended on n rather than ε. As the parameter B increased the dependence
shifted to ε. This is also shown in Figure 20(a) where for B = 30 the algorithm performed similarly
for ε ∈ [0.005, 0.1], but for larger B the ε = 0.01 and ε = 0.1 cases got clearly separated. How this
separation started is shown in more detail in Figure 19(b). Figure 20(b) shows that for smaller B
the algorithm behaved comparably as ε, n was varied, whereas for larger B the impact of larger n
was felt more at smaller ε. These behaviors are consistent with the O(n + B 3(ε−2 + log n) log n)
running time. For a small B the linear term dominates and the performance of the algorithm for
various ε is similar. The second term is becomes more influential when B is large and smaller ε
affects the running time. For a sufficiently large B, the latter term becomes important when ε gets
smaller, as is shown in Figure 20(a) and (b).

However the algorithm easily remained feasible for large n and reasonable B. This performance
definitely sets this algorithm aside as the best in class histogram construction algorithm. As
we will see later, the error of the algorithm, even on real life data sets, was significantly below
the threshold set. Coupled with the fast running time AHIST-L-∆ gives us a truly attractive
algorithm for histogram construction problems. The required care in design and implementation
of the algorithm definitely pays off in terms of the improved performance.

5.3.7 Scaling up AHIST-B: How important is M ?

Figures 21 and 22 show the scale-up behavior for the algorithm AHIST-B. From Figure 21, it
is clear that M was less important compared to ε at large B. This is shown more effectively in
Figure 22(a) where for M between 256 and 4096 the algorithm performed in a “band” that was
determined by B, but was less sensitive to ε when B was small. This is again consistent with the
analysis of the time complexity. Figure 22(b) shows that for a fixed B and ε = 0.1 the parameter
M did not influence the running time. However the same figure shows that when ε was changed
(keeping B the same) there was a shift in the entire “band”. Note that AHIST-B-4096 performed
worse at ε = 0.2 compared to AHIST-B-256 at ε = 0.1 for sufficiently large n.

29

Once again, the error of these histograms were significantly below threshold (also in real life
data sets). The running time of these algorithms, their space bound and streaming nature make
them a uniquely attractive candidate for histogram construction algorithms.

5.4 Experimental Results - Real-life Data Sets

Performance over the entire data as B varies In Figures 23(a) and (c) we show the running
times as B varies – the trends are nearly identical to the trends in the synthetic data, specially the
Normal datasets.

The error in approximation Figures 23(b) and (d) shows the error (in terms of a fraction of the
error obtained by the VOPT algorithm) for different B. The approximation algorithms are much
faster than VOPT and have very small error, specially for ε = 0.01. Observe that all approximation
algorithms returned answers which are far below the error threshold. Thus we have a strong case
for using the approximation algorithms.

Running times as a function of n for fixed B Figure 24 shows the running times of the
various algorithms for setting of ε = 0.1, 0.01. We used the prefixes of the same dataset to get
different values of n (which were powers of 2).

5.5 Summary of Trends

From the figures it is immediate:

1. The approximation algorithms performed well in most of the datasets, including the real life
dataset. AHIST-L-∆ was significantly faster than VOPT over almost all scenarios covered.
The algorithm AHIST-B also dominated VOPT in most of the scenarios. The algorithm
GK02 also performed well compared to VOPT specially in the real life dataset.

2. AHIST-L-∆ usually had the largest error amongst the approximation algorithms, but the
error was usually below the ε by at least a factor of 15.

3. The algorithm AHIST-L-∆ scaled extremely well and AHIST-B scaled well. Both these
algorithms performed significantly better than the worst case guarantees (in running time
and error).

Based on the trends we can easily conclude that AHIST-L-∆ and AHIST-B are attractive options
for histogram construction algorithms. Note that AHIST-B is also a bounded space streaming
algorithm, which makes it significantly appealing.

6 Conclusions

Histogram construction is a problem of central interest to many database applications. A variety of
database applications including, approximate querying, similarity searching and data mining, rely
on accurate histograms.

Previous histogram construction algorithms that applied to a broad class of error measures
required O(n2B) time and O(nB) space for finding the optimum histogram. In this paper we gave
the first (1 + ε) approximation algorithm for any ε > 0 that runs in linear time. We also showed
that our technique generalizes to several interesting histogram construction problems, notably using

30

piecewise degree-d polynomials. Our algorithms work in the model where the data items xi are
presented one at a time in an increasing order of i. Thus for time series applications our algorithms
are one-pass stream algorithms.

Finally we demonstrated the effectiveness of the approximation schemes using synthetic and real
life data sets. Since the overall algorithmic technique is the same for different error measures, we
reported the performance of approximating V-Optimal histograms. The results for other measures
were similar and confirmed that our approximation technique is an important tool for constructing
accurate histograms faster.

31

References

[1] S. Acharya, P. Gibbons, V. Poosala, and S. Ramaswamy. The Aqua Approximate Query
Answering System. Proc. of ACM SIGMOD, pages 574–576, 1999.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[3] M. Bertolotto and M. J. Egenhofer. Progressive vector transmission. Proc. of the 7th ACM
symposium on Advances in Geographical Information Systems, pages 152–157, 1999.

[4] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, Cambridge, 1998.

[5] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding
windows. Proc. of SODA, pages 635–644, 2002.

[6] D. Donjerkovic, Y. E. Ioannidis, and R. Ramakrishnan. Dynamic histograms: Capturing
evolving data sets. CS-TR 99-1396, University of Wisconsin, Madison, WI, March 1999.

[7] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate l1-difference
algorithm for massive data streams. SIAM J. Comput., 32(1):131–151, 2002.

[8] M. N. Garofalakis and P. B. Gibbons. Wavelet synopses with error guarantees. Proc. of ACM
SIGMOD, pages 476–487, 2002.

[9] M. N. Garofalakis and P. B. Gibbons. Probabilistic wavelet synopses. ACM TODS, 29:43–90,
2004.

[10] P. Gibbons and Y. Matias. Synopsis data structures for massive data sets. Proc. of SODA,
pages 909–910, 1999.

[11] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and Martin Strauss. Fast,
small-space algorithms for approximate histogram maintenance. Proc. of ACM STOC, pages
389–398, 2002.

[12] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Optimal and approximate
computation of summary statistics for range aggregates. Proc. of ACM PODS, 2001.

[13] M. Greenwald and S. Khanna. Space-Efficient Online Computation of Quantile Summaries.
Proc. of ACM SIGMOD, 2001.

[14] S. Guha. Space efficiency in synopsis construction problems. Proc. of VLDB Conference, pages
409–420, 2005.

[15] S. Guha and B. Harb. Approximation algorithms for wavelet transform coding of data streams.
Proc. of SODA, 2006.

[16] S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss. Histogramming data streams with fast
per-item processing. Proc. of ICALP, pages 681–692, 2002.

[17] S. Guha and N. Koudas. Approximating a Data Stream for Querying and Estimation: Algo-
rithms and Performance Evaluation. Proc. of ICDE, pages 567–576, 2002.

32

[18] S. Guha, N. Koudas, and K. Shim. Data Streams and Histograms. Proc. of ACM STOC,
pages 471–475, 2001.

[19] S. Guha, N. Koudas, and D. Srivastava. Fast algorithms for hierarchical range histogram
construction. Proc. of ACM PODS, pages 180–187, 2002.

[20] S. Guha, K. Shim, and J. Woo. REHIST: Relative error histogram construction algorithms.
Proc. VLDB Conference, pages 300–311, 2004.

[21] D. Hochbaum. Approximation Algorithms for NP Hard Problems. Brooks/Cole Pub. Co, 1996.

[22] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream com-
putation. Proc. of FOCS, pages 189–197, 2000.

[23] Y. Ioannidis and Viswanath Poosala. Balancing Histogram Optimality and Practicality for
Query Result Size Estimation. Proc. of ACM SIGMOD, pages 233–244, 1995.

[24] Y. E. Ioannidis. Universality of serial histograms. Proc. of the VLDB Conference, pages
256–267, 1993.

[25] Y. E. Ioannidis. The history of histograms (abridged). Proc. of VLDB Conference, pages
19–30, 2003.

[26] H. V Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and T. Suel. Optimal
Histograms with Quality Guarantees. Proc. of the VLDB Conference, pages 275–286, 1998.

[27] E. Keogh, K. Chakrabati, S. Mehrotra, and M. Pazzani. Locally Adaptive Dimensionality
Reduction for Indexing Large Time Series Databases. ACM Trans. Database Syst., 27(2):188–
228, 2002.

[28] Robert Kooi. The optimization of queries in relational databases. Case Western Reserve
University, 1980.

[29] N. Koudas, S. Muthukrishnan, and D. Srivastava. Optimal histograms for hierarchical range
queries. Proc. of ACM PODS, pages 196–204, 2000.

[30] G. S. Manku, S. Rajagopalan, and B. Lindsay. Approximate Medians and Other Quantiles In
One Pass and With Limited Memory. Proc. of ACM SIGMOD, pages 426–435, 1998.

[31] Y. Matias, J. Scott Vitter, and M. Wang. Wavelet-Based Histograms for Selectivity Estima-
tion. Proc. of ACM SIGMOD, pages 448–459, 1998.

[32] M. Muralikrishna and D. J. DeWitt. Equi-depth histograms for estimating selectivity factors
for multidimensional queries. Proc. of ACM SIGMOD, Chicago, IL, pages 28–36, 1988.

[33] S. Muthukrishnan and M. Strauss. Approximate histogram and wavelet summaries of stream-
ing data. DIMACS TR 52, 2004.

[34] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved Histograms for Selectivity Esti-
mation of Range Predicates. Proc. of ACM SIGMOD, pages 294–305, 1996.

[35] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path
selection in a relational database management system. Proc. of ACM SIGMOD, pages 23–34,
1979.

33

[36] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic multidimensional histograms. Proc.
of SIGMOD, pages 428–439, 2002.

[37] V. Vazirani. Approximation Algorithms. Springer Verlag, 2001.

34

Procedure SUB-AHIST-L-∆(B, MaxEstimate, ρ, z)
begin

/* Assume Sum, sqvsum are available and we can compute Sqerror() */

1. For k = 1 to B − 1 {
2. Initialize k-th interval list Q[k] to empty
3. Cutoff = MaxEstimate; /* do not consider larger costs */
4. CreateBestList(1, n, k, Cutoff, ρ, z)
5. }
6. Apxerr[n,B] := ∞
7. For i := 1 to size(Q[B − 1])
8. Apxerr[n,B] := min(Apxerr[n,B],

Apxerr[Q[B − 1].b[i],B − 1] + Sqerror(Q[B − 1].b[i] + 1, n))
9. return the solution found in the above step
end

Procedure CreateBestList(start, end, k, Cutoff, ρ, z)

/* It is recursive and invokes itself with a changed value of Cutoff*/

begin

1. Compute Apxerr[start, k]

/* For k=1, this is Sqerror(0, start), otherwise we have the following */
/* Apxerr[start, k] = minb∈Q[k−1] Apxerr[b, k − 1] + Sqerror(b + 1, start) */
/* Important: the minimization also looks at elements b in Q[k − 1] */

/* which are larger than/equal to start, in that case Sqerror(b + 1, start) = 0. */
/* For these b ≥ start we need to only inspect the smallest b larger than/equal to start */

2. if (Apxerr[start, k] ≥ Cutoff)
3. return Cutoff /* basically drop the interval */
4. while (start < end) do {
5. mid := (start+end+1)/2
6. Cutoff := CreateBestList(mid, end, k, Cutoff, ρ, z)

/* Cutoffchanges here */
7. if (Apxerr[start, k] ≥ Cutoff)
8. return Cutoff /* Drops interval, but list was changed */
9. end := mid - 1
10. }
11. if (Apxerr[start, k] < Cutoff) {
12. Insert start at the front of the k-th list Q[k]

13. Cutoff := Apxerr[start,k]−z

ρ

14. }
15. return Cutoff

end

Figure 7: The algorithm SUB-AHIST-L-∆.

35

A

aa b a b 44322 31

PXERR[i,k]

5ab 5ab1=1 b

M

i
n−M n

Figure 8: Approximating Terr[i, k]

�������
�
������������ �������� ���� 		

 ����

�

�

�

��
�
������
���
������
���

������
���
��
�

��
�
��
�

��
�
��
�

��
�
��
�

Figure 9: The lists Q[k − 1], G[k − 1],SubQ[k − 1]

Procedure AHIST-B()
begin

1. Initialize every list Q[k] to empty. Set z=0.
2. For r = 1 to n/M {
3. Read the next block of M elements
4. Compute SUM[i] and SQSUM[i] for 1 ≤ i ≤ M in the current block
5. using SUM[M] and SQSUM[M] in the last block
6. For k = 1 to B − 1 {
7. Initialize k-th interval list Q[k] to empty
8. ExtendBestList(Q,k,Optestimate) /* explained in text */
9. }
10. Apxerr[n,B] := ∞
11. For i := 1 to size(Q[B − 1])
12. Apxerr[n,B] := min(Apxerr[n,B],

Apxerr[Q[B − 1].b[i],B − 1] + Sqerror(Q[B − 1].b[i] + 1, n))

13. Optestimate :=
Apxerr[n,B]

4B
14. }
end

Figure 10: The algorithm AHIST-B

36

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000

"dow-data.txt"

 0.1

 1

 10

 100

 2048 4096 8192 16384

T
im

e
(s

ec
.)

Size of Data, n

"VOPT-50-Random"
"VOPT-dow-50"

"VOPT-50-Normal"
"VOPT-50-noPerm"

"VOPT-50-Pipe"

(a) The dataset (b) Running time of VOPT

Figure 11: The real life dataset, (b) compares the running time of VOPT on prefixes of this data
compared to the synthetic data

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.3 0.7 1 1.5 2

(E
rr

or
-V

O
P

T
)/

V
O

P
T

Skew

"Err-AHIST-L-Delta-16384-0.1"
"Err-AHIST-B-4096-16384-0.1"
"Err-AHIST-B-2048-16384-0.1"
"Err-AHIST-B-1024-16384-0.1"

"Err-GK02-16384-0.1"

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 10 20 30 40 50 60 70 80 90 100

(E
rr

or
-V

O
P

T
)/

V
O

P
T

Number of Buckets, B

"Err-GK02-8192-0.1"
"Err-AHIST-L-Delta-8192-0.1"
"Err-AHIST-B-1024-8192-0.1"
"Err-AHIST-B-2048-8192-0.1"
"Err-AHIST-B-4096-8192-0.1"

(a) n = 16348, B = 50, ε = 0.1 (b) n = 16358, ε = 0.1, Skew=1

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 2048 4096 8192 16384

(E
rr

or
-V

O
P

T
)/

V
O

P
T

Size of Data,n

"Err-AHIST-L-Delta-50-0.1"
"Err-AHIST-B-4096-50-0.1"
"Err-AHIST-B-2048-50-0.1"
"Err-AHIST-B-1024-50-0.1"

"Err-GK02-50-0.1"

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0 0.02 0.04 0.06 0.08 0.1

(E
rr

or
-V

O
P

T
)/

V
O

P
T

Approximation Threshold

"Err-GK02-8192-50"
"Err-AHIST-L-Delta-8192-50"
"Err-AHIST-B-1024-8192-50"
"Err-AHIST-B-2048-8192-50"
"Err-AHIST-B-4096-8192-50"

(a) B = 50, ε = 0.1, Skew=1 (d) n = 8192, B = 50, Skew=1

Figure 12: Quality of the histograms obtained

37

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.3 0.7 1 1.5 2

T
im

e
(s

ec
.)

"VOPT-16384-skew-R"
"GK02-16384-0.1-skew-R"

"AHIST-L-Delta-16384-0.1-skew-R"
"AHIST-B-1024-16384-0.1-skew-R"
"AHIST-B-2048-16384-0.1-skew-R"
"AHIST-B-4096-16384-0.1-skew-R"

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.3 0.7 1 1.5 2

T
im

e
(s

ec
.)

"VOPT-16384-skew-N"
"GK02-16384-0.1-skew-N"

"AHIST-L-Delta-16384-0.1-skew-N"
"AHIST-B-1024-16384-0.1-skew-N"
"AHIST-B-2048-16384-0.1-skew-N"
"AHIST-B-4096-16384-0.1-skew-N"

(a) n = 16358, B = 50, Random (b) n = 16384, B = 50, Normal

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.3 0.7 1 1.5 2

T
im

e
(s

ec
.)

"VOPT-16384-skew-P"
"GK02-16384-0.1-skew-P"

"AHIST-L-Delta-16384-0.1-skew-P"
"AHIST-B-1024-16384-0.1-skew-P"
"AHIST-B-2048-16384-0.1-skew-P"
"AHIST-B-4096-16384-0.1-skew-P"

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.3 0.7 1 1.5 2
T

im
e

(s
ec

.)

"VOPT-16384-skew-no"
"GK02-16384-0.1-skew-no"

"AHIST-L-Delta-16384-0.1-skew-no"
"AHIST-B-1024-16384-0.1-skew-no"
"AHIST-B-2048-16384-0.1-skew-no"
"AHIST-B-4096-16384-0.1-skew-no"

(c) n = 16358, B = 50, Pipe (d) n = 16384, B = 50, noPerm

Figure 13: Running times on varying the skew parameter

 0

 1000

 0 8192 16384
 0

 50000

 100000

 0 8192 16384
 0

 50000

 100000

 0 8192 16384

(a) Random, Skew=0.3 (b) Random, Skew=1.0 (c) Random, Skew=2.0

Figure 14: Zipfian distribution under random permutation n = 16384

 0.01

 0.1

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
.)

"GK02-512-1"
"GK02-512-2"
"VOPT-512-1"
"VOPT-512-2"

"AHIST-B-256-512-1"
"AHIST-B-256-512-2"

"AHIST-L-Delta-512-1"
"AHIST-L-Delta-512-2"

 0.001

 0.01

 0.1

 1

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
.)

"VOPT-1024"
"GK02-1024-0.1"

"AHIST-L-Delta-1024-0.1"
"AHIST-B-512-1024-0.1"

 0.01

 0.1

 1

 10

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
.)

"VOPT-2048"
"GK02-2048-0.1"

"AHIST-B-1024-2048-0.1"
"AHIST-L-Delta-2048-0.1"

(a) n = 512 (b) n = 1024 (c) n = 2048

Figure 15: Running time for small n as B is varied ε = 0.1, skew = 1

38

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
.)

"VOPT-16384-R"
"GK02-16384-0.1-R"

"AHIST-L-Delta-16384-0.1-R"
"AHIST-B-1024-16384-0.1-R"
"AHIST-B-2048-16384-0.1-R"
"AHIST-B-4096-16384-0.1-R"

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
.)

"VOPT-16384-N"
"GK02-16384-0.1-N"

"AHIST-L-Delta-16384-0.1-N"
"AHIST-B-1024-16384-0.1-N"
"AHIST-B-2048-16384-0.1-N"
"AHIST-B-4096-16384-0.1-N"

(a) Random (b) Normal

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
.)

"VOPT-16384-P"
"GK02-16384-0.1-P"

"AHIST-L-Delta-16384-0.1-P"
"AHIST-B-1024-16384-0.1-P"
"AHIST-B-2048-16384-0.1-P"
"AHIST-B-4096-16384-0.1-P"

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100
T

im
e

(s
ec

.)

"VOPT-16384-no"
"GK02-16384-0.1-no"

"AHIST-L-Delta-16384-0.1-no"
"AHIST-B-1024-16384-0.1-no"
"AHIST-B-2048-16384-0.1-no"
"AHIST-B-4096-16384-0.1-no"

(c) Pipe (d) noPerm

Figure 16: Running time for large n as B is varied, n = 16384, ε = 0.1, Skew = 1

 0.01

 0.1

 1

 10

 100

 2048 4096 8192 16384

T
im

e
(s

ec
.)

"VOPT-50-R"
"GK02-50-0.1-R"

"AHIST-L-Delta-50-0.1-R"
"AHIST-B-1024-50-0.1-R"
"AHIST-B-2048-50-0.1-R"
"AHIST-B-4096-50-0.1-R"

 0.01

 0.1

 1

 10

 100

 2048 4096 8192 16384

T
im

e
(s

ec
.)

"VOPT-50-N"
"GK02-50-0.1-N"

"AHIST-L-Delta-50-0.1-N"
"AHIST-B-1024-50-0.1-N"
"AHIST-B-2048-50-0.1-N"
"AHIST-B-4096-50-0.1-N"

(a) Random (b) Normal

 0.01

 0.1

 1

 10

 100

 2048 4096 8192 16384

T
im

e
(s

ec
.)

"VOPT-50-P"
"GK02-50-0.1-P"

"AHIST-L-Delta-50-0.1-P"
"AHIST-B-1024-50-0.1-P"
"AHIST-B-2048-50-0.1-P"
"AHIST-B-4096-50-0.1-P"

 0.01

 0.1

 1

 10

 100

 2048 4096 8192 16384

T
im

e
(s

ec
.)

"VOPT-50-no"
"GK02-50-0.1-no"

"AHIST-L-Delta-50-0.1-no"
"AHIST-B-1024-50-0.1-no"
"AHIST-B-2048-50-0.1-no"
"AHIST-B-4096-50-0.1-no"

(c) Pipe (d) noPerm

Figure 17: Performance as n is varied, skew = 1, ε = 0.1, B = 50

39

 0.01

 0.1

 1

 10

 100

 2048 4096 8192 16384

T
im

e
(s

ec
.)

"VOPT-50-R"
"GK02-50-0.01-R"

"AHIST-L-Delta-50-0.01-R"
"AHIST-B-1024-50-0.01-R"
"AHIST-B-2048-50-0.01-R"
"AHIST-B-4096-50-0.01-R"

 0.01

 0.1

 1

 10

 100

 2048 4096 8192 16384

T
im

e
(s

ec
.)

"VOPT-50-no"
"GK02-50-0.01-no"

"AHIST-L-Delta-50-0.01-no"
"AHIST-B-1024-50-0.01-no"
"AHIST-B-2048-50-0.01-no"
"AHIST-B-4096-50-0.01-no"

(a) ε = 0.01, Random (b) ε = 0.01, noPerm

Figure 18: Effect of ε as B is varied, n = 16384, skew = 1

 0.1

 1

 10

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
.)

"AHIST-L-Delta-65536-0.1"
"AHIST-L-Delta-65536-0.01"

"AHIST-L-Delta-32768-0.1"
"AHIST-L-Delta-32768-0.01"

 0.1

 1

 256 1024 4096 16384 65536

T
im

e
(s

ec
.)

"AHIST-L-Delta-70-0.01"
"AHIST-L-Delta-60-0.01"
"AHIST-L-Delta-50-0.01"
"AHIST-L-Delta-40-0.01"

"AHIST-L-Delta-70-0.1"
"AHIST-L-Delta-60-0.1"
"AHIST-L-Delta-50-0.1"
"AHIST-L-Delta-40-0.1"

(a) Varying B, Normal, Skew = 1 (b) Varying n, B =40–70, Normal, Skew = 1.

Figure 19: Running time of AHIST-L-∆

 0.1

 1

 10

 100

 65536 16384 4096 1024

T
im

e(
se

c.
)

"AHIST-L-Delta-30-0.1"
"AHIST-L-Delta-30-0.05"
"AHIST-L-Delta-30-0.01"

"AHIST-L-Delta-30-0.005"
"AHIST-L-Delta-80-0.1"

"AHIST-L-Delta-80-0.01"
"AHIST-L-Delta-100-0.1"

"AHIST-L-Delta-100-0.01"

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
im

e(
se

c.
)

"AHIST-L-Delta-16384-50-N"
"AHIST-L-Delta-32768-50-N"
"AHIST-L-Delta-65536-50-N"

"AHIST-L-Delta-16384-100-N"
"AHIST-L-Delta-32768-100-N"
"AHIST-L-Delta-65536-100-N"

(a) Dependence of n as B, ε are varied (b) Effect of ε

Figure 20: Effects of the parameters on running time of AHIST-L-∆, Normal perm., skew = 1.

40

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
.)

"AHIST-B-1024-32768-0.1"
"AHIST-B-1024-32768-0.01"

"AHIST-B-2048-32768-0.1"
"AHIST-B-2048-32768-0.01"

"AHIST-B-4096-32768-0.1"
"AHIST-B-4096-32768-0.01"

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
.)

"AHIST-B-1024-65536-0.1"
"AHIST-B-1024-65536-0.01"

"AHIST-B-2048-65536-0.1"
"AHIST-B-2048-65536-0.01"

"AHIST-B-4096-65536-0.1"
"AHIST-B-4096-65536-0.01"

(a) n=32768 (b) n=65536

Figure 21: Running time of AHIST-B as B varies

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
im

e
(s

ec
.)

"AHIST-B-4096-65536-100-N"
"AHIST-B-256-65536-50-N"

"AHIST-B-4096-65536-50-N"
"AHIST-B-256-65536-10-N"

"AHIST-B-4096-65536-10-N"

 0

 50

 100

 150

 200

 250

 65536 32768 16384 8192

T
im

e
(s

ec
.)

"AHIST-B-1024-100-0.01-N"
"AHIST-B-2048-100-0.01-N"
"AHIST-B-4096-100-0.02-N"

"AHIST-B-256-100-0.1-N"
"AHIST-B-512-100-0.1-N"

"AHIST-B-1024-100-0.1-N"
"AHIST-B-2048-100-0.1-N"
"AHIST-B-4096-100-0.1-N"

(a) For different B as ε varies (b) For different ε as n varies

Figure 22: Running time of AHIST-B as M is changed from 256 to 4096

41

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
.)

"VOPT-dow-16384"
"GK02-dow-16384-0.1"

"AHIST-L-Delta-dow-16384-0.1"
"AHIST-B-1024-dow-16384-0.1"
"AHIST-B-2048-dow-16384-0.1"
"AHIST-B-4096-dow-16384-0.1"

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 10 20 30 40 50 60 70 80 90 100

(E
rr

or
-V

O
P

T
)/

V
O

P
T

"Err-GK02-dow-16384-0.1"
"Err-AHIST-L-Delta-dow-16384-0.1"
"Err-AHIST-B-1024-dow-16384-0.1"
"Err-AHIST-B-2048-dow-16384-0.1"
"Err-AHIST-B-4096-dow-16384-0.1"

(a) Running time, ε = 0.1 (b) Relative error, ε = 0.1

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
.)

"VOPT-dow-16384"
"GK02-dow-16384-0.01"

"AHIST-L-Delta-dow-16384-0.01"
"AHIST-B-1024-dow-16384-0.01"
"AHIST-B-2048-dow-16384-0.01"
"AHIST-B-4096-dow-16384-0.01"

-5e-05

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 10 20 30 40 50 60 70 80 90 100

(E
rr

or
-V

O
P

T
)/

V
O

P
T

"Err-GK02-dow-16384-0.01"
"Err-AHIST-L-Delta-dow-16384-0.01"
"Err-AHIST-B-1024-dow-16384-0.01"
"Err-AHIST-B-2048-dow-16384-0.01"
"Err-AHIST-B-4096-dow-16384-0.01"

(c) Running time, ε = 0.01 (d) Relative error, ε = 0.01

Figure 23: Characteristics as B varies, n = 16384

 0.01

 0.1

 1

 10

 100

 2048 4096 8192 16384

T
im

e
(s

ec
.)

"VOPT-dow-50"
"GK02-dow-50-0.1"

"AHIST-L-Delta-dow-50-0.1"
"AHIST-B-1024-dow-50-0.1"
"AHIST-B-2048-dow-50-0.1"
"AHIST-B-4096-dow-50-0.1"

 0.01

 0.1

 1

 10

 100

 2048 4096 8192 16384

T
im

e
(s

ec
.)

"VOPT-dow-50"
"GK02-dow-50-0.01"

"AHIST-L-Delta-dow-50-0.01"
"AHIST-B-1024-dow-50-0.01"
"AHIST-B-2048-dow-50-0.01"
"AHIST-B-4096-dow-50-0.01"

(a) ε = 0.1, B = 50 (b) ε = 0.01, B = 50

Figure 24: Running time as n (the prefix size) varies

42

